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Abstract
Since the introduction of WebGL in 2011, the web browser

evolved into a new and promising platform for high-performance
3D games. One of the most common game elements is heightmap-
based terrain, but due to the limited expressiveness of this ap-
proach, the need for more sophisticated solutions becomes ap-
parent. Many techniques exist that can convert an implicit surface
into an approximated polygonal mesh. However, the actual appli-
cation of such algorithms in a real-time environment, especially
on mobile devices, where render time is of utmost importance has
not been investigated sufficiently in the literature yet. The present
work outlines the implementation of a multithreaded volumetric
terrain engine using the 3D rendering framework Three.js and
sheds light on the application of contouring methods in a real-
time environment where the volume frequently changes through
user interaction. The final system uses the Dual Contouring sur-
face extraction technique and maintains discrete volume data in
adjacent cells which can be modified on the fly using Construc-
tive Solid Geometry. Furthermore, the performance of the engine
is evaluated to determine its suitability for mobile devices.

Introduction
WebGL is a young and exciting technology used for the cre-

ation of web browser games and animations. A central part of
many games is terrain and traditional approaches use heightmaps
to elevate the vertices of a regularly subdivided plane mesh.
Heightmap-based terrain is rather limited because each vertex in
the terrain grid can only be moved up or down. It cannot be used
to replicate caves, overhangs, bows and other interesting natu-
ral features. Modern terrain implementations use advanced al-
gorithms to construct a surface based on volume data. Such a
volumetric solution can replace the heightmap approach entirely
and provides much more freedom, but it inherently requires more
memory as it operates on 3D data instead of 2D textures. Level of
Detail (LOD) algorithms for this type of terrain are also more in-
volved than the heightmap variants depending on the chosen mesh
construction technique.

The fact that there are currently no open-source terrain en-
gines for WebGL, much less terrain editors, neither volumetric
nor heightmap-based, could hint to the conclusion that such an
implementation might not be feasible despite the advantages men-
tioned earlier. Thus, the following central questions arise:

1. Is the performance of a volumetric terrain solution feasible?
2. Can such an implementation be used on mobile devices?

The main goal of this work is to implement a volumetric ter-
rain engine with JavaScript and WebGL. The challenge in creating

such an engine is that there are still unexplored aspects in the do-
main of real-time volumetric terrain rendering inside the browser
such as the management of large amounts of volume data and the
efficient and dynamic construction of the terrain mesh during run-
time.

Contributions
This work provides the following contributions that can

serve as a basis for future research:

1. A fully documented, open-source terrain engine implemen-
tation in JavaScript, including the Dual Contouring (DC) al-
gorithm and a Quadratic Error Function (QEF) solver.

2. An octree-based space partitioning solution that can be used
to manage large amounts of volume data.

3. Multithreaded Constructive Solid Geometry (CSG) for dis-
crete volume data modifications based on Signed Distance
Functions (SDFs).

4. Performance measurements for memory consumption and
processing times.

Related Work
Most of the related literature focuses more on the charac-

teristics of existing or newly developed volume contouring tech-
niques and less on the practical application in real-time environ-
ments. [1] describes a voxel-based terrain visualisation system
that relies on ray tracing for rendering. [2] describes a voxel-based
occlusion technique for improved heightmap-based terrain ren-
dering. [3] describes an alternative solution for the calculation of
feature points for the DC technique in the form of “particle-based
feature approximation”. This approach replaces the QEF calcu-
lations and trades accuracy for performance while also making it
easier to perform the contouring process on the GPU. [4] presents
a practical implementation of the Marching Cubes (MC) contour-
ing technique that is designed specifically for voxel-based terrain
in real-time desktop games. An important contribution of the lat-
ter is the Transvoxel algorithm that extends the MC technique
with LOD capabilities. [5] provides an alternative extension to
the MC technique that uses longest edge bisection (LEB) to sup-
port LOD. [6] is the most recent related work that broaches the
issue of applying the DC technique to a set of volume chunks in
real-time while also presenting a possible seam patching solution.

There are a few mentionable web blogs that provide inspir-
ing information on the topic of volume-based terrain systems: [7]
published a series of articles about the commercial Voxel Farm
Engine. Many of the insights from these articles have influenced
the design decisions in the present work. [8] talks about the im-
plementation of DC and provides concrete information on how
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seams between multiple adjacent cells of volume data can be han-
dled while [9] explains volume generation in more detail. Fur-
thermore, [10] provides basic JavaScript implementations of MC,
Marching Tetrahedra (MT) and Surface Nets (SN) with a compar-
ison of the three techniques in terms of performance and polygon
counts.

Advanced Web Browser Capabilities
Modern web-browsers incorporate advanced technologies

that can be exploited for high-performance 3D games to-
day. While WebGL grants access to the Graphics Processing
Unit (GPU) and provides the means to implement hardware-
accelerated 3D animations, the Web Worker API enables true
multithreading inside the browser. These features are available
through JavaScript, the dynamically typed high-level program-
ming language of the web which runs in a virtual machine, uses
Just-in-time (JIT) compilation and relies on automatic garbage
collection.

Since JavaScript engines have been heavily optimised over
the past decades, the execution speed of JavaScript has come very
close to native performance. Although JavaScript is still slower
than native applications when it comes to demanding tasks like
physics simulations, it’s already fast enough to build rich, interac-
tive animations and 3D games. According to [11], the creator of
the language, future versions of JavaScript will further address the
performance issues of JavaScript by supporting more low-level
programming capabilities such as typed objects, parallel arrays
and SIMD instructions. New updates to the language are planned
to be considerably smaller and will be released faster to allow
browser vendors to implement the new features quicker.

WebAssembly (WASM) is a new experimental feature that
was inspired by the Emscripten project and the JavaScript subset
asm.js. It provides a way to compile C++ code to an assembly-
like language which can be run at near native speed in the browser.
Game engines such as Unity and Unreal have relied on this tech-
nology early on to support HTML5 as a target platform. WASM is
designed to run alongside JavaScript to run performance sensitive
code. The terrain engine presented in this work currently doesn’t
use WASM as there are still some open issues with this feature.
One could try to replace crucial parts of the current system with
compiled WASM modules, but this goes beyond the scope of this
project.

Preliminaries
According to [12], a Signed Distance Function belongs to a

subset of implicit surfaces and describes the signed Euclidean dis-
tance to the surface of a volume, effectively describing its density
at every point in 3D space. It can be defined as f : R3→ R and
yields negative values for points that lie inside the volume and
positive values for points outside. The value is zero at the exact
boundary of the volume.

CSG is a design methodology for representing solids that is
based on the mathematical set notation. It “offers simple, precise,
and concise ways for humans and automata to define specific solid
objects” [13]. In the context of implicit surfaces, the methodology
is used to combine SDFs into complex descriptions of volumes.
Figure 1 shows the effect of the three Boolean CSG operations
Union (∪), Difference (\) and Intersection (∩). “CSG schemes
have a finite and usually small repertoire of compact solid prim-

Figure 1. The effect of CSG operations from left to right: Union, Difference

and Intersection.

itives” [13]. As an example, the Persistence of Vision Raytracer
only offers the following primitive solids: box, cone, cylinder,
plane and torus. However, with these primitives alone it’s possi-
ble to create highly complex solids using CSG. Another project
that uses this methodology is OpenCSG which follows an image-
based rendering approach instead of ray tracing and relies on the
depth and stencil buffer of the graphics hardware to render solids.

