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Abstract
Realistic image forgeries involve a combination of splicing,

resampling, cloning, region removal and other methods. While re-
sampling detection algorithms are effective in detecting splicing
and resampling, copy-move detection algorithms excel in detect-
ing cloning and region removal. In this paper, we combine these
complementary approaches in a way that boosts the overall ac-
curacy of image manipulation detection. We use the copy-move
detection method as a pre-filtering step and pass those images
that are classified as untampered to a deep learning based re-
sampling detection framework. Experimental results on various
datasets including the 2017 NIST Nimble Challenge Evaluation
dataset comprising nearly 10,000 pristine and tampered images
shows that there is a consistent increase of 8%-10% in detection
rates, when copy-move algorithm is combined with different re-
sampling detection algorithms.

Introduction
Fake images are becoming a growing threat to information

reliability. With the ubiquitous availability of various powerful
image editing software tools and smartphone apps such as Pho-
toshop, GIMP, Snapseed and Pixlr, it has become very trivial to
manipulate digital images. The field of Digital Image Forensics
aims to develop tools that can identify the authenticity of digital
images and localize regions in an image which have been tam-
pered with.

There are many types of image forgeries such as splicing
objects from one image to another, removing objects or regions
from images, creating copies of objects in the same image, and
more. To detect these forgeries, researchers have proposed meth-
ods based on several techniques such as JPEG compression arti-
facts, resampling detection, lighting artifacts, noise inconsisten-
cies, camera sensor noise, and many more. However, most tech-
niques in literature focus on a specific type of manipulation or a
groups of similar tamper operations. In realistic scenarios, a host
of operations are applied when creating tampered images. For ex-
ample, when an object is spliced onto an image, it is often accom-
panied by other operations such as scaling, rotation, smoothing,
contrast enhancement, and more. Very few studies address these
challenging scenarios with the aid of Image Forensics challenges
and competitions such as IEEE Image Forensics challenge [1] and
the recent NIST Nimble Media Forensics challenge [2]. These
competitions try to mimic a realistic scenario and contain a large
number of doctored images which involves several types of im-
age manipulations. In order to detect the tampered images, a sin-

gle detection method will not be sufficient to identify the different
types of manipulations. In this paper, we demonstrate the im-
portance of combining forgery detection algorithms, especially
when the features are complementary, to boost the image manip-
ulation detection rates. We propose a simple method to identify
realistic forgeries by fusing two complementary approaches: re-
sampling detection and copy-move detection. Our experimental
results show the approach is promising and achieves an increase
in detection rates.

Image forgeries are usually created by splicing a portion of
an image onto some other image. In the case of splicing or object
removal, the tampered region is often scaled or rotated to make it
proportional to the neighboring untampered area. This creates re-
sampling of the image grid and detection of resampling indicates
evidence of image manipulation. Several techniques have been
proposed to detect resampling in digital images [3, 4, 5, 6, 7, 8, 9].
Similarly, copy-move forgeries are common, where a part of the
image is copied and pasted on another part generally to conceal
unwanted portions of the image. Detection of these copied parts
indicates evidence of tampering [10, 11, 12, 13, 14, 15, 16, 17].

In this paper, we combine our previous work on resampling
forgery detection [18] with a dense-field based copy-move forgery
detection method developed by Cozzolino et al. [16] to assign a
manipulation confidence score. We demonstrate that our algo-
rithm is effective at detecting many different types of image tam-
pering that can be used to verify the authenticity of digital im-
ages. In [18], we designed a detector based on Radon transform
and deep learning. The detector found image artifacts imposed by
classic upsampling, downsampling, clockwise and counter clock-
wise rotations, and shearing methods. We combined these five
different resampling detectors with a JPEG compression detec-
tor and for each of the six detectors we output a heatmap which
indicates the regions of resampling anomalies. The generated
heatmaps were smoothed to localize the detection and determine
the detection score. In this work, we combine the above approach
with a copy-move forgery detector [16]. Our experiments demon-
strate that the resampling features are complementary to the copy-
move forgery detection features and combining them indeed in-
creases the image manipulation detection rates.

