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Abstract
Camera denoising and sharpening parameters are device re-

lated rigid parameters which are programmed in phone camera
device. The current tuning method depends solely on manual
modulation and visual evaluation of image quality, which is time
consuming and difficult to optimally achieve. To this end, we will
introduce an automatic tuning method for mobile cameras in this
paper, which can tune the WNR parameters automatically and
produce high quality images within a feasible processing time.
The method contains two parts, a perception model and an opti-
mization algorithm. For the first part, we developed a perception
model to evaluate the image quality for mobile cameras through
modified CPIQ metrics. For the second part, in order to over-
come a high-dimension non-convex optimization problem, we de-
veloped a searching strategy to find the optimal solution by con-
ducting quantization and iteratively minimizing the error metric
of the perception model.

Introduction
With the development of mobile phones, the mobile camera

has become a very important part of our daily life and higher im-
age quality is required in more and more aspects of life. Camera
tuning is a very important part of camera image processing and
can influence the image quality dramatically. However, camera
tuning is currently based completely on manual tuning and the im-
age quality can only be checked visually. As a result, camera tun-
ing takes tremendous amount of time, usually several weeks, and
in most cases only approximately optimal parameters can be find
instead of the global optimal parameters. Additionally, in order to
get high quality images from mobile cameras, there are more than
ten (depending on camera model) image processing blocks which
can be unequally influenced by tuning parameters. This makes
it difficult to achieve optimal tuning parameters and takes an un-
predictable amount of tuning time. To our best knowledge, there
are several patents that discuss manual tuning methods, but no ar-
ticles discuss automatic tuning. Therefore, an automatic tuning
method, which can tune camera in a short time, is very important
and urgently needed.

In this paper, we will focus on the Wavelet Noise Reduction
(WNR) block in the camera image processing pipeline and intro-
duce our automatic tuning method. Based on the experiment of
manual tuning, we divide this problem into three different parts.
First, we developed a new block diagram for an automatic tuning
method based on the principle of image quality and the experi-
ence of manual camera tuning. Second, we generate a perception
model through modifying the metrics in Camera Phone Image

Quality (CPIQ) standard in order to evaluate the image quality.
Third, the high-dimensional space formed by tuning parameters
is a non-convex space since the tuning parameters are not inde-
pendent and have high cross-correlation with each other. There-
fore, there are many local minimums in the high-dimension space
and difficult to find the optimal parameters. In this situation, the
traditional optimization methods fail to get optimal parameters
in a short time. Finding optimal parameters in a short time is a
great challenge for automatic tuning. In the the tuning process,
the appropriate metrics for WNR are very important and affect
the tuning result dramatically. For a reasonable perception model,
it should reflect the image quality quantitatively with a small error
metric. A smaller error metric should correspond to better image
quality and vice versa.

Preliminary: Dead Leaves Target

Figure 1. Dead leaves target. There are eight slanted edges in the eight

red boxes which are the regions of interest (ROIs) for the slanted-edge SFR

measurements. The twelve square gray patches in the twelve yellow boxes

are the ROIs for visual noise measurement and also be used to conduct the

tone reproduction curve linearization. The dead leaves chart in the middle

blue box is the ROI for the texture acutance measurement.

Cao, Guiehard, and Hornung [1] described the utilization of
the ”dead leaves” target for measurement of system spatial fre-
quency response in the context of texture detail. This target con-
sists of a series of overlapping circles with a uniform distribution
of gray levels, with radii(r) distributed approximately as 1/r3 [2].
The power law distribution suggests near scale-invariance of the
target, so that in principle actions such as scaling, cropping, or
rotation should not change the power spectral density.
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Unlike the traditional knife-edge target, the spatial fruquency
response (SFR) derived from the dead leaves target will be penal-
ized for systems that employ aggressive noise reduction. Besides,
the dead leaves SFR correlates well with sharpness/texture blur
preference, and thus the target can potentially be used as a surro-
gate for more expensive subjective image quality evaluations.

Figure 1 shows the image chart that we used in this work.
There are eight slanted edges in the eight red boxes which are
the regions of interest (ROIs) for the slanted-edge SFR measure-
ments. The twelve square gray patches in the twelve yellow boxes
are the ROIs for visual noise measurement and also be used to
conduct the tone reproduction curve linearization. Besides, the
dead leaves chart in the middle blue box is the ROI for the texture
acutance measurement.