An isosurface represents the contour of an implicit sur-
face f (x,y,z) = c where c is a constant isovalue that denotes the
boundaries of the SDF. Although it’s possible to render implicit
surfaces with a ray tracing approach, the performance penalty
would be too high, especially on mobile devices. Since 3D hard-
ware is optimised for conventional polygon-based rendering, the
implicit surface must be converted into an explicit polygonal mesh
that can be processed and visualised efficiently. Various isosur-
face contouring techniques exist that are closely related, but per-
form the conversion in different ways.

Contouring Techniques
One of the oldest and most prominent isosurface contouring

techniques is the MC algorithm published by [14]. It translates
the continuous values of an SDF into a discrete grid of uniformly
distributed material indices. This 3D grid is subdivided into voxel
cells. As the name of the technique suggests, MC marches over
these cubic cells and evaluates the SDF at every cell corner. De-
pending on the density returned by the SDF, the grid point will
either be set to air or to solid material. The information of all
eight corners is used as an identifier for the case at hand. With
a finite number of possible material configurations per cell, each
case can be mapped to a concrete triangle setup. In a final step,
all polygons are tied together. Figure 2 shows a voxel cell with an
exemplary material configuration and the generated triangles next
to it. The MC extraction method is not without flaws: it often
produces degenerate triangles and can’t preserve sharp features.
Furthermore, the algorithm doesn’t support LOD in its basic form.

Figure 2. A Marching Cubes voxel cell. The materials at the eight cor-

ners are known and determine the case at hand; the right picture shows the

generated polygons. Source: [15]
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Figure 3. A comparison of triangle generation with Marching Cubes (centre)

and Dual Contouring (right) in 2D. MC relies on the material indices and

surface intersection points while DC also considers the intersection normals.

Source: [17]

A solution to the LOD problem was presented by [4] in the
form of the Transvoxel algorithm which introduces another set of
polygon configurations for transition cells to connect meshes of
different LODs.

The Extended Marching Cubes (EMC) algorithm presented
by [16] introduces a mechanism for sharp feature preservation
with QEFs. For each voxel cell edge that exhibits a material
change, the intersection with the implicit surface is approximated.
Additionally, the normal vector of the surface is calculated at the
identified point and then evaluated to determine if a sharp fea-
ture exists in the cell. Together, the normals and intersection
points describe planes that serve as input for a system of linear
equations. Solving the system yields the intersection point of the
planes which is, in fact, the sought feature point. However, an im-
plicit surface might intersect with a voxel cell in such a way that
there are less than three planes which causes the linear system to
become underdetermined. In order to solve such a system, a QEF
is used which finds a point inside the voxel that minimises the
sum of the squares of the distances to the planes that are defined
by the intersection points and normals. In case a sharp feature was
detected, EMC solves the QEF to obtain a least squares solution,
creates a triangle-fan at the identified feature point and connects it
with the edge intersection points. Apart from that, the algorithm
operates like MC.

Following the idea of preserving distinct details of the vol-
ume’s surface, [17] published the straight-forward DC technique
that takes after the approach of SN presented by [18] and, like
EMC, relies on feature points obtained with QEFs. However, un-
like the previous methods, DC doesn’t try to map voxel cell ma-
terial configurations to certain triangle setups. Instead, it creates
a single vertex per cell and connects it with vertices of neigh-
bouring voxel cells. Furthermore, the method uses an octree data
structure to organise and traverse the voxel cells. A side-effect of
this approach is that the algorithm supports LOD without much
additional effort, because it allows voxels to be of any size.

Figure 3 shows a comparison of how MC and DC generate
polygons and highlights the superiority of the latter. The leftmost
image shows a section of a 2D volume grid consisting of equis-
paced material indices, surface intersection points at edges with a
material change and surface normals originating from them. Such
edge data is commonly referred to as Hermite data. MC can only
approximate the surface roughly as shown in the central image
while DC manages to preserve the sharp feature of the surface. In
a later publication, [19] stated that “the surface produced by Dual
Contouring is rarely intersection-free” and proposed a hybrid of

MC and DC that uses triangle fans to produce intersection-free
meshes at the cost of performance and increased complexity. An-
other issue that DC shares with MC is that they both may produce
non-manifold meshes. A topologically manifold mesh doesn’t
have holes and completely encloses a volume. In essence, every
edge needs to be adjacent to two faces. [20] addressed the issue by
presenting the Manifold Dual Contouring (MDC) algorithm that
allows multiple vertices per voxel cell and implements a basic cri-
terion for vertex clustering which, however, results in a slight in-
crease in computational complexity. In an earlier publication, [21]
also presented the Dual Marching Cubes (DMC) algorithm which
introduced the concept of a dual grid for the preservation of sharp
features using MC.

Cubical Marching Squares (CMS) is another unique contour-
ing method presented by [22]. It’s based on MC, but works differ-
ently in that it unfolds the voxel cells and processes the cell faces
with the simpler 2D Marching Squares (MS) algorithm to form
lines. Hermite data is used to preserve sharp features and the
algorithm guarantees topological consistency by dividing faces
that have ambiguous edges. The faces are folded back into cubes
which are then used to build the mesh. [23] provides a partial
implementation of the CMS contouring technique that proves the
feasibility of the technique but lacks crucial features such as sharp
edge preservation.

Spatial Sampling of Density Data
Isosurface extraction methods produce a discrete approxima-

tion of a continuous SDF by superimposing a three-dimensional
grid with a fixed amount of equispaced material indices. Depend-
ing on whether the material indices lie inside or outside of the
volume they are either set to air, which is represented by a value
of zero, or to solid material which can be any other unsigned in-
teger. The value of each material is determined through sampling
of the SDF at the respective grid point world positions. A grid
point lies inside the volume and represents solid material if the
SDF returns a density value d ≤ c where c is the isovalue.

An edge between two adjacent grid points of which one is
solid and the other is air exhibits a material change and contains
the contour of the volume that is described by the SDF. Only these
edges are important and need to be tagged with additional surface
intersection data obtained from the SDF. Figure 4 depicts a 2D
example grid with a resolution of 8 on the left side and a single 3D
voxel cell of which four edges contain the surface shown in red.
The surface intersection normals at the Zero Crossing positions
are depicted as blue arrows and the computed vertex is shown as
a yellow dot. In 3D, a resolution n translates to n voxel cells and
n+1 material indices in each dimension. Consequently, there are
(n+1)3 material indices and a total of 3× (n+1)2×n edges, but
the number of edges that actually contain the volume’s surface is
usually much lower. Edge intersection data is obtained through
Zero Crossing approximation.

While a high grid resolution allows the surface extraction
procedure to pick up more details of the implicit surface, it also
results in an increased number of generated vertices and has a
negative impact on processing time.

Zero Crossing Approximation
Edges that exhibit a material change from solid material to

air or vice versa intersect with the isosurface of the volume. They
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Figure 4. A 2D example of Hermite data with a grid resolution of 8 (left) and

a voxel cell that contains a segment of the original implicit surface.

need to be examined closely to find the Zero Crossing - the point
where the SDF assumes the isovalue c = 0. Given that the world
positions of an edge’s starting and ending point are known, the
problem can be reduced to a generic root finding problem of the
form f (x) = 0 where f is the SDF and x is an unknown root. The
problem can further be condensed into finding a value t ∈ [0,1]
that represents the relative intersection point along the edge.