The rest of the paper is organized as follows. In the next
section, we describe the related work in image forgery detection.
After that, we describe the methodology, explain the results, and
provide a discussion for combining such complementary meth-
ods. Finally, we conclude the paper and outline our future work.
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Figure 1: Block Schematic of our proposed approach

Related Work
The image forensics field recognizes many different cate-

gories of image forgeries with copy-move, splicing, and object
removal as some of the most popular. In many of these forgeries,
resampling is a necessary work-flow element. Due to the diver-
sity of image tampering methods, there are numerous techniques
to identify if an image has been manipulated and we briefly re-
view some of the techniques below with a special emphasis on
techniques that overlap with our method.

In computer vision, deep learning showed outstanding per-
formance in different visual recognition tasks such as image clas-
sification [19], and semantic segmentation [20]. For this reason,
there has been a growing interest to detect image manipulation
by applying different computer vision and deep-learning algo-
rithms [21, 22, 17, 23]. In [20], two fully convolution layers have
been exploited to segment different objects in an image. The seg-
mentation task has been further improved in [24, 25]. These mod-
els extract hierarchical features to represent the visual concept,
which is useful in object segmentation. Since, the manipulation
does not exhibit any visual change with respect to genuine im-
ages, these models often do not perform well in segmenting ma-
nipulated regions.

Other deep learning methods include detection of generic
manipulations [21, 22], resampling [26], splicing [17] and boot-
leg [27]. In [28], the authors propose Gaussian-Neuron CNN
(GNCNN) for steganalysis detection. A deep learning approach
to identify facial retouching was proposed in [29]. In [30], image
region forgery detection has been performed using a stacked auto-
encoder model. In [21], a new constrained convolutional layer is
proposed to learn the manipulated features from an image. In our
previous work [18], a unique network exploiting convolution lay-
ers along with LSTM network was presented.

Resampling Forgery Detection
Resampling an image requires an interpolation method and

linear or cubic interpolations are very popular and this fact was ex-
ploited by the authors of [3]. They implemented an Expectation-
Maximization (EM) algorithm to detect periodic correlations in-
troduced by interpolation. However, the periodic JPEG blocking
artifacts also introduce periodic patterns that confuses their re-
sampling detector. The variance of the second difference operator
was used by [5] to detect resampling on images that are scaled us-
ing linear or cubic interpolations. Their method is most efficient
at detecting up-scaling and it is very robust to JPEG compres-

sion with detection possible even at very low quality factors (QF).
Downscaled images can be detected but not as robustly as up-
scaled images. In [6], the Radon transform and a derivative filter
was exploited to improve the quality of the results and to address
other forms of resampling. In [7], a simpler method than [3] was
derived by using a linear predictor residue instead of the com-
putationally expensive EM algorithm. This resampling body of
work motivated us in [18], where we combined the linear predic-
tor strategy with deep learning based models in order to detect
tampered image patches.

Other resampling detectors include [9, 31, 32, 33, 8, 34, 35].
In [9], periodic properties of interpolation were found using the
second-derivative of the image and these properties were used for
detecting image manipulation. Resampling on JPEG compressed
images was detected in [31, 32] by adding noise before passing
the image through the resampling detector and they showed that
noise addition improved resampling detection. A normalized en-
ergy feature was implemented in [33, 8] and a support vector ma-
chine (SVM) was subsequently used to classify resampled im-
ages. Furthermore, recent approaches to reduce the effects of
JPEG artifacts were developed in [34, 35].

Copy-Move Forgery Detection
Copy-move forgery is a specific type of image tampering,

where a part of the image is copied and pasted on to another part
of the same image. For copy-move forgeries, a common approach
is to match image features within the image. In order to detect
copy-move forgeries, an image is first divided into overlapping
blocks and some sort of distance measure or correlation is used
to determine blocks that have been cloned. For example, in [36],
copy-move forgeries were detected using SIFT features. Many
similar methods to detect copy-move have been proposed [37, 38,
39, 40].

