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Abstract 
 
Rapidly evolving technologies like data analysis, smartphone 
and web-based applications, and the Internet of things have 
been increasingly used for healthy living, fitness and well-being. 
These technologies are being utilized by various research 
studies to reduce obesity. This paper demonstrates design and 
development of a dataflow protocol that integrates several 
applications. After registration of a user, activity, nutrition and 
other lifestyle data from participants are retrieved in a 
centralized cloud dedicated for health promotion. In addition, 
users are provided accounts in an e-Learning environment from 
which learning outcomes can be retrieved. Using the proposed 
system, health promotion campaigners have the ability to 
provide feedback to the participants using a dedicated 
messaging system. Participants authorize the system to use their 
activity data for the program participation. The implemented 
system and servicing protocol minimize personnel overhead of 
large-scale health promotion campaigns and are scalable to 
assist automated interventions, from automated data retrieval to 
automated messaging feedback. This paper describes end-to-end 
workflow of the proposed system. The case study tests are 
carried with Fitbit Flex2 activity trackers, Withings Scale, 
Verizon Android-based tablets, Moodle learning management 
system, and Articulate RISE for learning content development.  

Index Terms – wearable sensors, data collection, e-
learning, healthy living, digital user interaction, mHealth, 
gamification, apps, smartphones, tablets 

Introduction 
 
There has been a remarkable growth in the use of smartphone 
applications recently. Smartphones are ubiquitous, versatile, and 
built-in with sophisticated technology. Usage of smartphone 
apps is not any more limited to just making calls or messaging, 
but spread to various activities such as social networking, 
emailing, and management of finances. Smartphones also have a 
great potential to promote healthy changes in day-to-day 
behavior of people.  Health and fitness apps [1], the most 
popular ones being Fitbit, Withings, MisFit Ray and Jawbone 
are built-in with positioning and social networking capabilities 
like sharing on Facebook or Twitter, as well as sophisticated 
sensor technologies that provide physical activity related data, 
which can motivate people to have a healthy lifestyle and also 
assist researchers in improving the effectiveness and cost of 
health interventions.  
 

The University of Texas at Austin College of Liberal Arts and 
their South Texas-based research team is conducting an 
evidence-based family-focused intervention (FI) [2] as part of a 
rural community partnership to advance Latino obesity research. 
The Software Communications and Navigation Systems 
Laboratory (SCNS) of the University of Texas at San Antonio, 
as a remote technology group for this study, is using technology 
to enhance the efficiency of such intervention.  
 
Web-based services, Health promotion researchers commonly 
utilize existing systems for relatively faster and affordable 
technology-assisted mHealth deployments, when the major 
effort is in adapting and modifying known solutions for specific 
campaigns to enhance their impact using technology tools. 
Advanced personal mobile devices and applications such as 
tablets, mobile phones, personal trackers, mobile apps, advanced 
messaging systems and web-based services are a open enormous 
venue for enhancing human health. The number of fitness 
devices in the market is increasing with customers searching for 
the products that best suits their interests. Generally, when 
companies depict these products as beneficial and accurate in 
their estimates [3], but no study is readily provided to prove 
t h i s  c l a i m .   
 
In this research, a critical evaluation of available fitness tracking 
devices is performed, followed by the design and development 
of a dataflow protocol for collecting data from users’ via health 
tracking sensors with the purpose of delivering healthcare to the 
user. We utilize Research Electronic Data Capture (REDCap) 
[4] as our backend database to store users’ sensitive and 
personal data, which will also be used by health educator for 
monitoring and examining rural families’ lifestyle on a regular 
basis. An eLearning environment in which users participate is 
also implemented for increased program availability, easy 
accessibility and participation. The proposed system can be 
viewed as a place where users can consolidate their health, 
fitness and relevant educational data. Most of the preexisting 
apps and fitness devices have application programming 
interfaces (APIs) which allow for the proposed system to collect 
data and stats. This paper also reviews previous work on similar 
research. Various tests are conducted to validate the protocol 
taking into consideration the constraints that exist in rural 
settings, such as limitations in Internet connectivity. 