In practice, the SDF may be sampled in discrete steps along
the edge to find a point where the isovalue is closest to zero. This
naive method, however, limits the result to a very small set of
possible values. Even with five sampling steps the Zero Cross-
ing can only assume the values {0,0.25,0.5,0.75,1} which is an
unnecessary loss of information. Thus, a more advanced method
is required that can approximate the intersection point more ac-
curately and still offers a reasonably high performance. “One of
the best, most effective methods for finding the real zeros of a
continuous function is the bisection method” [24]. This method
is also know as the binary search algorithm and cuts an initial
interval [x1,x2] in half by calculating the midpoint x3. It then con-
tinues to search for the root in one of the two new sub-intervals.
The bisection is usually repeated as many times as necessary to
find a function value that is equal to zero. A disadvantage of the
bisection method is that it converges slowly towards the perfect
solution. In fact, the method often reaches a satisfactory solution
after less than eight steps and might actually never reach the per-
fect solution on a computer system due to rounding errors that are
caused by the internal number representation.

The terrain engine uses three safeguards to allow early ter-
minations of Zero Crossing approximations. First, the iteration
count is limited to eight steps. If this limit is breached, the mid-
point that was calculated last is used as the solution. Secondly, the
size of the created sub-intervals is limited by a threshold of 1e−6.
Lastly, a bias of 1e−2 is used for the density values returned by
the SDF to accept solutions that are sufficiently accurate.

It’s worth mentioning that the Zero Crossing approximation
assumes that there is only one material change along the inspected
edge. Therefore, this approach can only find one Zero Crossing
per edge and smaller details will be lost if the grid resolution isn’t
high enough. When the intersection point is known, the surface
normal can be approximated using a finite difference method or it
can be calculated accurately using analytic derivation of the SDF.

Volume Data
All previous presentations of isosurface extraction tech-

niques use a single material grid that completely encloses the
SDF. Creating a single grid of discrete volume data on the fly and
discarding it as soon as the surface has been constructed is a justi-

fiable option if the extent of the implicit surface is in a predictable
margin and processing time is not a critical factor. In contrast to
this, a terrain can push hardware limits in terms of data size and
it must be rendered as quickly as possible due to its omnipres-
ence in game worlds. Sampling an SDF over a large region with
a single grid is not an option as this results in an oversimplified
surface mesh. For that reason, the sampled volume data is kept in
separate cells and the SDFs are discarded as soon as the Hermite
data has been built.

If the terrain engine only relied on SDFs to maintain a rep-
resentation of the volume, it would be necessary to concatenate
them with more SDFs for each new volume modification. Recur-
ring extractions of the terrain surface from an SDF that becomes
increasingly more complex would slow the system down further
and further. It’s easy to see that this approach would quickly be-
come impractical. The benefit of using multiple clustered con-
tainers to store the volume data is the ability to execute volume
modifications as well as surface extractions in parallel. Addition-
ally, the computational load of the system doesn’t increase as the
volume undergoes a multitude of consecutive modifications be-
cause all added SDFs simply transform the discrete volume data
in a progressive way. Furthermore, the partitioned volume can be
culled to focus computation power on portions of the volume that
are close to the viewer.

ECMAScript 6th Edition (ES2015) supports raw binary data
in the form of typed arrays which can be used to efficiently store
a fixed amount of numerical values of a specific type. Com-
pared to dynamic arrays, they perform much better in terms of
read and write operations. Additionally, the typed arrays allow
zero-copy data communication with Web Workers and are indis-
pensable for the multithreaded approach that the terrain engine
follows. Material indices are kept in a one-dimensional typed ar-
ray of 8-bit unsigned integers and the global grid resolution can
be any integer from 1 to 256. The three-dimensional arrange-
ment of the grid points is preserved by translating their coordi-
nates into a one-dimensional index. Let n be the grid resolution
and let x,y,z be integer grid coordinates. The flattened index of
a specific material index grid point can then be calculated as fol-
lows: z× (n+1)2 + y× (n+1)+ x. As a result, the position of
a material index in the array encodes its local position inside the
material grid which can in turn be translated into a unique world
position based on the lower bounds of the enclosing cell’s Axis-
Aligned Bounding Box (AABB). Consequently, the complete ma-
terial grid needs to be available for modifications, resamplings
and surface extractions which conflicts with the idea of storing
this data sparsely.

Edge data, on the other hand, can and should be maintained
sparsely to save space. An appropriate data structure for this un-
dertaking would be a hash map, but JavaScript hash maps can’t ef-
ficiently be sent to Web Workers. Thus, typed arrays are used for
the edge data, too. In order to construct a data structure with typed
arrays that simulates a hash map, a slightly more complex scheme
must be developed. Edge data consists of edges, Zero Crossings
and normals. Additionally, each of these three groups is further
split into three arrays that hold the data for edges along the X-,
Y- and Z-axis. Furthermore, all edges are stored as starting grid
point indices in ascending order. This information combined with
the dimension split is enough to uphold the association between
edge data and pairs of adjacent grid points that exhibit a material
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change. The ending point indices are implicitly defined through
the respective axis and the storage structure of the material grid:
given a starting point index a, the ending point index b for the
X-, Y- and Z-axis is defined as a+1, a+(n+1) and a+(n+1)2

respectively where n is the grid resolution. Each Zero Crossing
value describes the relative surface intersection position on the
respective edge. The values correspond to the order of the edges.
Normal vectors are stored as (x,y,z) floating point triples and also
correspond to the order of the edges.

Space Partitioning
An octree is the 3D equivalent of a quadtree and it can be

used to subdivide space in a hierarchical manner. Apart from ac-
celerating spatial searches like camera frustum culling and ray-
casting, the octree data structure is a fundamental component of
the DC algorithm where it maintains information about voxel ad-
jacency. An octree’s root octant may contain eight smaller oc-
tants. Each octant is an AABB that is exactly half the size of its
parent node. Each child octant can also contain up to eight chil-
dren. A search for data in 3D space can be limited to a subset of
all octants with a simple intersection test. This step is repeated
until a collection of octants has been found which contains the
sought data. Octant subdivision is controlled by user-defined cri-
teria like a maximum depth, an upper limit for data entries per
octant, a minimum octant size or other custom conditions.

All octrees used in this project are sparse which means that
they may contain empty octants. Octants that aren’t empty can
either have children themselves or they can be leaf nodes that
contain data. The alternative to a sparse octree is a complete
octree which creates all possible octants down to a fixed tree
depth regardless of whether they will actually be visited or pop-
ulated with data. Complete octrees are useful for scenes with
evenly distributed data where they require less memory than
the sparse variant. “A full Octree of depth D = 10 consists of
NT = 1227133513(1.2billion) nodes which consume around 9.14
GiB of memory” [25]. A sparse octree is best suited for the vol-
umetric terrain implementation since common game scenes will
rarely be fully populated with volume data. In other words, a lot
of space will typically remain empty.

Apart from deciding whether to build sparse or complete oc-
trees, it’s also necessary to chose an internal representation for
the octree nodes and how they are stored. There are two fun-
damentally different kinds of octrees to chose from: traditional
pointer-based octrees and linear octrees. This project uses a lin-
ear world octree to organise volume data cells and pointer-based
voxel octrees to extract isosurfaces from individual world cells on
the fly.

World Octree
The concept of linear octrees stems from linear quadtrees

that were first proposed by [26]. Linear octrees store all of their
octants in a hash map. Individual octants can be identified by cal-
culating a so called locational code. Since no pointers need to be
stored, linear octrees require less memory than traditional octree.
Furthermore, the tree hierarchy is encoded in the locational codes
which allows intermediate octants to be omitted entirely as they
can be reconstructed on demand. However, “Creating and delet-
ing nodes at the top of hashed Octrees is very costly, because the
locational code of all nodes below the new root node gets 3 bits

longer and must be updated. Consequently, the hash map must
be updated as well” [27]. Therefore, the extent of linear octrees
should be static.