Another strategy to detect copy move forgeries is to match a
transformation of image regions rather than image regions them-
selves. In [10], Fridrich et al. used DCT coefficients of image
regions to find duplicate DCT blocks while Popsecu and Farid
used PCA [11] to detect duplicated regions and Mahdian and Saic
use a combination of blur invariant moments and PCA [12]. A
matching image regions to detect copy-move forgeries becomes
more difficult if the moved region undergoes some transforma-
tion such as scaling that makes region matching difficult. Bayram
et al. [13] addresses this issue by using a combination of Fourier
Mellin transforms, which are invariant to rotation, scale and trans-
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lation, and Bloom filters. Another issue in locating copy-move
forgeries is the computational time to find matching patches.

In this paper, we use the work of Cozzolino et al. [16], where
a patch-match algorithm is used to efficiently compute an approx-
imate nearest neighbor field over an image. They added robust-
ness to their algorithm by using invariant features such as Circu-
lar Harmonic transforms and show that they can detect duplicated
blocks that have undergone geometrical transformations and then
perform key-point matching.

Methodology

Figure 2: Flowchart for our proposed algorithm

Our method to get a confidence score to determine whether a
digital image is manipulated involves two primary steps summa-
rized in Fig. 2. First, we pass the digital image through a copy-
move forgery detector to detect clone forgeries. Second, we use
the resampling features to detect manipulations if the former de-
tection algorithm does not detect a forgery. In other words, the
copy-move forgery detection will be used as a “pre-filtering” step
to improve the precision of the resampling forgery detection, and
indeed boost the image manipulation detection rates. The outline
for both the copy-move and resampling forgery detection algo-
rithms will be presented here.

Dense-field based Copy-Move Forgery Detection

Figure 4: Example of a copy-move forged image and the
dense-field based copy-move forgery detection based on [16]

Cozzolino et al. [16] proposed a fast and accurate CMF
detection algorithm based on a modified Patch-Match algo-
rithm [41], for rotation-invariant and scale-invariant forgery de-
tection. The Patch-Match algorithm was used to compute effi-
ciently a high-quality approximate nearest neighbor field for the
whole image. They replaced the use of RGB pixel values in the
Patch-Match algorithm to scale and rotation features. These fea-
tures include Zernike Moments (ZM) [42], Polar Cosine Trans-
form (PCT) [43] and Fourier-Mellin Transform (FMT) [44]. Then
they applied a post-processing procedure to remove instances of
false matching. We leave the details to their work [16]. Although,
the efficiency of their algorithm is reduced for blurred images,
their method is shown to be robust to translation, rotation, mod-
erate scaling and post-processing methods like noise addition and
JPEG compression.

Deep Learning based Resampling Forgery Detection

Figure 5: Example of a spliced image and the Radon transform
based resampling detection heatmap based on [18]

In our previous work [18], we proposed an end-to-end Deep
Learning framework (Fig. 3) to detect and localize manipulations
based on resampling anomalies in a digital image. We first extract
image patches, apply a 3x3 Laplacian filter to these patches and
then compute the linear predictive error. To look for periodic cor-
relations, we apply Radon transform to accumulate errors along
various angles of projection, and then compute the Fast Fourier
Transform (FFT) to find the periodicity. This Radon Transform
based technique was inspired from [45]. Thus, we get our desired
resampling features. The second step is to characterize any resam-
pling detected in the patch. We train a set of six binary classifiers
that check for different types of resampling: JPEG quality with a
threshold above or below 85, upsampling, downsampling, rotation
clockwise, rotation counterclockwise, and shearing. To train a bi-
nary classification model for each task, we build a dataset of about
100,000 patches extracted from about 8,000 images from two
publicly available datasets of uncompressed images, UCID [46]
and RAISE [47] datasets. Some of the patches are transformed
with a set of randomly generated parameters, such as multiple
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Figure 3: An end-to-end framework to detect and localize digital manipulations based on resampling anomalies

JPEG compressions and affine transformations, but one-half of
the dataset included the transformation specified, and the other
half did not. The classifiers are not mutually exclusive and are
trained individually. The best performing binary classifier we
found for this task was an artificial neural network or a multi-
layer perceptron with two hidden layers. The filtering in the third
step uses bilateral filtering, which is commonly used in semantic
segmentation when fusing adjacent noisy local patch-based clas-
sifiers. The final step is to obtain an image-level detection score
using a median metric and a mask that shows manipulated regions
from resampling heatmaps using median filtering, Otsu threshold-
ing and Random Walker segmentation. The entire algorithm is
summarized in Fig. 3.

