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Abstract

Convolutional neural networks offer much more accu-
rate detection of steganography than the outgoing paradigm
- classifiers trained on rich representations of images.
While training a CNN is scalable with respect to the size
of the training set, one camnot directly train on images
that are too large due to the memory limitations of current
GPUs. Most leading network architectures for steganaly-
sis today require the input image to be a small tile with
256 x 256 or 512 x 512 pizels. Because detecting the pres-
ence of steganographic embedding changes really means de-
tecting a very weak noise signal added to the cover image,
resizing an image before presenting it to a CNN would be
highly suboptimal. Applying the tile detector on disjoint
segments of a larger image and fusing the results bring a
plethora of new problems of how to properly fuse the out-
puts. In this paper, we propose a different solution to this
problem based on modifying an existing leading network ar-
chitecture for steganalysis in the spatial domain, the YeNet,
to output statistical moments of feature maps to the fully-
connected classifier part of the network. On experiments
in which we adjust the payload with image size according
the square root law for constant statistical detectability, we
demonstrate that the proposed architecture can be trained to
steganalyze images of various sizes without any or only a
small loss with respect to detectors trained for a fired image
size.

Introduction

Steganography allows the sender to communicate se-
cretly and covertly over insecure channels by hiding the
message in an innocuous looking cover object. The goal
of steganalysis is to detect the presence of secretly em-
bedded messages. Recently, steganalysis detectors imple-
mented as deep Convolutional Neural Networks (CNNs)
have appeared [20} 1 28, 27, 3, 26, B0] and quickly es-
tablished themselves as superior to the previous detection
paradigm, detectors built as binary classifiers [17] [5l [I8]
trained on examples of cover and stego images repre-
sented with high-dimensional (rich) features [7, [16] 22].
The most notable contributions in this direction include
the pioneering architecture proposed by Qian [20, [1], the
XuNet [28] 27], JPEG-phase-aware XuNet [3], deep net-
work targeted to J-UNIWARD [26], and the breakthrough
YeNet [30], with a significantly better performance for
spatial-domain steganography in comparison to conven-
tional detectors.

While the training of CNN detectors is far more scal-
able with respect to the size of the training set, because of
the limited memory of GPUs on which CNNs are trained,
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it is not possible to train such detectors on images that
are too large. Current technology allows computation-
ally feasible training on relatively small tiles, typically
256 x 256 or 512 x 512 pixels. In particular, images with
several megapixels would not fit on the GPU memory even
when using “mini-batches” consisting of a single image.
Small mini-batches would also compromise the stability
of stochastic gradient descent algorithms because of noisy
gradients, which would negatively affect the network con-
vergence and its performance. This brings a natural ques-
tion, which is how should large images be steganalyzed with
a detector that can only accept a small tile on its input.

In pattern recognition applications, this problem has
typically been approached by resizing the input image di-
rectly to the desired size and training with data augmen-
tation to be robust w.r.t the size of the pattern. Another
possibility is to use an approach that is already invariant
to scale [29]. However, this would not be a good practice
in steganalysis as the patterns (the steganographic embed-
ding changes) are very weak, independent, and, by defi-
nition, pixel-wise. The classification is thus a quantita-
tive analysis of such subtle noise-like patterns. Downsizing
before classification would compromise the detector accu-
racy because it would “average out” adjacent embedding
changes and thus decrease the signal to noise ratio between
the cover image and the steganographic signal.

In principle, one could apply the tile detector on dis-
joint (or overlapping) tiles covering the analyzed image
and fuse/pool the results, which is the problem of pooled
steganalysis introduced in [9] [10} 12} [15] [13] and studied
in [I9, 4, 2I]. Finding a proper pooling function, how-
ever, would have to take into consideration the dependen-
cies among tiles, which appears to be a hard problem fur-
ther complicated by the fact that the distribution of CNN
output test statistic is highly non-Gaussian. The pooling
seems like a task that, too, should best be outsourced to
machine learning.