The terrain system uses a custom linear octree to efficiently
organise a sparse, multilevel collection of volume data cells that
maintain a description of a portion of the terrain at a fixed resolu-
tion. Note that the world distance between the grid points inside
a cell describes its effective resolution. The world octree is axis-
aligned, cannot be rotated and allows direct access to different
LOD layers, octant neighbours and parents. It also differentiates
between intermediate octants and leaf octants where intermediate
octants store additional information about the existence of their
potential children. The data of all octants may be modified at any
time using CSG.

Each world octant can be uniquely identified by a 3D co-
ordinate and a LOD value. A perfect hash function is used that
packs the individual values for X, Y and Z into a unique 53-bit
key. As a result, there will be no collisions in the underlying hash
maps. This approach was inspired by the Voxel Farm engine [28].
In contrast to Voxel Farm which has native 64-bit integers at its
disposal, JavaScript uses IEEE 754 binary64 Doubles for Num-
bers and, consequently, only supports 53-bit integers safely as of
ES2017. Since 11 bits are unusable, the bit allotments for the key
coordinates must be carefully chosen to maximise the effective
number ranges. For that reason, the LOD value is not part of the
key and is used to select a distinct octant grid instead in which
the packed keys are unique. Figure 5 shows the default octant
key design that uses 40% of the available bits to encode the X-
coordinate, 20% for the Y-coordinate and the remaining 40% for
the Z-coordinate.

Figure 5. The default octant key design with 53 available bits. The red slots

represent the amount of bits reserved for the X-coordinate, green represents

Y and blue represents Z. The grey slots are unusable.

With the default bit allotments, it’s possible to represent
221 = 2097152 distinct integers along the X- as well as the Z-
axis and 211 = 2048 integers along the Y-axis. Assuming a base
cell size of 20 metres, the full extent of the managed world space
is 41943.04km×40.96km×41943.04km. Furthermore, bit oper-
ations can only safely be applied to DWords (32-bit). This means
that all 53-bit keys must be split into a high and a low part in order
to retrieve the 3D coordinates from octant keys. Another pitfall is
that JavaScript interprets the result of 32-bit operations as signed
integers by default. In order to prevent the sign bit from being pre-
served, most bit operations must be followed by a zero-fill right
shift. In the following example, the second variant is preferred:

((232−1) | 0) =−1

((232−1) | 0) >>> 0 = 4294967295

It’s worth mentioning that a BigInt feature is going to be included
in a future version of JavaScript that will allow the use of arbitrary
precision integers. This could improve bit operation capabilities
and may substantially increase the maximum possible world size.

The world octree provides a way to find an octant based on a
given 3D position. Since negative 3D coordinates are allowed, the
given position needs to be translated to the origin (0,0,0). This
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yields zero-based unsigned coordinates that are then divided by
the cell size of the target LOD grid which can be calculated by
s0×2lod where s0 is the base cell size of LOD zero. Octant key
coordinates are all integers, so the fractional part of the coordi-
nates must be truncated. The final key coordinates can then be
packed into a unique octant key that is valid for the target LOD.
Adjacent keys can easily be calculated since the coordinates are
contiguous and normalised in that the step size between two keys
is exactly 1 in any direction. The existence of the octant identified
by the computed key is not guaranteed.

Table 1. A binary pattern lookup table that describes the eight
relative octant position offsets.

X Y Z

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

The amount of LOD grids is artificially limited to save re-
sources which means that the world octree structure is not actu-
ally complete. The highest grid is always the starting point when
any kind of search is performed and since there is no coarser grid
above the highest one, there is also no meta information about the
existence of the octants in that grid. Therefore, the hash map must
be queried for every octant in question and empty space can’t be
skipped on that level. However, the octants of the highest LOD
usually cover enough space to alleviate this concern. As stated
earlier, each intermediate octant stores information about the ex-
istence of its immediate children that reside in the next lower grid.
This information is available in the form of an 8-bit mask which
corresponds to the octant layout specified in Table 1. The posi-
tional offset of any octant relative to its parent is the remainder
after the division of the key coordinates by 2. The remainders
rx,ry,rz can be calculated using a fast bitwise modulo operation of
the form r = i & 1 because the key coordinates are positive inte-
gers and the divisor is a power of two. Note that this bit operation
is safe to use as only the lowest bit of the operands is relevant.
The index into the offset table can be obtained using a reversed
packing order: (rx << 2)+(ry << 1)+ rz.

Figure 6. Key translation between LODs. The calculations use integer

arithmetic.

Figure 6 illustrates the relationship between keys from dif-
ferent LOD grids. Translating key coordinates from any grid to a
higher one requires a zero-fill right shift by lodtarget − lodcurrent

bits while a translation into a lower grid requires a left shift by
lodcurrent − lodtarget bits. Note that the key design disallows bit
allotments that are greater than 32 bits because bit operations can
currently only be applied to DWords. The coordinate translation
to a higher LOD is safe for 32-bit values as long as the zero-fill
right shift operator is used. A translation into a lower grid with a
left shift will never occur if the current LOD is zero because there
is no lower grid. So even if 32-bit coordinates are used, there will
be no overflow.

Raycasting
Finding objects that intersect with a ray is called raycast-

ing. This approach is also referred to as “picking” when the ray
direction is controlled by the mouse cursor to actively select ob-
jects. Raycasting support is an important feature of the terrain
system as it provides a way to quickly select a part of the ter-
rain surface. The linear world octree implementation that is used
in this project incorporates an efficient raycasting technique that
was originally proposed by [29]. The algorithm capitalises on po-
sitional assumptions and therefore requires the octants to adhere
to a common layout.

Figure 7. The depicted octant layout is crucial for positional assumptions

during raycasting.

Figure 7 illustrates the expected octant positions from Ta-
ble 1 which maps each position to a unique identifier. This layout
dictates the linear order of the eight children of an octant based on
their relative position. The chosen raycasting technique is a top-
down parametric method that recursively analyses ray parameters
to find the entry and exit planes of the octants that intersect with
the ray. The advantage of using an octree for raycasting becomes
apparent when comparing it to the brute force approach. For in-
stance, raycasting a point cloud consisting of 1048576 spheres
with a naive approach may take upwards of 65 milliseconds while
the octree approach culls a large amount of candidates and takes
less than half a millisecond with a tree depth of D = 5. More-
over, the performance of octree raycasting scales well with larger
amounts of data.

Since the world octree has a limited amount of LOD grids,
a specialised hybrid approach is deployed that relies on a voxel
traversal algorithm proposed by [30] to iterate over the octants
of the highest grid along a 3D line. The octree traversal algo-
rithm is then used to raycast the identified octants which serve as
adequate subtrees. The voxel traversal implementation is a 3D su-
percover variant of the Digital Differential Analyzer (DDA) line
algorithm and is similar to the well-known Bresenham algorithm.
Furthermore, the octree traversal algorithm relies on octant child
existence information to accelerate searches.
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Volume Modification
Before any volume data can be generated, the world octree

structure must be prepared so that it can accommodate the new
data. Since it’s not feasible to create all possible octants in ad-
vance, the octree needs to be able to constantly adapt to changes.
At first, the world octree is empty, but its dimensions are statically
defined through the octant key design. This information paves
the way for a straight-forward volume expansion and contraction
strategy. The system differentiates between two main cases:

1. New volume data will be added to the current volume.
2. The current volume will be reduced.

For the first case, world octants that don’t exist will be cre-
ated across all LOD grids. For the second case, it’s only necessary
to find existing world octants that may be affected by the volume
reduction. All volume modifications are guided by the AABB of
the given SDF which gets translated into an octant key range to
iterate over the affected octants. None of the volume data will
be modified immediately. Instead, the SDF will be added to the
CSG queue of the identified octants. The invaluable advantage
of letting every octant maintain its own independent CSG queue
instead of using a single central queue is that it allows lazy mod-
ifications which are only executed when the octant is close to the
viewer. Furthermore, the data of the affected intermediate octants
can be generated when it’s actually needed. World octants will
only be removed from the octree if the result of a modification
task turns out empty. After an octant has been removed, the oc-
tree will be pruned recursively to remove all parent octants that
became empty.