Image Quality Standard
The CPIQ standard is a specific standard for camera phone

image quality, it includes seven metrics: slanted-edge spatial fre-
quency response (eSFR), lateral chromatic displacement, chroma
level, color uniformity, local geometric distortion, visual noise
(VN) and texture blur/acutance (TA). Similarly, the International
Organization for Standardization (ISO) 15739 standard also con-
tains several metrics to evaluate image quality. Because the pa-
rameters of WNR block affect the noise and sharpness of images,
in this paper, we generate a perception model for the WNR block
based on eSFR, VN and TA, since all three metrics are related to
image noise and sharpness. In this section, we only introduce the
process to generate VN and TA metrics in CPIQ standard.

A. Visual Noise Metric
The ISO [3] VN standard is the starting point of CPIQ VN

standard as it is a preexisting standard, and the frequency-based
spatial filtering allows multiple frequency filters to be easily cas-
caded. The steps to generate VN metric in ISO standard is shown
in table 1.

Table 1: Steps to generate VN metric in ISO standard

ISO STEP
B.2.1 RGB to XYZ(E)
B.2.2 XYZ(E) into opponent space AC1C2
B.2.3 Discrete Fourier Transform
B.2.4 Apply the contrast sensitivity function (CSF)
B.2.5 Inverse Fourier Transform
B.2.6 Opponent space AC1C2 into XYZ(E)
B.2.7 XYZ(E) to XYZ(D65)
B.2.8 XYZ(D65) to L∗U∗V ∗

B.2.9 Standard deviation for each gray patch
B.2.10 Weighted sum representing the visual noise

Table 2 shows the detailed steps to generate the VN metric in
the CPIQ standard. Compared with traditional noise metrics, such
as signal-to-noise ratio, the VN metric of the CPIQ standard con-
siders the frequency of noise which enables a better representation
on the noise intensity in the human visual system. For the CPIQ
VN metric, we should transfer the color image from RGB color
space to AC1C2 color space, then conduct the Discrete Fourier
Transform (DFT) to get the frequency signal. After that, three fil-

Table 2: Steps to generate VN metric in CPIQ standard

CPIQ step
D.1-D.3 RGB to XYZ(E)
D.4 XYZ(E) into opponent space AC1C2
D.5 Discrete Fourier Transform
D.6 Apply the contrast sensitivity function (CSF)
D.7 Apply Display MTF
D.8 High Pass Filter (HPF)
D.9 Inverse Fourier Transform
D.10-D.11 Opponent space AC1C2 into XYZ(E)
D.12 XYZ(D65) to L∗a∗b∗(CIE Lab)
D.13 Objective noise (CPIQ)

ters in frequency domain are cascaded to process the image: 1).
the CSF (Contrast Sensitivity Function) filter, 2). the display MTF
(Modulation Transfer Function) filter, and 3). the high pass filter.
The CSFs are calculated as

CSFlum =
a1× f c1 × exp(−b1× f )

K
, (1)

CSFchrom =
a1× exp(−b1× f c1)+a2× exp(−b2× f c2)−S

K
,

(2)

where, CSFlum is the CSF for luminance channel, CSFchrom are
the chromininance CSF for C1 and C2 channels. The parameter
values in these formulas are shown in Table 3.

Table 3: Parameter values in Contrast Sensitivity Function
(CSF)

param luminance
CSFlum

Red-Green
Chrominance
CSF

Blue-Yellow
Chrominance
CSF

a1 75 109.1413 7.0328
b1 0.2 0.0004 0
c1 0.8 3.4244 4.2582
a2 93.5971 40.691
b2 0.0037 0.1039
c2 2.1677 1.6487
K 75 202.7384 40.691
S 0 7.0328

The display MTF depends on the viewing condition, and in
this paper we choose the computer monitor viewing condition:
100% at 100 ppi, on the basis of the CPIQ standard, the display
MTF can be calculated as

Mdisp(v) = ‖
sin(πkdispv)

πkdispv
‖, (3)

where, kdisp = 0.0243 is a parameter depending on the viewing
condition. After another color space transformation from AC1C2
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to L∗a∗b∗ color space, the objective VN in the CPIQ standard is
calculated in L∗a∗b∗ color space as