Background and Purpose 
 
There has been a gradual shift in the mechanisms that have been 
put forward to improve patients’ physical or mental well-being 
over the past 10 years [5].  mHealth platforms consist of apps 
and devices that seek for all kinds of health and physiological 
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data and deliver information to patients, doctors, health 
educators and researchers [6]. Data that is produced by 
individuals is being aggregated, analyzed, and processed for 
informing various services as well as drawing insights about 
their health. These online platforms are either mobile device 
applications or online sites that aid and organize data streams, 
interactions and exchanges between users. All the platforms are 
usually made available to users through apps and websites. 
 
We’ve performed a literature survey on existing state-of-the-art 
mHealth ecosystems The common parameters used by all the 
studies were cost, accuracy in tracking fitness data, ease of use, 
user interface, and API support. The research study by [7] 
summarized and compared the use of trackers like Withings 
Pulse, Misfit Shine, Jawbone Up3 and Fitbit Flex 2. From this 
study, Withings Pulse was the chosen best device because of its 
accuracy (99.90%) in terms of activity monitoring, performance, 
and cost as compared to other devices. The comparative study 
by [8] provides an evaluation of popular devices in the market 
like Fitbit Flex 2, Nike+ and Apple Watch. Based on [8], Fitbit 
Flex 2 was the most accurate device with low error rate of 1% in 
steps recording. Fitbit Flex 2 has API support which aids in data 
retrieval. On the other hand, Nike+ had 8% error in step 
recording and does not have API support. [11] worked on a 
similar research study as [8], comparing the trackers like Fitbit 
Flex 2, Apple Watch, Jawbone and Withings. His studies had 
the same conclusion as [8] with Fitbit being the most accurate 
devices in terms of steps and sleep measurement. Jawbone on 
the other hand had many false positives while the person was 
performing arm movement activities, such as washing dishes. 
The study by [9] provided a comparative report on step count, 
calorie count, and miles travelled on three different trackers: 
Fitbit Flex 2, Fitbit Charge HR and Garmin Vivo over a 14 day 
period. The results showed that the number of steps shown by 
different devices varied up to 26% due to different sensors used 
in each device and location of trackers on body (wrist worn or 
hip worn devices). [10]  did a similar research as [9] on 
assessing the consistency of the various trackers. The trackers 
used in that study were Apple Watch, Fitbit, and Nike+ Band. 
The measurements of different devices fluctuated greatly in the 
range of 2-38% in terms of steps, 5-30% for distance, 2-44% for 
sleep duration. Most of the devices had a strong correlation in 
distance measurements and steps. The results showed these 
devices are reliable only in terms of steps and distance 
measurement. These studies helped us choose the best tracker 
for our research study. Fitbit Flex 2 was chosen as the fitness 
tracking device for our study, based on the ease of use, and 
reported accuracy in terms of fitness measurements, user 
interface, and API support for data retrieval. 
 
We also performed a study on various approaches employing 
these fitness trackers, and their effectiveness in bringing health 
related behavioral and lifestyle changes in people. The purpose 
of the study is to compare the different state of art approaches 
and weigh the advantages and shortcomings of such campaigns. 
[12] provides detailed report on lifestyle changes of obese 
people with the use of Fitbit Flex devices through monthly 
reports showing the changes and variations in their physical 
activity levels. The study by [13] showed how social networking 
through Fitbit challenges helped in improving the health 
research and quality of life. A total of 44.5 thousand users were 
enrolled in the study. Users had positive impacts in terms of 