Figure 8. An overview of the volume modification.

An overview of the actual volume modification process can
be seen in Figure 8. The input of the process consists of the SDF
and an affected set of Hermite data. Each data set is modified
in parallel and the result of every modification is another data set
that qualifies as input for further modifications.

SDFs are a fundamental part of the volume modification sys-
tem. Like other CSG libraries such as csg.js, the terrain engine
also provides a set of primitive solids: box, cylinder, cone, height-
field, noise, pill, sphere, pellet, torus, pipe and corridor. Volume
modifications strictly follow the CSG methodology in order to
combine volumes in a structured and predictable way. Therefore,
all SDFs can be linked together conveniently via the three chain-
able CSG methods union, subtract and intersect to construct arbi-
trarily complex SDF composites.

Recall that an SDF yields negative values for points that lie
inside the volume and positive values for points outside. Thus,
the combination of multiple SDFs via CSG can be formulated
mathematically. Table 2 has been created according to a descrip-
tion by [9] and shows how the semantics of the CSG operations
can be translated to SDFs. Note that the negation of a set (¬A)

Table 2. An overview of the CSG operations applied to sets
(A,B) and to Signed Distance Functions ( f ,g).

Sets Signed Distance Functions

Negation ¬A − f
Union A∪B min( f ,g)
Difference A\B max( f ,−g)
Intersection A∩B max( f ,g)

directly translates to negating the function value of an SDF. Sup-
pose, for example, that an SDF f (x) returns a negative value for
a specific point x which implies that the point lies inside the vol-
ume. By negating the returned function value, the point would
consequently be considered outside. Combining SDFs according
to these rules is straight-forward and provides a robust strategy for
the creation of complex implicit surfaces. The terrain system re-
lies on sets of discrete Hermite data to describe its current volume
and the existing data can be transformed using SDFs.

The main purpose of an SDF is to define a three-dimensional
shape. In order to preserve this distinct role, SDFs are wrapped in
CSG operations which define combination logic on top of them.
When an SDF is added to another, it becomes a child of the target
SDF and it gets tagged with a CSG operation type. This allows
the creation of composites through nesting. During the automatic
conversion into a CSG expression, every SDF of a composite is
wrapped in a special Density Function CSG operation that doesn’t
provide any volume combination logic, but instead defines meth-
ods that use the attached SDF to generate volume data. Union,
Difference and Intersection operations, on the other hand, have
no access to the SDFs and only define how volume data is com-
bined. The core strategy for the modification of discrete Hermite
data using SDFs can be described as follows:

1. Fully execute the given SDF to generate a single indepen-
dent set of Hermite data that captures the implicit surface
inside the current world octant’s boundaries.

2. Combine the generated data with the existing data according
to the chosen CSG operation type.

The generation of volume data starts with the creation of a
blank set of Hermite data containing no edge data and a mate-
rial grid in which all material indices are set to air. After that,
the material grid and edge data is updated by evaluating the given
CSG operation which contains the SDF. It’s possible to rely on the
simple mathematical approach to combine SDFs during the gen-
eration of volume data, but merging two sets of discrete Hermite
data requires more complex combination logic. The generated
material indices and edges describe the result of the given CSG
operation in a form that is compatible with the existing volume
data. In case no terrain data exists yet, the generated data may
directly be adopted depending on the operation type. Otherwise,
the generated data is merged with the existing data in a subsequent
combination process.

With a time complexity of O(n3), the generation and com-
bination of material indices is quite costly. However, both pro-
cesses can be sped up significantly by limiting the work to grid
points that lie inside of the SDF’s AABB. Since the generation
of volume data is always performed on a blank data set, the un-
affected grid points can safely be ignored. The combination of

IS&T International Symposium on Electronic Imaging 2018
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2018

136-7



Figure 9. Identification of affected grid points using the operation’s reach.

The implicit surface is depicted as a blue circle. The red rectangle represents

the operation’s AABB. In most cases, only a small subset of the grid points

needs to be processed.

generated data with existing data, however, can only be acceler-
ated with this method for Union and Difference operations since
these two don’t depend on existing data. Intersection operations,
on the other hand, do depend on existing data and always influ-
ence the entire volume. Hence, all solid material indices that lie
outside the AABB of an Intersection operation’s SDF need to be
set to air. Due to the destructive nature of this operation, it’s rarely
used for terrain modifications. For example, a single Intersection
operation could easily delete most of the existing data and must
therefore be used with caution. SDF composites are more likely
to contain Intersection operations since their effect is then local to
the composite.

Figure 9 shows a 2D material grid with a chunk resolution of
4 which is used to capture an SDF that describes a circle. Note that
in this case, the grid completely covers the extent of the SDF. In
practice, most SDFs would typically straddle multiple grids. The
figure also shows how the grid points are numbered. Furthermore,
the shape that is described by the SDF is shown in blue while its
AABB is shown in red. The AABB of the implicit surface can
directly be used to identify the grid points that need to be updated.
The calculated bounds are used to iterate over a portion of the
material grid. In this case, the AABB contains the grid points
{6,7,11,12} which translates to the lower bounds (1,1) and the
upper bounds (2,2).

For the generation of volume data, it’s necessary to calculate
the world position of each affected grid point. Let s be the cell
size and n the resolution. The local offset of a grid point can then
be calculated based on the iteration indices x,y,z:

~o f f set =
(

x× s
n

,
y× s

n
,

z× s
n

)
Adding the offset to the associated world octant’s ~min position
yields the world position of the grid point which can be used to
sample the SDF and to determine whether the respective material
index should be set to solid material or to air.

The process of generating edge data has a time complexity
of O(3×n3). In order to handle this task efficiently, a divide and
conquer approach is used. Edge data is stored separately for each
axis so that edges can first be processed along the X-axis, then Y
and finally Z. The goal of the edge generation process is to gener-
ate and store surface intersection data for edges that exhibit a ma-
terial change and thus contain the contour of the implicit surface.

Due to the structure of the material grid, the ending grid point
index b of an edge can easily be determined by adding a fixed
offset to the starting grid point index a. Using the example from
Figure 9 and assuming that edges are currently being processed
along the Y-axis, the ending grid point index b = a+(n+1) for
the starting grid point index a = 11 would be 11+(4+1) = 16.
When both the starting and ending grid point indices are known,
the respective material indices can be checked to see if the edge
exhibits a material change. If it does, the grid points are translated
into world positions according to the offset calculation described
above. The edge is then processed using the Zero Crossing ap-
proximation to obtain the surface intersection data. It’s important
to adjust the grid index bounds for the generation and combina-
tion of edge data in order to include edges that straddle the AABB
of the SDF and to avoid processing of non-existing edges at the
grid borders.

Although the number of edges that contain the implicit sur-
face is usually very low, the potential maximum amount of edges
must always be accounted for. Thus, the arrays that are used to
store the starting grid point indices, intersection normals and Zero
Crossings all need to be initialised with the maximum size. More
sophisticated strategies may be applied to reduce the space com-
plexity at the risk of having to perform costly array resizing. For
the combination process, the array size can be limited to the sum
of the existing and generated edges. In both cases, the remaining
empty space can safely be cut off afterwards.