Ω =log10[1+23.0 ·σ2(L∗)+4.24 ·σ2(a∗)−5.47 ·σ2(b∗)

+4.77 ·σ2(L∗a∗)],

(4)

B. Texture Acutance

Table 4: Desired reflectance of 12 gray patches

patch
number

12 11 10 9 8 7

patch re-
flectance

1 0.927 0.854 0.708 0.635 0.562

patch
number

6 5 4 3 2 1

patch re-
flectance

0.5 0.416 0.343 0.27 0.124 0.051

In the CPIQ standard, there are four steps to generate the
texture acutance metric.
Step 1: Generate the tone reproduction curve (TRC) based on 12
gray patches in the 12 yellow boxes shown in Fig. 1, then, conduct
the linearization with the TRC. The desired patch reflectance is
shown in Table 4.
Step 2: compute the luminance. In this step, we converge the
color dead leaves target into gray image and the gray level can be
calculated as

L = 0.21260×R+0.71523×G+0.07220×B, (5)

where, R,G,B are the values of red, green and blue channels re-
spectively.
Step 3: Get the texture MTF for TA. First, the 1-D DFT is calcu-
lated by the formula

U(m,n) = ‖
N
2

∑
x=− N

2 +1

N
2

∑
y=− N

2 +1

I(x,y)e
2iπ(mx+ny)

N ‖2, (6)

where, I(x,y) is the pixel value of the gray dead leaves target at
(x,y). Then, the arithmetic mean of the 2D-FFT over all possible
directions is computed which results in a one dimensional profile
U1D.

Now, we already get the frequency response of dead leaves
target by the step 1 - 3. In order to ensure the accuracy of the tex-
ture MTF, compensation for noise must be factored in. according
to the CPIQ standard, regarding the 1-D MTF of No.6 uniform
gray patch as the NPS (Noise Power Spectrum), the frequency
response of the dead leaves target can be expressed as

U ′1D(r) =U1D(r)− p2H(
r
p
), (7)

Finally, through normalizing the U ′1D by the ideal chart power
spectrum, the texture MTF for texture acutance can be obtained

by

MT F1D(r) =

√
U1D(r)

T (r)
, (8)

where, T (r) = c(N)
rη is the power spectrum density of the theo-

retical chart; Both η and c(N) are constants, which only depend
on the target design and the crop size of the dead leaves target.
Specifically, let the crop size of dead leaves target be N, then we
have c(N) = var

∑− N
2 +1,..., N

2

.

Step 4: Texture MTF curve fitting. This is a very important step
for TA since the texture MTF that was acquired from step 3 is
very noisy. In order to resolve this, the MTF is fitted with a
cubic Hermit spline in CPIQ standard. This spline has six control
points and is defined by the 18 values shown in below:

• The X-axis values of each control point, written as
[x0,x1,x2,x3,x4,x5], is set to [0,0.1,0.2,0.3,0.4,0.5]

• The Y-axis values (MTF value) of each control point are
written as [y0,y1,y2,y3,y4,y5] with y0 = 1

• The first derivative of the spline at each control point are
written as [d0,d1,d2,d3,d4,d5] with d0 = 0 and d5 = 0

Since the spline is a continuous function, with a continuous
first derivative, it is uniquely defined by the 14 parameters
[x0,x1, ...,x5], [y0,y1, ...,y5], d0 and d5. For a random value x be-
tween the interval [xk,xk+1], the value of spline is

MT Ff it(x) =h00(t) · yk +h10(t) ·dk +h01(t) · yk+1+

h11(t) · (xk+1− xk) ·dk+1,
(9)

where, t = (x− xk)/(xk+1− xk) and Hermit basis function
h00(t) = 2t3−3t2 +1,
h10(t) = t3−2t2 + t,
h01(t) =−2t3 +3t2,
h11(t) = t3− t2,

We can get the final texture MTF with the following con-
straint condition
MT Ff it(0) = y0 = 1,
MT F ′f it+(0) = d0 = 0,
MT F ′f it−(0.1) = MT F ′f it+(0.1),
MT F ′f it−(0.2) = MT F ′f it+(0.2),
MT F ′f it−(0.3) = MT F ′f it+(0.3),
MT F ′f it−(0.4) = MT F ′f it+(0.4),
MT F ′f it−(0.5) = d5 = 0,

Figure 2 shows examples of texture MTF results under
different quantities of illumination.