In this paper, we investigate an alternative option by
selecting an architecture for the network that is already
scalable w.r.t. the size of the analyzed image. This can
be achieved by feeding statistical moments of the feature
maps outputted by the last layer before the fully connected
(classifier) part of the network also called the IP layer (in-
ner product). The belief is that, due to self-similarity of
natural images [23] 24, 25], the front part of the network
will be a “universal feature extractor” and one only needs
to retrain the IP layer of the network to adapt to a dif-
ferent input image size. Indeed, non-linear moments, such
as maximum, minimum, and variance of feature maps, will
indirectly inform the IP layer about the input image size



and its resolution. For example, variance will be smaller
for high-resolution input images while the order moments
will increase with increased size of the input image. Addi-
tionally, one could also supply the number of pixels as an
additional input to the IP layer.

We evaluate the effectiveness of the proposed approach
in two different ways — by direct comparison on image
sizes for which it is feasible and possible to directly train
the CNN and by indirect comparison while leveraging the
square root law [I4] [6] [IT]. Note that, depending on the
network structure, it is not possible to arbitrarily decrease
the size of the input tile without modifying the network ar-
chitecture by removing layers. For example, as of January
2018, the most successful CNN architecture for detection
spatial domain steganography is the YeNet [30], which out-
puts 16 3 x 3 feature maps before the IP layer. The small-
est input image is thus 128 x 128. The largest input image
on which it is computationally feasible to train the YeNet
with a single GPU with 12 GB memory[[]is 512 x 512. Ex-
panding to larger sizes could be done by decreasing the
embedding change rate for larger images to keep the sta-
tistical detectability constant according to the square root
law.

In the next section, we describe the network used in
our experiments, the YeNet, and its modifications to make
it more amenable for steganalysis in images of various size.
In particular, the IP layer is fed with moments of the 7 x 7
output feature maps. In Section “Experiments”, we report
the results of two types of experiments aimed at assessing
the performance of the CNN adapted to detect steganogra-
phy in images of a different size. This section also contains
all details regarding the CNN training, the image datasets,
and other relevant experimental setup for our experiments.
The last section summarizes the paper.

Network architecture

We used a modified YeNet [30] without the selection-
channel-aware part shown in Figure[[] One of the modifi-
cations is the addition of a batch normalization layer after
each ReLU. We also reduced the stride in the last 9th con-
volutional layer before classification to one, which made
the size of the 16 features before the IP layer to be 7 x 7
rather than 3 x 3 as in the original YeNet. Furthermore,
we made the moments of these feature maps, their sample
average, sample variance, maximum, and minimum, as the
outputs of this layer. According to our experience, adding
the batch normalization after each ReLU prevents the net-
work from over-fitting and gives a slightly better detection
accuracy.

Moments extraction and training

The maximum, minimum, variance, and average mo-
ments were computed from each of the last 16 feature maps.
The variance was considered as a constant and its deriva-
tive was ignored during backpropagation. All 4 x 16 = 64
moments were then fed directly to the IP layer (Figure [1)).

1The GPU memory size for Titan X and Xp, Tesla K40 and
K80, and GTX 1080 Ti (11 GB).

The combination of variance and the order moments (min-
imum and maximum) inform the IP layer about the reso-
lution and size of the input image, respectively. Here, we
distinguish between the image size, the number of pixels,
and the image resolution, which relates to the native res-
olution of the image at acquisition. For example, a small
crop from a high resolution image will keep the smooth na-
ture of a high resolution image (smaller variance of feature
maps) despite being small. On the other hand, a resized
image (with antialiasing turned off) will have a significantly
increased level of detail, which will translate into a larger
variance. The order moments monotonically decrease with
cropping. Consequently, we believe the four moments pro-
vide enough information to the IP layer to allow the CNN
adjust itself to accurately steganalyze images of arbitrary
size and resolution.