After the SDF has fully been executed, the generated data
can be combined with the existing data. The process of combin-
ing a data set A with another set B consists of updating affected
material indices and deciding which edges to keep. While the gen-
eration and combination of material indices both have the same
time complexity, the combination of edge data only has a time
complexity of O(n). To provide a clear description of the actual
combination process, a visual example is given for each CSG op-
eration type.

Figure 10. Two exemplary sets of 2D Hermite data.

Figure 10 shows two exemplary sets of Hermite data. Set A
represents existing volume data while set B represents the pre-
dominant generated data. Solid material indices are depicted
as black dots while empty material indices are coloured white.
Edges along the X-axis are coloured red and edges along the Y-
axis are coloured green. The surface intersection normals are de-
picted as blue arrows.

“For A∪B, all non-air materials of B override the corre-
sponding material in A” [9]. Edges that exhibit a material change
are updated accordingly. For A∪B, all edges of B override the
corresponding edge in A if their respective Zero Crossing position
is closer to the air grid point. Ignoring this important constraint
could lead to an undesired reduction of the volume. Furthermore,
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Figure 11. An example of a CSG Union operation.

all edges in A that no longer exhibit a material change are dis-
carded. The effect of the Union operation can be seen in Fig-
ure 11. Notice how the green edges from set A have been selected
instead of the conflicting edges from set B.

Figure 12. An example of a CSG Difference operation.

“For A\B, all non-air materials of B result in air” [9]. Sim-
ilarly, the edges of B override the corresponding edge in A, but
only if they still connect different materials in A and their re-
spective Zero Crossing position is closer to the non-air grid point.
“Otherwise, the difference operation could wrongly increase the
volume” [9]. Additionally, the intersection normals of edges that
were adopted from B must be inverted to keep the description of
the surface consistent. Figure 12 shows the result of the Differ-
ence operation and demonstrates that the normals from B have
been inverted.

Figure 13. An example of a CSG Intersection operation.

Lastly, A∩B sets all materials of A to air except for materials
that are solid in both A and B in which case the material of B is
chosen. Similarly, all edges in A that no longer exhibit a material
change are discarded and the edges of B override the correspond-
ing edge in A if they exhibit a material change in A and their re-

spective Zero Crossing position is closer to the non-air grid point.
The effect of the Intersection operation is shown in Figure 13.

On a technical level, the combination of edge data is mainly
driven by the generated edge data. Recall that only the starting
grid point indices of the edges are stored and that they are sorted in
ascending order. This can be exploited to collect all relevant edges
in one sweep. While iterating over the set of generated edges, the
starting and ending grid point indices of each edge are inspected
to check if there is still a material change on the edge. If there
is none, the edge can be discarded and the iteration continues.
However, if there is a material change, the algorithm enters an
inner loop to process existing edges up to the current generated
edge. This catch up mechanism picks up existing edges that also
exhibit a material change and have been skipped by the outer loop.
If this loop happens to reach an existing edge that has the same
starting grid point index as the current generated edge, then there
is a conflict which needs to be solved by selecting an edge to keep
based on the CSG operation type. Furthermore, the inner loop
is not reset so that it may continue where it left off. After the
generated edges have all been processed, the remaining existing
edges are collected to complete the process.

Data Compression
Memory consumption is one of the biggest concerns when

it comes to maintaining large amounts of volume data. Table 3
provides insight into the actual memory usage for an exemplary
setup in which a complex SDF is captured by a single volume
data cell with a material grid resolution of 64. The SDF describes
a massive pipe with rounded edges that fully occupies the data
cell.

A closer inspection of the material data reveals that its struc-
ture is predestined for data compression. Solid and empty ma-
terial indices are often stored as uniform sequences that tend to
be fairly long, resulting in a strikingly low variety of data. Every
material index stores meaningful information and can’t just be
truncated, but the identified structure promises high potential for
compression. A prominent compression approach that exploits
data repetition effectively is the Run-Length Encoding (RLE) al-
gorithm. It belongs to the group of entropy encoders and quickly
compresses data in a lossless way. “The idea behind this approach
to data compression is this: If a data item d occurs n consecu-
tive times in the input stream, replace the n occurrences with the
single pair nd.” [31]. In the terrain engine, this approach is ap-
plied to numerical material index arrays. Since material indices
are stored in a one-dimensional array, it’s easy to count repeating
occurrences. A streak of repeating values is called a run and the
number of occurrences in a run is called a run-length. For ex-
ample, an array containing the values {0,0,0,0,1,1} would result
in the compressed data {0,1} plus the run-lengths {4,2}. Run-
lengths are stored as 32-bit unsigned integers because a single
run-length must be able to hold the maximum number of material
indices which cannot be achieved with only 16-bit. If a set of Her-
mite data contains only solid material indices it is considered full.
This is the case if the chunk lies completely inside the terrain’s
volume. Compressing sets that are full outputs only one mate-
rial index and one run-length that holds the total material index
count. While empty sets can safely be discarded, full sets must be
preserved as they still contain meaningful information.

With a resolution of 64, the data cell contains 274625 ma-
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Table 3. Memory usage statistics for a single volume data cell
that captures a complex SDF with a grid resolution of 64.

Material Indices Edges

Max. Count 274625 811200
Solid Materials 94760 -
Actual Count 9021 21528
Max. Mem. Usage 268.19 KB 15.47 MB
Actual Mem. Usage 44.05 KB 420.47 KB
Compression Ratio 6.09 37.68
Space Savings 83.58% 97.35%

terial indices. Assuming that material indices use 8 bits, the
memory usage for the uncompressed material indices is roughly
268.19 KB. Table 3 shows that by applying the RLE algorithm,
the amount of material indices in this example can be reduced to
9021 indices plus 9021 run-lengths. Since material indices use 8
bits and run-lengths 32 bits, each run-length value counts as four
material indices. Together, this amounts to 45105 8-bit long val-
ues which is only 16.42% of the maximum material index count.
The actual space requirement of the compressed data is roughly
44.05 KB which proves that RLE is well suited for the data at
hand.

The maximum possible number of potential edges for a set
with the same resolution is 3× (64+1)2×64 = 811200. Each
edge requires a 32-bit unsigned integer to store the index of its
starting grid point, an additional 32-bit floating point value for its
Zero Crossing position and three 32-bit floating point values for
its normal vector. The maximum space requirement for the edge
data is roughly 15.47 MB. Storing this much data for a single cell
would quickly become a problem for a game which has to keep
many other assets in memory. Thankfully, the actual memory us-
age is much lower than these estimated numbers. As can be seen
in Table 3, the amount of edges in this example is 21528 which
is only 2.65% of the maximum amount. A data cell could only
ever be fully populated with edges if it captured an implicit sur-
face that returned evenly distributed noise and it is unlikely that
such a function would be used for terrain. With a total of 420.47
KB for this example, the space requirement for edge data at this
resolution can be considered manageable with no need for further
compression.

Surface Extraction
Contrary to previous presentations of isosurface extraction

techniques, the input of the terrain engine’s extraction process is a
single set of discrete Hermite data instead of an SDF. This means
that the SDF doesn’t need to be evaluated on the fly as the data is
already available. Furthermore, the system uses the DC algorithm
to create polygonal meshes from volume data. For this technique,
the raw volume data needs to be converted into a Sparse Voxel
Octree (SVO). All of the voxels are constructed on top of the ma-
terial grid; the corner vertices of the cells match with the position
of the grid points. Consequently, the material information and
edge data is shared by adjacent voxel cells.