physical activity, with an increase of 1000 steps per day and 75 
active minutes on weekends with each additional social tie in the 
user’s network. The study by  [14] and [16] researched on the 
accuracy of fitness data as reported from trackers  and 
effectiveness in increasing the physical activity of the adults. 
[14] compared 9 different trackers with 50 participants from 
different age groups. The study concluded that smartphones and 
wearable devices were accurate for tracking step counts with 
20% difference from the observed data. On the other hand, the 
study by [16] had a total of 94 healthy men and women for a 12-
week intervention. The physical activity was assessed pre and 
post intervention and the results showed that the activity trackers 
were not sufficient to increase the physical activity of healthy 
adults. The research group led by [15] created an android health 
application by integrating Fitbit and dietary applications for 
study that involved 20 healthy adults and 16 diabetic and obese 
adults. The findings showed that the impact of social incentives 
on patients differed from that on healthy adults. The healthy 
adults made use of the platform to compete with other teams 
while the other patients made use of the medium to seek 
normalization and information from patient community. The 
results showed gaps of leveraging social fitness applications for 
patients. Such varied conclusions from the studies helped us in 
weighing possible shortcomings and choosing a health platform 
that would benefit the participants enrolled in the study. 
 
The focus of our research as part of the remote technology group 
is to choose the tracker that best suits our needs, provides us all 
the relevant health and fitness related data variables, insights 
into personal health and learning management system that 
benefits the participants by providing them easy access to 
motivational content. The above two surveys are the part of our 
preliminary studies. Relevant research is being carried in the 
usage of cloud-based technologies for health data. Most of them 
are solely for observing behavioral changes in participants 
towards healthy lifestyle. However, there is not much focus on 
the real integration of health and fitness related data from 
trackers whose back-ends reside on heterogeneous platforms and 
the eLearning environments such as health related courses 
deployed using Moodle [18] learning management systems 
(LMS) and whose content is developed using Articulate RISE 
[19].  
 
This paper describes end-to-end workflow of an automated data 
retrieval protocol, which can be integrated for health promotion 
campaigns. We evaluated the completeness of data collection 
using the Fitbit Flex2 tracker, Withings scale, and user’s LMS 
data integrated into our proposed model.   

Proposed System  
 

A. Integrated System Architecture 
 
A conceptual diagram of the system architecture is shown in 
Figure 1. The green-colored components are the components to 
be integrated to the system that will eventually close the loop for 
the health professionals while collecting, processing data and 
communicating with the participants. These advanced 
messaging tools when connected to the REDCap provide a 
communication channel to interact with participants. 
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Figure 1. Integration of the complete cycle of data collection 
and communication with the participants 
 
The data syncing is typically done using a Bluetooth wireless 
connection with a smartphone or computer application. The 
users can set their specific goals as reference marks and 
challenge themselves to achieve higher goals. Many of these 
applications allow tracker owners to connect with peer groups or 
friends, and some allow sharing data with other users. Some also 
have an option to connect to other third-party variable-specific 
(e.g. calorie counting or meal tracking app) tracking applications 
(e.g. MyFitnessPal [20]), that bring diet and nutrition aspects 
into the activity tracking picture. There exists significant value 
in observing diet trends over time and understanding the 
correlation between calorie expenditure and activity levels. 
During our evaluation study for activity trackers, we observed 
that Fitbit offers the convenience of tracking user’s calorie 
intake; sleep duration, steps, miles, and activity minutes, etc. for 
the day. All this collected data can also be retrieved accurately 
using an API.  
 
 

B. Fitness Data Flow Protocol 

 
While the state-of-the-art lifestyle tracking systems provide 
excellent personalized services, they are not adequate enough 
for health promotion researchers to monitor their participants 
from a research perspective. The proposed system adapts these 
advanced environments for health promotion research. The 
personalized data can be retrieved from the involved systems 
and synced with the common data capture and monitoring 
environment shown in Figure 2 with the user’s consent. The 
system involves wearable sensors (Fitbit and Withings weighing 
scale), a smartphone or tablet, study servers, and other cloud 
services. Each of the major components in the proposed system 
is intended to perform specific functions as described:  
 

• User needs consent to our application for data 
collection via a webpage in which he/she can also 
input information as desired. 