In this paper, we will be using two versions of the
modified YeNet — one with a single-layer IP and one with
a two-layer IP. The single-layer IP will be used for training
a “feature extractor” or “tile detector” while the two-layer
IP version will be used to make the network handle images
of different sizes because changing the size may change the
classification based on extracted moments to a non-linear
problem. The final modified YeNet network architecture is
shown in Figure

Experiments

In the first subsection, we propose an approach for
adapting a network trained on small tiles to handle larger
images of a fixed size with an accuracy approximately equal
to a network directly trained on larger images, if such net-
work could be built. This was achieved by first training
the tile detector on the smallest size of 256 x 256, cropped
from larger original sizes. Cropping was used instead of
resizing because we intend to adjust the payload for larger
image sizes based on the square root law to preserve the
statistical detectability across various image sizes and thus
allow us to assess the performance of networks on large im-
ages. Then, to obtain a detector for a fixed larger size, we
retrained only the IP layers of this network with the same
“feature extractor,” the front part of the network before
the IP layers. This retraining was achieved in two phases
— first the moments were extracted from the larger images
and then a two-layer IP was trained on mini-batches of
moments (moments from 1000 images in each mini-batch).
We call this detector TRIP because of the fixed Tile de-
tector front part and the Retrained IP layer.

Since the payload/change rate is adjusted for a con-
stant statistical detectability across different sizes, we also
added the results obtained when retraining the tile detector
for the smaller payload inserted in the larger images and
then retraining just the IP layers on moments extracted
from larger images. We call it RTRIP (Retrained Tile
detector and Retrained IP).

Our main goal is to show how a network trained on
one size can be adapted to detect on larger sizes without
any loss on detection accuracy. The comparison between
the TRIP and RTRIP detectors will also inform us about
how universal the feature extractor trained on small tiles

IS&T Infernational Symposium on Electronic Imaging 201
Media Watermarking, Security, and Forensics 201

8
8



Class Probability

Average Pooling Fully Connected
stride: 2, kernel size: 3 1 layer
or
119x119x32 f 2 layers with 256 hidden
Block Conv neurons
kernel size: 5 4Ax16 4
123x123x30 * Moments extraction
Average Pooling
stride: 2, kernel size: 2 7x7xie A
246x246x30 Block Conv
Block Conv kernel size: 3
kernel size: 3 oxox1e M
248x248x30 A Block Conv
Block Conv kernel size: 3
kernel size: 3 11x11x32 A
250x250x30 4 Average Pooling
. e _ _ A
Block Conv stride: 2, kernel size: 3 H-K+D)x(W-K+1)xC
kernel size: 3 23x23x32 A Block Conv
252x252x30 4 Block Conv Batch Normalization
kernel size: 5
TLU
27x27x32 A (H-K+DHXxW-K+1)xC
252x252x30 f Average Pooling Relu
Conv 3x3 stride: 2, kernel size: 3
SRM initialized 55x55x32 A (H-K+Dx(W-K+ I)XCT
256x256x1 A Block Conv Convolution
kernel size: 5 kernel size:K
{ Input /
50x59x32 A [}
HxWxC

Figure 1. Left: Modified YeNet used in our work. Right: architecture of each 'Block Conv’ layer.
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is across images of various sizes and whether its retraining
for a different payload is needed.

In the second subsection, we propose and study an
approach for building a truly Size-Independent Detector
(SID) that can accept arbitrarily sized input images and
return as accurate an answer as TRIP or RTRIP detectors
built for a fized input image size.

Detecting in large images of a fixed size

The datasets for the first batch of experiments in this
section were prepared from the original 10,000 BOSSbase
1.01 [2] native resolution images resized to 1024 x 1024 us-
ing the convert tool from ImageMagick, and then split into
6400 / 1600 / 2000 images, respectively, for training / val-
idation / testing. We then generated from each image in
the training set smaller images by cropping each image into
four 512 x 512 images and 16 256 x 256 images. For vali-
dation and testing, only one central crop and one “smart
crop” was obtained from each large image so that its his-
togram of local variance (computed from 3 x 3 blocks) was
the most similar (in L1 norm) to the histogram of the local
variance of the entire 1024 x 1024 image. This was done to
obtain sources that are more similar to the original source
of 1024 x 1024 images because cropping may change the
source properties and produce images with singular con-
tent, such as completely saturated images or images of just
blue sky. Thus, the final number of training / validation
/ testing images for 256 x 256 and 512 x 512 images were
102,400 / 1600 / 2000 and 25,600 / 1600 / 2000, respec-
tively.