A voxel contains QEF data which is an accumulation of edge
data. To be precise, the surface intersection positions that are de-
scribed by the Zero Crossing interpolation values and the respec-
tive intersection normals are used to describe a linear system of

intersecting planes. By solving this system, a single point can
be determined that approximates the isosurface of the volume for
that particular voxel cell. Moreover, the generated feature point
becomes a vertex of the final polygonal mesh and the respective
vertex normal is the average of the involved surface intersection
normals.

“Given a plane π , defined by a point P and a normal n, all
points X on the plane satisfy the equation n · (X−P) = 0 (that is,
the vector from P to X is perpendicular to n)” [32]. Finding the
intersection point x of three planes can thus be formulated as the
linear system:

n1 · (x−P1) = 0

n2 · (x−P2) = 0

n3 · (x−P3) = 0

Solving this system is only possible as long as the edge data de-
scribes at least three intersecting planes. However, the implicit
surface may intersect with a voxel cell in such a way that the in-
tersection points and normals describe only two planes and some-
times only one. Since the intersection of two planes is a line, it’s
not possible to find a single point of intersection. In this case, the
linear system is called underdetermined which means that there is
not enough information to find the exact feature point. Therefore,
a least squares solution is computed using the accumulated QEF
data. According to [17], the exact intersection point is approxi-
mated using the following equation:

E(x) = x−ni ·Pi

The obtained point minimises the distances to all planes involved.
With this approach, the QEF solver will occasionally compute a
point that lies outside the voxel cell in which case the solution falls
back to the mass point of the voxel - the average of the intersection
positions.

Apart from that, each voxel cell also contains one byte that
stores the materials of its eight cell corners. Unlike MC which
uses this information to identify a polygon configuration, DC only
uses it to quickly check if edges exhibit a material change. Before
the surface is constructed, the octree is run through a simplifica-
tion procedure in an attempt to merge groups of eight voxel cells.
It combines their QEF data, solves the QEF and checks if the error
of the computed position is below a certain threshold. Groups that
fail this check are left untouched. The simplification operates in a
bottom-up fashion and only combines cells of the same size that
are either leaf octants or clustered intermediate octants that con-
tain the information of multiple merged voxel cells. This process,
albeit costly, can reduce the vertex count significantly by prevent-
ing unnecessary tessellation. At last, the DC algorithm traverses
the voxel octree to construct the polygonal mesh by connecting
the vertices of adjacent voxel cells.

The process of building the voxel octree relies on the edge
data to determine which voxel cells need to be created. Due to
the way the edges are stored, the voxels are created in three steps
for the X-, Y- and Z-axis. Each edge is uniquely described by its
starting grid point index which can be decomposed into the local
grid coordinates. Let n be the grid resolution and i the index of
the edge’s starting grid point. The coordinates x,y,z can then be
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calculated as follows:

x = i mod (n+1)

y = b
(
i mod (n+1)2)÷ (n+1)c

z = bi÷ (n+1)2c

After translating the obtained coordinates into world positions,
the Zero Crossing interpolation value of the edge is used to com-
pute the actual intersection position along the edge. This position
and the respective intersection normal are then added to the QEF
data of the voxels that touch the edge. As soon as the data of a
voxel is complete, its QEF can be solved to create a vertex. Since
adjacent voxel cells share their edges, a single edge may belong
to up to four voxel cells. The strategy that has been devised for
the creation of these potential voxel cells is to rotate around the
edge.

Table 4. A lookup table for voxel cell offsets.

0 1 2 3

X 0 1 2 3
Y 0 1 4 5
Z 0 2 4 6

Table 4 describes which of the offsets from Table 1 should
be used to identify the four potential voxel cells for each axis.
For instance, the offset that identifies the third voxel cell belong-
ing to an edge that is aligned with the Y-axis is (1,0,0). Adding
the offset to the local coordinates of the edge’s starting grid point
yields a position by which the voxel can be identified. However,
if the adjusted coordinates no longer lie inside the bounds of the
material grid, then there is no voxel. Granted that the coordinates
still lie inside the grid, the voxel must be retrieved or created if it
doesn’t exist yet. An exemplary mesh that has been created with
the developed engine is shown in Figure 14. Additionally, the
Hermite data that describes the volume is visualised in the form
of coloured edges.

Figure 14. An exemplary mesh that has been created with the developed

engine. The Hermite data is visualised in the form of coloured edges. The

short blue lines represent the normals of the implicit surface and originate

from the Zero Crossing positions along the grid edges.

Geometry Clipmap
Rendering a large terrain can be a very expensive task for the

GPU. One way to improve performance is to reduce the amount

of vertices. The farther away an object is from the viewer, the
less vertices are needed to sufficiently describe its shape. The
terrain engine uses a geometry clipmap approach to render distant
meshes with less vertices.

Figure 15. A 2D clipmap. In 3D, the clipmap rings around the viewer are

shells.

Conventional geometry clipmaps use multiple concentric ge-
ometry rings that are positioned around the viewer as shown in
Figure 15. Each ring contains roughly the same amount of data
as its predecessor but is also twice as big to cover more space.
The geometry patch in the middle represents the finest level of
detail. In the volumetric terrain system, cubical shells are used
instead of square rings. These shells consist of world octants of
the same LOD grid. The farther away the shell is from the viewer,
the higher the LOD. The thickness of each shell can be adjusted
by the user.

The clipmap structure is supported by the world octree and
can be updated in a straight-forward way. As the viewer moves
around, the clipmap must continuously be updated. Internally, the
clipmap maintains a list of world octant keys for every LOD shell.
During an update, a new list of keys is created for each shell. The
new keys are then compared with those from the current list to
identify octants that have left or entered the shell. Volume modifi-
cation tasks and contouring tasks are managed using two separate
queues and modifications take precedence.

World octants of the LOD grids above LOD zero are used to
create meshes with a lower effective resolution. The process of
creating data for an octant is based on local CSG queues and is
therefore the same across all LOD grids. Accumulating existing
data from lower LOD grids into an octant of a higher grid is not
feasible because all of the required data from the lower grids must
be fully available. For example, creating a resampled data set in
LOD 8 requires the data of up to eight child octants from LOD 7.
Each of these eight octants also requires the data from their own
eight children. As a result, 88−1 = 2097152 octants would need
to be processed to obtain the required data for resampling.

Gaps and Seams
Since the volume data is maintained in separate octants, the

generated isosurface also consists of multiple adjacent meshes.
Splitting up large objects is usually beneficial because parts that
aren’t in the field of view can be culled. However, too many
meshes result in reduced performance due to an increased number
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of draw calls that often submit too little data to the GPU. Splitting
the surface into patches also introduces a challenging problem:
when a mesh is created from a single isolated cell, it won’t auto-
matically connect to its neighbours. This problem becomes even
more complicated when a LOD system is involved.

Figure 16. The depicted blue plane occupies multiple adjacent world oc-

tants which causes gaps in the generated mesh.

The DC algorithm can tie voxels of any size together, but
keeping volume data in separate cells causes gaps between the
generated meshes. Although the cells share their faces with their
neighbours, the contouring process never gets the chance to con-
nect the bordering voxels of adjacent cells as shown in Figure 16.
Thus far, there are only two known approaches to solving this
problem:

1. Let the cells overlap by one voxel in each positive direction.
2. Gather bordering voxels from neighbouring cells to create a

seam mesh.