• Fitness data reaches the Fitbit and Withings 
applications after initial synchronization by the user 
via Bluetooth. 

• Data is transmitted to the Fitbit and Withings servers 
via internret. Body weight and BMI data from 
Withings are synced to user’s Fitbit application by 
using a back-end script. 

• Above data is retrieved by a middleware script from 
Fitbit server and saved to our system in comma-
separated value (CSV) or excel format. These files 
consist of user’s physiological parameters such as 
activity, sleep, steps, food logs, nutrients and body 
logs measured by the activity tracker and the smart 
scale.  

• These files are then stored in REDCap for data 
analysis and processing by the Health Educator. 

 
The system not only collects useful health information of users, 
it also provides this information to users’ of other 
application/services such as REDCap.  
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Figure 2. Data Flow Protocol and System Concept 
 

Implementation 
 
The backend for the proposed system’s data retrieval and 
monitoring resides on two Amazon Elastic Compute Cloud (EC2) 
server instances: one for initial consent from users and a second 
one for the eLearning environment. APIs are used to implement 
data retrievals. Commonly used cloud environments like REDCap 
can serve as data collection and processing clouds and can be 
easily integrated to our system concept. These systems serve as 
secure web application for building and managing online surveys 
and databases. REDCap is specifically geared to support online or 
offline data capture for research studies and operations.  
The initial step involves the participant authorizing the system to 
collect personal data. After this initial step, an automated process is 
used for data retrieval, collection and storage. EC2 hosting makes 
the system scalable based on the number of participants in the 
study. The activity, nutrition and other lifestyle tracking sensor 
data from the participants is then collected automatically from their 
accounts based on the ID that is retrieved during the initial 
registration process. An account is also provisioned for the user, 
which allows him/her to enter the Moodle eLearning environment.  
 
The eLearning environment is implemented by formulating the 
course contents in Articulate RISE. Given that RISE does not have 
a capability to track the progress of the participants, Moodle is 
incorporated in the system concept, since it has this capability and 
it also provides health educators with a dashboard view of the 

participants’ progress. The workflow of the eLearning environment 
is shown in Figure 3 below. 
 

 
 
Figure 3. eLearning System Flow 
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The backend scripts run daily at a specific time and all the 
mentioned data is uploaded to REDCap for health promotion 
researchers for further analysis, getting insights by observing 
trends in their lifestyle and research studies. Researchers use the 
dedicated message system for providing feedback to the 
participants based on the analysis. 
The proposed system minimizes the personnel overhead for large-
scale health promotion campaigns and is scalable to assisting 
interventions through automated data retrieval and messaging 
feedback.  
 
Integrating eLearning through Moodle to deliver Health Lessons 
 
The idea behind integrating eLearning to educate participants 
comes from the fact that recent research [21] suggests that digital 
technologies can be used with benefits to people when they are 
properly designed. The aim is to develop an online course with 
weekly modules on healthy living, motivated through social 
interaction and peer learning. 
 
As shown in the flow diagram of Figure 3, the eLearning content is 
created using Articulate RISE. This was chosen due to the ease of 
creation of health lessons, compatibility to incorporate features 
from other Articulate tools and integration with learning 
management systems. It is imperative for the research study to 
have a feedback on the health lessons taken by the participants. 
Since RISE is not capable of tracking the health lessons and 
progress of the participants, it is integrated with the learning 
management system Moodle, which provides continuous, 
uninterrupted access to the participants and capable of tracking and 
monitoring the progress of the participants. 
 
The flow diagram of Figure 3 is described as below: 

• The health educator designs the course and creates 
different modules using Articulate RISE and other 
existing Articulate tools. 

• The courses are packaged into a zip file and converted to 
a SCORM package to make it compatible with Moodle. 

