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Abstract 

Recently, various deep-neural-network (DNN)-based approa-

ches have been proposed for single-image super-resolution (SISR). 

Despite their promising results on major structure regions such as 

edges and lines, they still suffer from limited performance on 

texture regions that consist of very complex and fine patterns. This 

is because, during the acquisition of a low-resolution (LR) image 

via down-sampling, these regions lose most of the high frequency 

information necessary to represent the texture details. In this paper, 

we present a novel texture enhancement framework for SISR to 

effectively improve the spatial resolution in the texture regions as 

well as edges and lines. We call our method, high-resolution (HR) 

style transfer algorithm. Our framework consists of three steps: (i) 

generate an initial HR image from an interpolated LR image via 

an SISR algorithm, (ii) generate an HR style image from the initial 

HR image via down-scaling and tiling, and (iii) combine the HR 

style image with the initial HR image via a customized style 

transfer algorithm. Here, the HR style image is obtained by down-

scaling the initial HR image and then repetitively tiling it into an 

image of the same size as the HR image. This down-scaling and 

tiling process comes from the idea that texture regions are often 

composed of small regions that similar in appearance albeit 

sometimes different in scale. This process creates an HR style 

image that is rich in details, which can be used to restore high-

frequency texture details back into the initial HR image via the 

style transfer algorithm. Experimental results on a number of 

texture datasets show that our proposed HR style transfer 

algorithm provides more visually pleasing results compared with 

competitive methods. 

 
1. Introduction 

The aim of single-image super-resolution (SISR) algorithm is 

to recover a high-resolution (HR) image from a single low-

resolution (LR) image [1]. Although the SISR problem inherently 

ill-posed, many valuable algorithms have been presented for 

computer vision and image processing applications such as 

surveillance imaging, medical imaging, or ultra-high-definition 

(UHD) image generation where more image details are required. 

Early methods include simple and fast interpolation-based scheme 

with bicubic or Lanzcos filter [2]. For better performance, more 

advanced schemes using statistical image priors [3]-[7] or internal 

patch recurrence [8], [9] were also introduced. 

Meanwhile, sophisticated machine learning based schemes 

have been widely used to learn the relationship from LR to HR 

patches. Neighborhood embedding approaches [10], [11] up-

sample a given LR image patch by finding similar LR training 

patches in a low dimensional manifold and combining their 

corresponding HR patches for reconstruction. Sparse-coding (or  
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Figure 1. Our high-resolution style transfer (HRST) based SISR method 
compares favorably with a representative related work [19] on texture region 
(up-sampling factor is 4.). 

dictionary learning) approaches [12]-[14] use a learned compact 

dictionary on the basis that natural patches can be represented 

using sparse activations of dictionary atoms. Random forests 

approaches [15] directly formulate SISR as a regression problem, 

which can avoid complex and time-consuming training of a sparse 

dictionary. 

Recently, various deep learning-based approaches via con-

volutionnal neural networks (CNN) were proposed with excellent 

performance. Dong et al. [16], [17] showed that CNN could be 

successfully applied for SISR. This CNN method, which we call 

SRCNN, used a three layer convolutional network and trained in 

an end-to-end manner to learn a mapping from interpolated LR 

image to original HR image. To further improve the performance 

on both accuracy and speed, the authors extended their work to 

enable the network to learn the mapping from LR to HR image 

directly, rather than from the interpolated LR image [18]. Since up-

sampling is only performed in the last layer of the network, the 

method can avoid expensive computations in the HR dimension. 

Kim et al. [19] presented a highly performant architecture 

which consists of very deep convolutional network of 20 layers. 

Since the deep networks lead to enlargement of receptive fields 

that can take a large image context into account, the method  
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Figure 2. (a) Initial HR image enhanced from the interpolated LR image via a SISR, (b) various results obtained by down-scaling and tiling the initial HR image 
based on scaling factors ranging from 0.2 to 0.8, and (c) original HR image. In terms of texture detail representation, the result with scaling factor 0.4 is most 
similar to the original image. The yellow boxes in (b) denote down-scaled ones of initial HR image. 

achieved state-of-the art performance with a large margin. They 

also presented a novel residual learning approach and showed that 

it is more favorable in training the deep layers than a non-residual 

based one. Meanwhile, to reduce the number of convolutional 

parameters while keeping the large receptive fields, the authors 

proposed a different architecture based on deeply recursive 

convolutional network [20], which showed comparable perfor-

mance to [19]. 

Despite the promising results of the recent SISR algorithms, 

compared with original HR image, they still show overly smoothed 

results and/or lack of high-frequency details, especially on texture 

regions (see Fig. 1(a)-(c).). In an attempt to resolve this problem, 

Johnson et al. [21] suggested using perceptual loss, instead of 

conventional mean squared reconstruction error (MSE), and Ledig 

et al. [22] proposed a notable SR framework combined with 

generative adversarial network (SRGAN). Even though 

quantitative performance of these methods, such as peak signal-to-

noise-ratio (PSNR) or structural similarity (SSIM), is inferior to 

competitive methods, they delivered visually improved HR images. 