Letting the cells overlap requires little overhead and allows
the generated meshes to connect naturally. “This works well for
meshes of the same level of detail, but does not work well when
one of the meshes is more detailed than the other. The extra
vertices create cracks between the meshes, or holes in the sur-
face.” [6]. Another drawback of this approach is that all cells need
to contain a small amount of redundant data. Albeit incomplete,
this solution appears to be the most elegant one and may be used
in conjunction with the second option described by [8] and [6]:
Closing the gap between different LODs can be achieved by cre-
ating a seam mesh. For that purpose, the contouring tasks that
process cells at the border of a LOD shell would need to export
the bordering voxels which are then used to create and update the
seam mesh. Whenever a contouring task is performed on a cell
that touches the seam, the seam itself must also be updated. Note
that the meshes that are created from cells at LOD borders must
not extend into the seam mesh. [8] also points out that the seam
contouring process should only connect voxels of different data
sets to prevent the creation of duplicate polygons.

The issue of duplicate polygons also applies to the overlap-
ping cells approach. The additional voxels must not be connected
among each other since the neighbouring cells will also create
these polygons. Figure 17 illustrates the problem: the data cell A
extends into cell B and connects the vertices b and d with a′ and
c′ to close the gap, but a′ and c′ must only be connected once.
Due to a lack of information on this issue, the developed system
doesn’t include a complete gap closing solution yet.

Figure 17. Two overlapping cells. The extended boundaries of the cells are

shown as dotted lines. The red edge must not be created twice.

Performance
To measure the performance of the terrain engine’s most

crucial components, a series of tests has been conducted on an
LG Google Nexus 5X smartphone using Android 8.1.0 and the
Chrome App 7.17.28.21.arm64.

Hermite data compression and decompression as well as
CSG operations, SVO creations and contouring processes have
been measured for 200 samples each with a data resolution of 64
and 32. All tests, with the exception of the CSG test, operate on a
data cell that is prepopulated with Hermite data using an SDF that
describes a pipe with rounded edges. For the CSG test, the cell
is prepopulated using a different SDF because a CSG operation
skips the data combination step when the target data set is empty.
In this test, the pipe SDF is added to the existing data using a
Union operation.

Figure 18. Execution times in milliseconds for 200 CSG operations (blue),

SVO creations (orange) and Dual Contouring processes (green) on a data

set with a resolution of 64.

Data cells need to be compressed and decompressed fre-
quently. Surprisingly, the impact of this process on the overall
performance is negligible. With a resolution of 64, the compres-
sion of 274625 material grid points takes 2.27ms on average with
a minimum of 2.05ms and a maximum of 9.65ms. The decom-
pression of 9021 material grid points and their respective run-
lengths takes 2ms on average with a minimum of 1.47ms and a
maximum of 6.64ms. Using a resolution of 32, the compression
only takes 1.04ms on average with a minimum of 0.87ms and a
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maximum of 13.27ms while the decompression takes 0.41ms on
average with a minimum of 0.32ms and a maximum of 7.34ms.

Figure 18 shows the test results for a data resolution of 64.
CSG operations take 174.73ms on average with a minimum of
152.03ms and regular spikes of up to 632.14ms due to garbage
collection. The initial data set contains 27493 solid materials and
7342 edges while the final material count is 102261 with 21278
edges. The SVO creation is currently the slowest system compo-
nent with a mean time of 651.94ms. In this test, 21456 voxel cells
are being created per sample. While the shortest SVO run took
345.35ms, the graph shows a clear performance drop between
sample 115 and 155 with execution times as high as 1388.81ms.
Each SVO test generates a large and fairly complex data struc-
ture that, when performed in quick succession, eventually exceeds
the memory capabilities of the test device, causing a significant
slowdown. Although the tests have been executed in a dedicated
worker thread, the device struggled to manage the generated data
at this resolution. In fact, the device would panic due to memory
limitations when 500 consecutive CSG tests were performed us-
ing a resolution of 64, causing the browser tab to crash without a
proper error message. Finally, DC operations take 135.42ms on
average with a minimum of 104.45ms and regular spikes as high
as 343.64ms. Each contouring test collected 21456 vertices from
the voxel cells and created 43056 triangles.

Figure 19. Execution times in milliseconds for 200 CSG operations (blue),

SVO creations (orange) and Dual Contouring processes (green) on a data

set with a resolution of 32.

Seeing that a resolution of 64 is not appropriate for mobile
devices, it’s worth looking at a lower resolution. Figure 19 pro-
vides the results of the same tests with a resolution of 32. Notice
how the time needed for each test decreases at the beginning. This
is due to the fact that the web browser optimises JavaScript pro-
grams at runtime. As expected, CSG operations perform much
faster at this resolution and take 32.04ms on average with a min-
imum of 28.68ms and occasional spikes of up to 110.39ms. The
initial data set contains 3623 solid materials and 1862 edges while
the final material count is 12639 with 5126 edges. The lower res-
olution allows the test device to handle the generated data much
easier. SVO creations now produce 5184 voxel cells and take
143.93ms on average with a minimum of 64.58ms. The very first
run took 834.57ms and is not shown in the graph. Lastly, the con-

touring tests collect 5184 vertices and produce 10400 triangles at
this resolution and take 28.87ms on average with a minimum of
23.91ms and a maximum of 195.02ms.

Conclusion
This work shows that the implementation of a terrain engine

using JavaScript and WebGL is possible. The developed system
allows dynamic terrain modifications in real-time and manages
large amounts of volume data in a multithreaded fashion. Volume
modifications can easily be executed through a CSG interface that
has been designed with simplicity and efficiency in mind. Octree
raycasting enhances terrain mesh picking and provides the base
for efficient terrain editing. Moreover, the engine runs in the web
browser with no setup required. Although Three.js was used for
testing, other frameworks such as Babylon.js could also be used
with little effort since the terrain system doesn’t depend on the
rendering system and operates independently.

Furthermore, the engine can be used on mobile devices as
long as WebGL and the Web Worker API is supported. It could
also be shown that the performance of the volumetric terrain so-
lution is indeed feasible both in terms of computational load and
in terms of memory consumption. Since the terrain engine allows
the user to manually set the resolution of the volume data, it’s also
possible to trade detail for performance. It should be noted that
the developed software is still in an early development stage and
that there is a lot of room for improvement. Nonetheless, the pre-
sented test results are very encouraging. The source code of the
project can be found on GitHub:

https://github.com/vanruesc/rabbit-hole

Future Work
The terrain engine currently uses the DC algorithm for the

isosurface extraction process and produces polygonal meshes
with geometrical errors. Even though the results are acceptable,
switching to a better extraction algorithm such as MDC or CMS
would be an improvement. Another aspect that can be improved is
the calculation of surface normals at edge intersection points; in-
stead of using a finite difference method, analytic derivation could
be used to obtain perfect normals.

Although it was shown that volume data can be compressed
very effectively, it may still use a lot of memory in total if the
terrain is large. Most of the volume data remains in memory even
if it’s unused for long periods of time. Thus, it would be beneficial
to store unused data persistently until it’s needed again. Inside the
browser, this can be achieved with the IndexedDB API which is
also available in Web Workers.

The idea of moving the contouring process to the GPU is
also worth investigating while WASM could be used in an attempt
to accelerate performance sensitive system components. Seam
patching is another related issue that requires more attention and
needs to be solved in a sane way.

With a robust terrain editor, the workflow of editing volumet-
ric terrain could be compared to the traditional heightmap-based
approach where additional 3D assets need to be used to create
more complex terrain features. Furthermore, advantages and chal-
lenges of using a Leap Motion controller for terrain editing could
be examined. Additionally, the potential of the terrain system for
use in augmented as well as virtual reality environments could be
investigated.
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