Results and Discussion
In this section, we describe the dataset and the metric used

to evaluate the performance of our proposed model. After this,
we present and explain our results and provide a discussion for
combining such complementary methods.

2017 Nimble Evaluation Dataset
The 2017 NIST Nimble Challenge evaluation dataset [2]

comprises around 10,000 images with numerous type of lo-
cal/global manipulations including the ones where anti-forensic
algorithms were used to hide the trivial manipulations. As part of
the challenge, the participating teams were also provided different
development datasets with ground-truth and other relevant meta-
data information that could be used to train and test the models.

Area Under the ROC Curve (AUC)
The receiver operating characteristic (ROC) curve is a graph-

ical plot that demonstrates the ability of a binary classification
system as its discrimination threshold is varied. Macmillan and
Creelman [48] provide detailed information about ROC curves
for detection system evaluation. AUC quantifies the overall abil-
ity of the system to discriminate between two classes. A system
no better at identifying true positives than random guessing has
an AUC of 0.5. A perfect system (no false positives or false neg-
atives) has an AUC of 1.0. The AUC value of a system output has
a value between 0 and 1.0.

Results on the dataset
Our proposed solution that combined both copy-move

forgery detection and resampling forgery detection models ob-
tained an overall AUC score of 0.74 on the 2017 Nimble Eval-
uation Dataset. As shown in Fig. 6, there is a 8% boost in AUC
scores (0.66 to 0.74) when we compare our proposed model to

that of the resampling forgery detector [18], when used indepen-
dently. Individually, the copy-move method was able to get an
AUC of 0.64.

Error Analysis
We also performed an error analysis on the 1/3rd of the eval-

uation dataset for which the ground-truth information was pro-
vided by NIST, after the challenge. There are 4,077 images in this
subset of the data, out of which, 1,410 are manipulated and the
rest 2,667 are un-manipulated. As shown in Fig. 7, a boost of 10%
in the AUC scores (0.66 to 0.76) is observed, as expected. The
pre-filtering step which is the copy-move forgery detection cor-
rectly identified 549 out of 1,410 manipulated images and missed
the remaining 861 images. But, 532 out of these 861 images
(62%) were flagged manipulated by our resampling forgery de-
tector. This is reflected in the 10% boost in AUC scores. For this
analysis, the optimal threshold for the resampling detector was
selected such that the true positive rate from the ROC curve was
high and the false positive rate was low.

Similarly, there was a consistent 8%-10% improvement in
AUC scores for other development datasets provided by NIST.
These results demonstrate the importance of combining comple-
mentary methods of forgery detection (in this case, copy-move
forgery detection and resampling forgery detection) to improve
the manipulation detection rates.

Conclusion and Future Work
In this paper, we described a technique to determine a ma-

nipulation score for a digital image based on the resampling fea-
tures [18] and copy-move features [16]. We demonstrated the
complementary nature of these features and the importance of us-
ing copy-move detection algorithm as a pre-filtering step to re-
sampling forgery detection in order to boost the image manipula-
tion detection rates. Experimental results show that our proposed
approach increases the AUC scores consistently by 8%-10% for
various datasets.

As we used the work of Cozzolino et al. [16] for the copy-
move pre-filtering step, there is a room for improvement as the
copy-move detection algorithm, even-though efficient generates
moderate number of false-positives. And also, a better way to
combine these works, rather than using copy-move forgery detec-
tion as a pre-filtering step can be exploited.
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(a) (b)
Figure 6: ROC curves and corresponding AUC scores of our (a) Resampling forgery detector [18] and (b) Proposed method on the full
2017 Nimble evaluation dataset

(a) (b)
Figure 7: ROC curves and corresponding AUC scores of our (a) Resampling forgery detector [18] and (b) Proposed method on the 1/3rd
subset of the 2017 Nimble evaluation dataset
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