• While exporting the package, RISE offers ways we 
would like to track the course contents: 

o Tracking based upon course completion 

o Tracking based upon quiz results 
• Upload SCORM package into Moodle LMS  
• Users can access the above published course from 

Moodle and attempt quizzes. 
• The quiz results provided by the Moodle are then 

extracted via MySQL database into excel files and are 
uploaded to the centralized cloud REDCap which has the 
aggregated data from tracker, dietary applications and 
Moodle. 

Experiments and Results 
 
In theory, the proposed model aims at collecting data from various 
sensors and devices in an Internet of Things (IoT) healthcare 
environment in any data format with any number of people. This 
paper evaluates the performance of the system when used in the 
Healthy Frio Project. 
 

A. Comparative Study and Evaluation of Trackers 
 
Fitness and physiological data trackers vary with respect to the 
amount and type of data being measured or displayed on the 
tracker. There is wide variety of fitness trackers in the market, and 
the leading manufacturers like Fitbit, Garmin, and Withings, 
continuously keep expanding their base by releasing updated 
versions every year [22]. For the purpose of this study, we 
performed evaluations on Fitbit Flex2, Withings Go, and Misfit 
Ray, which are of affordable rates, yet possess advanced 
capabilities of measuring the variables of interest which include 
step counter, caloric tracker, distance counter, and sleep tracker. 
The functions are all similar in these three trackers, but they differ 
in the sensors used, algorithms, and web/mobile application.  
 
These devices are evaluated on various criteria as shown in Table 1 
from the user, researcher as well as developer’s perspective. Misfit 
Ray does not support API. As such, the wearable sensor data 
cannot be easily retrieved directly or through third party 
applications. Fitbit Flex2 was chosen for this health promotion and 
intervention study because of the user interface, 
community/customer support, and the ability to create group 
challenges. 

 
Table 1.  Comparison of trackers on various criteria 

Criteria Withings Go Misfit Ray Fitbit Flex2 

API Support Yes No Yes 

Group Challenges Yes No Yes 

Battery Up to 6 months Up to 4 months Rechargeable (10 days approx.) 

Data Caching (how often 
syncing is required) 

10 days10 days 1 day 10 days 

Connection with 
MyFitnessPal 

Limited to nutrition Unreliable Yes 

Sharing dashboard and 
accomplishments 

Weight, blood pressure  
and BMI can be shared 

No Can share the dashboard to 
friends including steps and 

workout 

Weight measurement Yes No Can connect to a scale 
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B. Devices Configuration 
 
The hardware includes wearable tracker Fitbit Flex2 for 
measurement of user’s physical activity data, Withings Wi-Fi 
Body Scale [23] for body composition like weight, fat and water 
content and Verizon Ellipsis 10 Android-based tablet [24]. Fitbit 
[25], Nokia Health Mate [26] and Moodle smartphone applications 
are installed on the tablets. These applications perform the diet 
tracking, activity tracking, and educational services respectively as 
shown in Figure 1. The activity tracker and body scale are 
configured with the respective applications.  
 
 

Figure 4. JSON response from Fitbit food logs 

C. Infrastructure Configuration 
 
The infrastructure includes backend servers provisioned as 
Amazon EC2 cloud instances for the health panel and the 
educational panel. Initial user self-registration webpage for Fitbit 
data access and health educational course content are hosted on the 

respective panels. Health-panel uses Flask Python-based web-
framework. Complete users’ activity and body logs data is stored 
as excel files after collecting these data from Fitbit and Withings 
REST services. Edu-panel uses Apache and MySQL as database. 
All the course content consisting of lessons and users’ results 
reside here.  

D. Data Collection 
 
The users wear the Fitbit Flex2 and measure their body 
composition using body scale. They will be accessing and 
completing the educational course content on Moodle. The 
applications corresponding to all these data sources upload their 
data to the backend through the Internet connection. Applications 
do cache data for some time if there is no connection to the hub. 
They are able to cache the detailed analyses of the data for 7 days 
and cumulative data for 28 days respectively. The users 
synchronize the data using dedicated application via Bluetooth 
from device to application and via Internet from application to 
application server (Fitbit and Withings Health Clouds). After this 
syncing process, the data is available for retrieval by the proposed 
system through the REST APIs.  
 