Automatic Tuning Method
The block diagram of Automatic Tuning Method is shown

in Fig. 3. Instead of the mobile camera, we use a Qualcomm
simulator which can simulate the camera image processing in a
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mobile camera device. There are two main parts in the auto-
matic tuning block diagram: 1). Generation of the perception
model; 2). The optimization process. The perception model is
used to evaluate the image quality,which can output an error met-
ric. For a reasonable perception model, smaller error metric corre-
sponds to a higher image quality. For the second part, the search-
ing/optimization method is an iterative algorithm. We will intro-
duce the implementation details for the two parts in this section.

A. Generate Perception Model
Since the CPIQ standard is a specific image quality standard

for mobile cameras and it already implements subjective metrics
and a perception model, our perception model is based on the
CPIQ standard. However, the VN metric in the CPIQ standard
only applies to the visual noise with a Gaussian distribution. As
a result of that, the CPIQ NV metric has two problems for work-
ing directly as a part of the perception model: 1) the VN metric
is less sensitive to sharp impulse noise since it always calculates
the mean noise of all pixels; 2) the VN metric does not have the
ability to evaluate large chroma noise which can be recognized
through the minus before the σ2(b∗) item in formula (4). Figure
4 shows the examples of the two kinds of visual noise, pattern a)
is a manually tuned result which has less noise in our eyes than
pattern b) and c), but both (b) and (c) may correspond to smaller
error values in the CPIQ VN metric calculated by the formula (4).
Therefore, the update for the CPIQ VN metric is necessary.

The basic idea to update the VN metric is to only focus on
the more noisy regions instead of all the pixels in the uniform
gray pattern, through this, the VN metric will be more sensitive to
the impulse sharp noise. Additionally, the error caused by chroma
noise can be reduced by combining the VN metrics in the ISO and
CPIQ standards together, since the ISO VN metric has the ability
to evaluate the chroma noise by positive summing the noise in
both the luminance and the two chroma channels. The formula of
the objective ISO VN metric is

ISOV N = σL∗ +0.852σU∗ +0.323σV ∗ , (10)

where, ISOV N is calculated in L∗U∗V ∗ color space, σL∗ , σU∗ and
σV ∗ are the standard deviations in the L∗, U∗ and V ∗ channels
respectively.

Figure 2. Texture MTF of CPIQ standard: The red smooth curve in each

graph is the final texture MTF after curve fitting and the coarse texture MTF

curves are also showed in these graphs by other colors.

Figure 3. Block diagram of automatic tuning method.

(a) Manual tuning
gray pattern

(b) Large chroma
noise

(c) sharp impulse
noise

Figure 4. Examples of chroma noise and impulse sharp noise. (a): is the

manual tuning result of high gain (low light density) image, which has less

visual noise compare with (b) and (c) patterns; (b): has large chroma noise

but corresponds to a small VN value in CPIQ standard; (c): contains sharp

noise which can’t be reflected accurately in CPIQ VN metric.

In summary, the steps to update VN is shown as follows:
First, transfer the image to L∗U∗V ∗ color space in order to com-
bine with ISO VN metric

L∗ =

{
( 29

3 )3Y/Yn Y/Yn ≤ ( 6
29 )

3

116(Y/Yn)
1
3 −16 Y/Yn > ( 6

29 )
3 ,

u∗ = 13L∗ · (u′−u′n),

v∗ = 13L∗ · (v′− v′n),

(11)

where, u′ = 4X
X+15Y+3Z and v′ = 9Y

X+15Y+3Z .
Second, extract the largest errors in each of the three channels

εL∗ = L∗−µL∗ , εL∗max
= max(‖εL∗‖)

εU∗ =U∗−µU∗ , εU∗max
= max(‖εU∗‖)

εV ∗ =V ∗−µV ∗ , εV ∗max
= max(‖εV ∗‖)

, (12)

where, µL∗ , µU∗ , µV ∗ are the mean values and ε∗L , ε∗U , ε∗V are the
noise values in the L∗, U∗, V ∗ channels respectively; ε∗Lmax

, ε∗Umax
,

ε∗Vmax
indicate the largest noise values in the three channels.