Meanwhile, Gatys el al. [23] presented a very interesting 

approach on artistic image generation, called style transfer 

algorithm. Based on high-level feature maps extracted via pre-

trained VGG networks [24], this algorithm synthesizes a style of 

an artwork to a content image, of an arbitrary photograph, while 

preserving the structure of the content image. 

Inspired by this artistic image generation, we were wondering 

if we might apply this style transfer algorithm to generate the 

texture-enhanced image. In other words, if we can obtain a 

satisfactory level of HR texture image, even if the image is 

different from the original HR image, we can regard the obtained 

image as a style image and combine it with the input content image 

to generate a texture-enhanced HR image. 

Based on this motivation, we present a novel texture 

enhancement framework for SISR. We call our proposed method, 

HR style transfer (HRST) algorithm. As shown in Fig.1, our 

proposed HRST algorithm provides more visually pleasing results 

compared to the representative state-of-the-art SISR method [19]. 

The remainder of this paper is organized as follows. We 

introduce the observation of our method in Section II. Section III 

describes the proposed HRST-based SR framework in detail. In 

Section IV, we provide experimental results with qualitative and 

quantitative analyses on 100 texture images. We then discuss the 

robustness of the proposed method and the detailed method for 4K 

image SR in Section V. Finally, we draw the conclusion in Section 

VI. 

 

 

2. Observation 
It is a very challenging problem to recover the finer details of 

texture regions when we super-resolve at a large up-sampling 

factor (over  4). As shown in Fig. 1(a)-(c), the current algorithm 

only sharpens the lines and edges present in the interpolated LR 

image. However, it cannot effectively restore the high-frequency 

details lost by the down-sampling used to create the LR image. 

To address this issue, we use the observation that texture 

regions tend to be comprised of visually very similar patches of 

various sizes. Based on this idea, we down-scale and repetitively 

tile the input image. This process creates a texture map we call an 

HR style image that is very similar in feel to the original HR image 

(See Fig. 2.). Here, to better correlate the image obtained via 

down-scaling and tiling with the original HR image, SR version of 

the interpolated LR image via a SISR method, namely initial HR 

image, may be utilized as an input image, instead of the 

interpolated LR image itself. 

Then, we take the HR style image and combine it feature-wise 

with the initial HR image to generate a texture-enhanced HR image. 

This is different from a simple texture mapping process which just 

overlays one image onto a different image. Instead, our method 

searches both the initial HR image and the HR style image from 

low-level to high-level feature space for similar features. If 

matches are found, it strengthens them. These features are similar 

in terms of the correlation in feature space that is invariant to the 

spatial location, scale or rotation. 

 

3. Proposed Algorithm 
Based on the observation detailed above, we propose a texture 

enhancement framework for SISR, HRST algorithm. As shown in 

Fig. 3, the proposed framework consists of three steps: (i) initial 

enhancement to generate an initial HR image from an interpolated 

LR image via an SISR algorithm, (ii) HR style image generation 

via down-scaling and tiling, and (iii) texture enhanced HR image 

generation by combining the HR style image with the initial HR 

image via a customized style transfer algorithm. In the initial 

enhancement step, an existing state-of-the art SISR algorithm [19] 

is adopted to obtain the best initial HR image. 

The detail procedures based on the interpolated LR and initial 

HR images are presented as follow. 
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Figure 3. Overall diagram of the proposed texture enhancement framework.

As shown in Fig. 3, the HR style image is generated by down-

scaling the initial HR image and then repetitively tiling it into an 

image of the same size as the HR image. By using the HR style, we 

generate the final HR image with improved HR texture details, 

while maintaining the global characteristics of the initial HR image 

such as location and shape of major structures. To realize this, we 

adopt the style transfer algorithm [23], and customize it for better 

performance. 

In the customized style transfer algorithm, we mainly perform 

two adjustments: (i) increase the number of layers used for content 

loss calculation, and (ii) utilize the initial HR image as an initial 

estimate for the final HR image. 

As in [23], we performs the joint minimization of style and 

content losses in feature space to obtain the final HR image, x̂  by 

combining the HR style image with the initial HR image, which 

can be written as, 

 

   cxsxx
x

,,minˆ
contentstyle

LL   .                      (4) 

 

Here,  and  are the weighting factors of style and content losses, 

s tyle
L  and 

content
L , respectively. s and c are the HR style and the 

content image respectively for 
s tyle

L  and 
content

L  calculation. x 

denotes the intermediate result image for the final HR image. 

For clear description of 
s tyle

L  and 
content

L  in feature space, we 

define the feature maps in the l-th layer from an image, z as 
ll
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size of a feature map. l
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) denotes the i-th (or j-th) 

feature map at a pixel position k for image z. To extract the feature 

maps, we utilize the pre-trained VGG-16 network [24], which 

consists of 13 convolutional and 5 pooling layers. 