Experiments were carried out on the steganographic
algorithm WOW [8] and the non-adaptive Least Significant
Bit Matching (LSBM). The LSBM was added to the ex-
periments because it is easier to apply the square root law
for a non-adaptive embedding scheme. For constant statis-
tical detectability, the payload for WOW was adjusted so
that the change rate averaged over the whole test dataset
followed the required scaling dictated by the square root
law. For example, the average change rate for 512x512 im-
ages was twice smaller than for 256x256 images. For the
non-adaptive LSBM, the change rate was fixed for each
image size across all stego images from the database. We
note that for optimally coded LSBM the relationship be-
tween the change rate 8 and relative payload size « in bits
per pixel (bpp) is defined by the rate-distortion bound for
non-adaptive ternary embedding: o = h3(3), where

hs(z) = —wlogy(x/2) — (1 —x)logy (1 - 1) (1)

is the ternary entropy function when £ is the total change
rate, the relative number of changes by either +1 or —1
per pixel. Figure [1| summarizes the payloads and change
rates used for WOW and LSBM.

Size 256 x 256 512 x 512 1024 x 1024
LSBM 0.28 /0.04 0.16 / 0.02 0.09 / 0.01
WOW 0.4 /0.082 0.22/0.041 0.12/0.021

Table 1.  Payload for WOW (bpp) / change rate for LSBM

(change per pixel) for different image sizes used in experiments
with RTRIP and TRIP detectors.

1214

For the RTRIP detector, the modified YeNet was
trained on 256 x 256 crops at the largest payload 0.4 bpp
for WOW and 0.04 change rate for LSBM (see Table
using Adadelta [31I] with learning rate set to 0.4, which
was then decayed to 0.08 once the accuracy plateaued. We
applied curriculum learning to fine-tune this tile detector
(the “feature extractor”) to the payload embedded in larger
images followed by extracting moments (eight sets of four
moments were extracted for each image rotated by 90 de-
grees and mirrored) by feeding this network with 512 x 512
or 1024 x 1024 stego and cover images and finally train-
ing just the two-layer IP to obtain the RTRIP detector for
larger image sizes. For the TRIP detector, only the two-
layer IP part was retrained on moments extracted from the
front part of the network (the tile detector). For training,
the embedding was done on-the-fly. It was fixed for val-
idation and testing. The training included augmentation
(random application of rotation and mirroring) and shuf-
fling of the training database after each epoch.

The detection performance was evaluated using the
minimal total error probability under equal priors

et
Pg = min - (Pra + Pup) (2)

on the testing set, where Ppp and Pyip stand for the false-
alarm and missed detection probabilities.

The results shown in Table [2] indicate the effective-
ness of the RTRIP and TRIP detectors, which perform as
well as they can across a range of image sizes (65,000 pix-
els to one megapixel). For both steganographic algorithms
and all sizes, the RTRIP detector performed as well as
the TRIP detector, confirming thus the universality of the
“feature extractor” from the tile detector. For LSBM, the
scaling according to the square root law indeed leads to an
approximately constant statistical detectability. Though,
a wider range of scales needs to be tested for a more con-
clusive evidence (see the next section). For WOW, the
detection errors for larger sizes seem to lack behind what
one would expect according to the square root law. Note,
however, that this is true even for detectors trained directly
on larger sizes. This indicates a potential flaw in the ad-
justment of payloads for WOW as averages over the source.
In fact, the scaling of the payload for content-adaptive al-
gorithms should be done on a per-image basis, depending
on the type of the warden (detector)