Third, regard the half of ε∗Lmax
, ε∗Umax

, ε∗Vmax
as three threshold values

in the channels, and only focus on the pixels whose noise is larger
than the threshold value

σL∗ =
√

1
nL∗

(∑‖εL∗≥ 1
2 εL∗max‖

ε2
L∗), nL∗ = size(‖εL∗ ≥ 1

2 εL∗max
‖)

σU∗ =
√

1
nU∗

(∑‖εU∗≥ 1
2 εU∗max‖

ε2
U∗), nU∗ = size(‖εU∗ ≥ 1

2 εU∗max
‖)

σV ∗ =
√

1
nV∗

(∑‖εV∗≥ 1
2 εV∗max‖

ε2
V ∗), nV ∗ = size(‖εV ∗ ≥ 1

2 εV ∗max
‖)

,

(13)

Finally, we get the updated ISO VN metric by formula (10).
Since, the CPIQ standard already has a subjective VN metric, the
conversion from ISO VN to CPIQ VN is conducted in order to
take advantage of the CPIQ perception model, and the mapping
of data between the ISO VN and CPIQ VN is shown in Table 5.
According to the data in Table 5, it’s reasonable for us to assume
that there is a linear relationship between CPIQ VN and ISO VN.
As a result, we can get the mapping formula

QV N =CPIQV N = 0.2978 · ISOV N +0.2436, (14)

In the CPIQ standard, the subjective quality loss for visual
noise is calculated as

QLV N =

{
0 QV N ≤ 0.319

QV N−a
b − c×(1+b× QV N−a

c )

b2 QV N > 0.319
, (15)
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Table 5: mapping data between ISO and CPIQ VN metrics

ISO objec-
tive visual
noise

CPIQ ob-
jective
visual noise

ISO objec-
tive visual
noise

CPIQ ob-
jective
visual noise

2.1095 0.6129 3.481 1.6293
1.3535 0.3627 2.1633 1.2587
1.1376 0.5107 9.3344 2.071
0.7297 0.2831 5.8191 1.6754
4.2659 1.3252 4.8333 1.9011
2.7734 1.0016 2.9023 1.4957
2.1395 1.1681 9.8664 2.1163
1.2531 0.7692 3.9274 1.3486
7.239 1.8486 1.8468 0.761
4.6111 1.4794 0.9046 0.3336

Similarly, the subjective quality losses for eSFR and TA is ex-
pressed as

QL =
0.00336−2.34B+164B2−192B3 +16.3B4

1−0.0866B+0.968B2−2.31B3 , (16)

where

B =

{
0.886−Q Q≤ 0.886

0 Q > 0.886
, (17)

and Q can be slanted-edge SFR or texture acutance getting from
CPIQ standard.

The CPIQ standard also provides a perception model which
contains seven metrics, we borrow this model but only use three
metrics (VN, eSFR, TA) which are relate with image noise and
sharpness, so that the final perception model can be expressed as

QL = [(QLV N)
nmax +(QLSFR)

nmax +(QLTA)
nmax ]1/nmax ,

nmax = max(QLV N ,QLSFR,QLTA),
(18)

where, QLV N , QLSFR, QLTA are the metrics for updated VN,
eSFR and TA.

B. Optimization Process
With the perception model, which evaluates the image qual-

ity, already generated, the next important step is to develop an
optimization method to find the optimal tuning parameters. Tradi-
tional optimization methods fail for the automatic tuning problem
since there are infinite local minimums. Besides, the simulator,
which spends dozens of seconds to generate a single image, has a
strong impact on optimization efficiency. As a result of that, two
problems are encountered if we use the traditional optimization
methods (e.g., Gradient Descent): 1). It’s difficult for us to search
the global minimum because of infinite local minimums. 2). The
optimization process costs too much time caused by the large cal-
culation and slow simulator. A special optimization method must
be generated which can find the optimal parameters in a short
time.