For our experiments, we created an application and retrieved data 
stored on the Fitbit cloud for multiple users and stored it on our 
central hub. This was possible due to the UserID that could be 
extracted after initial authentication into our application by the 
users. UserIDs uniquely identify each user’s information for 
further pre-processing and storage. Internally, JSON responses 
(user-specific but automated for multiple users) are received 
through the Fitbit and Withings API. An example JSON response 
from Fitbit for food logs is shown in Figure 4. 
 
Users’ weight data and activity data is stored on Withings Health 
Cloud and Fitbit Cloud separately. Hence, pre-processing also 
involved syncing and combining data from Withings on Fitbit 
application. This synchronization is also handled by our Health-
panel. Therefore, the data arriving at this stage is already 
aggregated and is easily parsable, as shown in the JSON example 
in Figure 4. Such data is packaged as Comma-Separated Value 
format (CSV) files by extracting corresponding variables. Data 
from the Fitbit activity tracker, smart weighing scale and Moodle 
eLearning environment is further readily accessible to health 
promotion researchers in the form of a user-friendly dashboard on 
REDCap as shown in Figure 4. The implementation of mHealth 
platform and the automatic data capture is open in such a way that 
the end user data can be easily retrieved in formats or templates 
health educators and researchers would prefer for their further 
analyses.  

<type 'dict'> 
Food log for day:  {u'foods': [{u'logId': 12681510506, u'loggedFood': 
{u'mealTypeId': 1, u'foodId': 0, u'brand': u'', u'calories': 170, 
u'amount': 1, u'units': [304], u'accessLevel': u'PRIVATE', u'unit': 
{u'plural': u'servings', u'id': 304, u'name': u'serving'}, u'name': 
u'Taco Bell Crunchy Taco, 1 serving'}, u'nutritionalValues': 
{u'carbs': 12, u'fiber': 0, u'sodium': 0, u'calories': 170, u'fat': 10, 
u'protein': 8}, u'logDate': u'2017-11-19', u'isFavorite': False}], 
u'summary': {u'carbs': 12, u'fiber': 0, u'sodium': 0, u'calories': 170, 
u'fat': 10, u'water': 0, u'protein': 8}} 
Number of food types entered:  1 
Nutritional Summary of the logged foods:  {u'carbs': 12, u'fiber': 0, 
u'sodium': 0, u'calories': 170, u'fat': 10, u'water': 0, u'protein': 8} 
{u'mealTypeId': 1, u'foodId': 0, u'brand': u'', u'calories': 170, 
u'amount': 1, u'units': [304], u'accessLevel': u'PRIVATE', u'unit': 
{u'plural': u'servings', u'id': 304, u'name': u'serving'}, u'name': 
u'Taco Bell Crunchy Taco, 1 serving'} 
2017-11-19 
1 
Taco Bell Crunchy Taco, 1 serving 
170 
[304] 
170 
12 
10 
0 
8 
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Figure 4. REDCap Data Dashboard 
 

Conclusion 
 
This paper demonstrates the integration of fitness and activity 
trackers with clinical and health education tools commonly used by 
researchers. The proposed system makes it possible for researchers 
to extract this data in a format in which they can use it for their 
studies. At the same time, it provides educational feedback that can 
help users achieve a healthier lifestyle. This research also reviewed 
different wearable health trackers, and discussed the criteria that 
these trackers need to meet in order to be used as research tools in 
a rural setting, saving in terms of logistics and implementation 
costs. Ever since the adoption of Electronic Health Records (EHR) 
as a potential tool [27] to improve quality of care and building 
large-scale health care research networks, there is lack of 
widespread use of EHR for research data collection. The proposed 
data flow model and integrated system concept aims to remove the 
barriers to standardized health data collection and extraction.   
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