To verify that the proposed TRIP and RTRIP detec-
tors scale well on a wider range of image sizes, we now re-
port the results for images obtained by resizing the native
resolution BOSSbase 1.01 images using the same convert
script to 2000x2000. This time, we only evaluate the
performance of the tile detector trained on 64 256 x 256
crops from the large images when validating/testing on
1600/2000 smart crops prepared as explained above. Ta-
ble M shows the results for the TRIP and RTRIP detectors
on both embedding algorithms when adjusting the payload
as described in Table For LSBM, the RTRIP detector
scales to the larger images without any loss on detection.

2A. Ker, personal communication, 2017.
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LSBM central 256 x 256  central 512 x 512  smart 256 x 256 smart 512 x 512 1024 x 1024
Direct training 0.1487 0.1332 0.1197 0.1092 X
RTRIP 0.1472 0.1330 0.1177 0.1068 0.0940
TRIP 0.1472 0.1260 0.1177 0.1100 0.1120
WOow central 256 x 256  central 512 x 512  smart 256 x 256 smart 512 x 512 1024 x 1024
Direct training 0.1273 0.1547 0.1197 0.1455 X
RTRIP 0.1385 0.1535 0.1168 0.1310 0.1445
TRIP 0.1385 0.1530 0.1168 0.1303 0.1583

Table 2.

Detection error Pg, for RTRIP and TRIP detectors. Direct training means that the detector was trained on full size images.

The RTRIP detectors were obtained by retraining the tile detector via curriculum training for the payload residing in the larger images
while the TRIP detector uses the unchanged feature extractor from the tile detector while only retraining its IP part. The symbol 'X’
marks practically unachievable results due to limited GPU memory.

The TRIP detector, however, performs worse. This is likely
due to the rather large difference in the change rate, and
thus the “density of changes,” between the two image sizes.
In other words, when the feature extractor was retrained
on the smaller change rate via curriculum training, no loss
of performance on larger images was observed. In con-
trast, for WOW both the TRIP and RTRIP detectors per-
form equally on large images. We believe this is because of
the content-adaptivity of WOW, which keeps the density
of changes concentrated in textured / noisy regions while
avoiding smooth regions. In other words, for WOW the
selection channel looks more similar across varying pay-
loads than for LSBM. Finally, for WOW the discrepancy
between the detection error for the tiles and the large im-
ages is likely due to improperly adjusting the payload for
constant statistical detectability.

Size 256 x 256
LSBM 0.28 / 0.04 0.051 / 0.00512
WOW 0.4 /0.074 0.066 / 0.0095

Table 3. Payload (bpp) for WOW / change rate for LSBM
(change per pixel) for different images sizes adjusted for constant
statistical detectability according to the square root law for the
TRIP and RTRIP detectors when cropping 256 x 256 images from
BOSSbase 1.01 resized to 2000 x 2000.

2000 x 2000

Steganalyzing images of varying size

We now move towards building a truly size indepen-
dent detector (SID) that can steganalyze images of arbi-
trary size. The experiments here were conducted on BOSS-
base resized to 1024 x 1024 as in the first experiment in the
previous section. First, we trained the modified YeNet on
256 x 256 crops from the 1024 x 1024 images (16 256 x 256
tiles per one large image). The stego images were all em-
bedded with the same payload of 0.12 bpp for WOW and
modified with the same change rate 0.01 for LSBM. Then,
the front part of the network, the feature extractor, was
fixed and the two-layer IP part was retrained on moments
extracted from images from the training set prepared by
random cropping executed in the following manner. For
each 1024 x 1024 image in the training dataset, we obtained
32 random square crops of random size between 256 x 256
and 1024 x 1024. First a random integer r € [256,1024] was
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generated and then the coordinates of the upper left cor-
ner of the crop (z,y), z,y € [1,1024 — r] were also uniformly
randomly generated to make sure the cropped image fits
the host 1024 x 1024 image. This SID was then tested
on 256 x 256 and 512 x 512 smart crops, and 1024 x 1024
original images previously made from the validation / test
dataset. We also tested whether adding the number of pix-
els Np (scaled by 100,000) as an additional input to the IP
layers can improve the detection accuracy.