For camera tuning, different tuning parameters will generate
different images. However, a small change of one parameter can

only affect the image quality slightly and it is difficult for human
eyes to distinguish the difference. This motivated us to quantiza-
tion of the tuning parameters. The following are the detailed steps
of the specific optimization method for automatic tuning:
First, default the feasible region of each parameter based on our

Figure 5. Quantization of the tuning parameters.

manual tuning experience (shown in Fig. 5). As shown in Fig. 5,
each color box means a tuning parameter, and the WNR block
contains ten denoise scale parameters (Four for the luminance
channel and six for the chroma channel corresponding to differ-
ent frequencies), eight denoise edge softness parameters (Four for
the luminance channel and four for chroma channel correspond-
ing to different frequencies), ten denoise weight parameters (Four
for the luminance channel and six for the chroma channel corre-
sponding to different frequencies). According to our manual tun-
ing experience, let the green boxes express the parameters with a
feasible region of [0,16], let the blue boxes express the parameters
with a feasible region of [0,32], and let the yellow boxes express
the parameters with a feasible region of [0,1].

Figure 6. 2-D example of searching strategy. Start from a random initial

point and optimize the parameters dimension-by-dimension.

By performing a quantization for each parameter, the contin-
uous optimization problem is converted to a discrete optimization
problem. In this project, we chose seventeen discrete uniform val-
ues for each parameter (shown in Fig. 5) to reduce the complex-
ity of optimization, as a result of that, there are 1728 > 2× 1034

combinations in all. Though the problem is already transferred to
a discrete optimization problem, the computation complexity is
still too high to efficiently search all combinations for the optimal
solution.

Instead of exhaustively searching for the optimal solution,
our searching strategy optimizes the parameters dimension-by-
dimension. This process can be explained through a simple 2-D
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example shown in Fig. 6. In the example, there are five discrete
feasible values in each dimension and the loss errors of perception
model are shown in the figure corresponding to each combination
of the two parameters . Our search strategy starts from a random
point, such as the (x0,x1) = (0,0) point, searches all values in one
dimension at one time and then chooses the parameters which cor-
responds to a minimum loss error of the perception model. Then,
update the parameter in current dimension and process the next
dimension until the error metric converges to the minimum value.

This method, which is related to the searching over of all
dimensions, can not guarantee our result is the global minimum
however. In order to get the approximate optimum, we borrow the
idea of Particle Swarm Optimization (PSO) algorithm, instead of
generating a single initial point randomly, we generate a group of
initial points randomly and search from them at the same time,
then assume the parameters corresponding to the smallest mini-
mum error is the final optimal solution.

Result
With the automatic tuning method shown above, the tuning

parameters are iteratively optimized. Figure 7 shows one exam-
ple of the optimization process. As shown in this figure, the er-
ror metric of perception model keeps on reducing, meaning that
the image quality increases until the optimization algorithm con-
verges to the minimum value. The comparison between manual

Figure 7. Example of optimization process.

tuning and automatic tuning methods with different light densi-
ties are shown in Fig.8. The automatic tuning can get similar or
even better image quality in some cases than the manual tuning
method. On the other hand, manual tuning costs several works
to get the reasonable tuning parameters, but the automatic tuning
method can get the optimal parameters in several hours.

Conclusion
In this paper, we proposed and implemented an automatic

tuning method. Meanwhile, we developed three different part of
this algorithm. First, we improved the CPIQ standard metrics for
better evaluation of image quality. Second, we developed a per-
ception model for WNR automatic tuning. Third, we introduced
a optimal searching strategy for automatic tuning. The automatic
tuning method presented here is still a simple method, and there is
still much work left to be done in the future to improve the auto-
matic tuning method. Such as increasing the accuracy of the per-
ception model, optimizing the optimization strategy, and reducing
the computation time. But according to experimental results, our
method achieves a promising result and the method can converge
within a reasonable period of time. It also proves that automatic

(a) Comparison between manual tuning and automatic tuning results
with 2 gain illuminant

(b) Comparison between manual tuning and automatic tuning results
with 8 gain illuminant

(c) Comparison between manual tuning and automatic tuning results
with 16 gain illuminant

(d) Comparison between manual tuning and automatic tuning results
with 32/ 64 gain illuminant

Figure 8. Comparison between manual tuning and automatic tuning meth-

ods with different light intensities.
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tuning of camera blocks is viable and can replace manual tuning
in the future.
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