The results shown in Table [ indicate that the SID
performs as accurately as the RTRIP detector trained for
a fixed image size. Note that adding the number of pixels
Np as an additional input to the IP layer does not improve
the detection. This indicates that the features/moments al-
ready contain information about the input image size. To
clarify the experiments, we summarize that the rows for
'RTRIP, fixed size’ mean that the feature extractor (tile
detector) was trained on 256 x 256 images and then, for
the larger sizes just a two-layer IP was retrained on mo-
ments extracted from 512 x 512 and 1024 x 1024 images,
establishing thus a benchmark for the SID. The SIDs were
trained only once on a mixture of image sizes as explained
above and tested on smart crops of fixed size to allow a
comparison with the detector trained specifically for this
size, the row 'RTRIP, fixed size’ in the table.

Conclusions

Steganalysis using CNNs clearly outperforms detectors
built using the outgoing detection paradigm — classifiers
trained on rich media features. CNN detectors enjoy many
other important advantages, such as scalability w.r.t. the
training set size and better detection rates for low false
alarm rates. However, due to the nature of the detector
and the limits of current hardware, it is not possible to
directly train on large images. The leading CNN detectors
for steganalysis need a rather small tile on their input. This
poses a natural question as to how one should steganalyze
a large image.

While it is possible to resize the input image or apply
the tile detector on disjoint or overlapping tiles and fuse
the results, such approaches will inevitably be suboptimal
due to suppressing the noise-like stego signal when down-
sampling or when fusing outputs with complicated mutual



LSBM smart 256 X 256 2000 x 2000
Direct training 0.104 X
TRIP 0.105 0.150
RTRIP 0.105 0.098
WOow smart 256 X 256 2000 x 2000
Direct training 0.094 X
TRIP 0.093 0.172
RTRIP 0.093 0.185
Table 4.  Detection error P for RTRIP and TRIP detectors when adjusting the tile detector for detection in 2000 x 2000 images.
The payload embedded in the images is listed in Table [3] The symbol "X’ marks practically unachievable results due to limited GPU
memory.
Tested on fixed size
Algorithm  Detector type, training 256 x 256 512 x 512 1024 x 1024
RTRIP, fixed size 0.253 0.156 0.0940
LSBM SID, random size 0.243 0.163 0.0856
SID+Np, random size 0.244 0.160 0.0837
RTRIP, fixed size 0.261 0.204 0.1445
WOow SID, random size 0.259 0.197 0.1390
SID+Np, random size 0.253 0.197 0.1380
Table 5. Detection error Py, for the RTRIP detector trained on images of one size with IP retrained for a larger fixed size and SID

trained on images of random sizes without and with the number of pixels N, as the input to the IP layer. All detectors are always
tested on a fixed size. Payload 0.12 bpp for WOW and change rate 0.01 for LSBM.

dependencies. In this paper, we propose a different ap-
proach in which we first modify an existing CNN detector
to output statistical moments of feature maps that enter
the fully-connected IP layers of the network (the average,
minimum, maximum, and variance). To build a network
capable of detecting steganography in large images, the
network with moments is first trained on small tiles. The
front part of this detector, which is considered as a “fea-
ture extractor” or, better, “moment extractor,” is used to
extract moments from the larger images. Then, a two-layer
IP layer is trained on these moments to obtain a detector
for large images. We conducted experiments with detectors
built for a fixed large size as well as detectors meant to de-
tect steganography in images of a wider range of sizes. To
assess their performance, we adjusted the payload in large
images for constant statistical detectability according to
the square root law. We demonstrated that this approach
to building a size independent detector is effective as well
as accurate.

All code used to produce the results in this paper,
including the network configuration files are available from
http://dde.binghamton.edu/download/.
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