In 
s tyle

L , to analyze the style of z in feature space, we utilize 

the Gram matrix, which can measure correlations between two 

arbitrary feature maps at a certain layer, written as 
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To force the Gram matrix of x, l
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G
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 similar to that of s, l
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, the 

energy functional for the l-th layer can be formulated as below, 
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. This property can be advantageously exploited in a 

way that the HR style image obtained through the down-scaling 

and tiling process is not spatially consistent with the original HR 

image. Since 
s tyle,l

E  does not make l

ik
F

,x
 (or l

jk
F

,x
) similar to l

ik
F

,s
 

(or l

jk
F

,s
), it can implicitly prevent to transfer spatially-

corresponding but unwanted image patterns of the s to the x. 

Instead, the 
s tyle,l

E  makes it possible to enhance the corresponding 

features of x if only similar correlations in feature space, 

irrespective of spatial location, scale or rotation, are found in both 

x and s. 

To reflect all the texture information of the s from low-level 

to high-level feature space, we measure the 
s tyle,l

E  for each layer, 

and take the weighted summation of the energy functionals for 

s tyle
L . This is summarized as, 
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Figure 4. SR results on a forest image with up-sampling factor of 4. (a) The original image, and resultant images (b-g) via (b) bicubic interpolation, (c) Dong, et al.’s 
[16], [17], (d) Wang, et al. [28].’s, (e) Kim et al.’s [19], (f) the proposed HRST based SR algorithm. (g) the HR style image at a scaling factor of 0.4 used for (f). 

 
Figure 5. SR results on a forest image with up-sampling factor of 4. (a) The original image, and resultant images (b-g) via (b) bicubic interpolation, (c) Dong, et al.’s 
[16], [17], (d) Wang, et al. [28].’s, (e) Kim et al.’s [19], (f) the proposed HRST based SR algorithm. (g) the HR style image at a scaling factor of 0.7 used for (f)

Here, wl,style is the weight factor to adjust contribution of each layer 

to the style loss, and 
s tyle

  is set of layers for style loss calculation. 

 Meanwhile, to explicitly prevent that x becomes quite 

different from c, which is the initial HR image, the energy 

functional for l-th layer can be formulated as below, 
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l
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l
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FFE
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Here, 
s tyle

  denotes set of layers for content loss calculation. 

 To extend the constraints to all ranges from mid-level to high-

level feature space, instead of using (8) for 
content

L  as in [23], we 

define 
content

L  as below, 

 

  



cont ent

content,content,content
;,

l

ll
EwlL hx .                      (9) 

 

Here, wl,content is the weight factor to adjust contribution of each 

layer to the content loss, and 
content

  is set of layers for content loss 

calculation. 

(a) Original

(b) Bicubic

(e) VDSR (f) HRST

(c) SRCNN (d) SCN

(g) HR style

(Scaling factor of 0.4)

PSNR/ SSIM/ DBRISQUE

21.495/ 0.2758/ 27.019 21.664/ 0.3321/ 20.727 21.640/ 0.3365/ 17.386

21.691/ 0.3369/ 19.627 18.034/ 0.1074/ 10.792

(a) Original

(b) Bicubic

(e) VDSR (f) HRST

(c) SRCNN (d) SCN

(f) HR style

(Scaling factor of 0.7)

34.324/ 0.8811/ 31.232 35.559/ 0.9070/ 24.058 35.786/ 0.9111/ 22.152

35.833/ 0.9109/ 21.818 31.429/ 0.8279/ 12.556

PSNR/ SSIM/ DBRISQUE
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To find the optimum solution, x̂  in (4), we adopt a 

representative gradient-based optimization, L-BFGS method [25], 

which provides the solution with a fast convergence. In this 

method, the gradient of (4) with respect to x can be determined 

based on x /
style

L  and x /
content

L  obtained via a standard error 

back-propagation [26]. 

 Meanwhile, it should be emphasized that we initialize x with 

c, instead of Gaussian random noise that is used in the existing 

style transfer algorithm [23]. This is an important detail not only to 

prevent the final HR image from being generated differently each 

time but also to help to preserve the original structure better. 

Furthermore, it leads to fast convergence. 

 

4. Experimental Results 
We first describe the parameter settings used to obtain the 

proposed results. The results are obtained by utilizing the style 

feature maps on 5 convolutional layers, ‘conv1’, ‘conv3’, ‘conv5’, 

‘conv8’, and ‘conv11’ (wl,style = 1/5 for those layers), while 

utilizing the content feature maps on 3 convolutional layers, 

‘conv7’, ‘conv10’, and ‘conv13’ (wl,content = 1/3 for those layers). 

Using intermediate and higher level layers for the content feature 

maps helps to maintain the global and apparent structures, while 

allowing fine structures to be enhanced by the style feature map. 

The ratio  /  and the number of iterations are set to 1  104 and 

300, respectively. To verify the performance of the proposed 

texture enhancement algorithm, we prepared 100 texture images. 

These images were cropped to a size of 256  256 pixels from 4K 

images. The scaling factors determined by (3) ranged from 0.4 to 

0.75. 

We should mention that the images in this section are not 

same to those used in the subsection 3. All experiments are 

performed with a down-sampling factor of 4. 

For performance comparison, we emphasize that the goal of 

this work is not to replicate the results of state-of-the-art PSNR or 

SSIM, but instead to demonstrate the perceptually improved visual 

quality. To quantify the visual improvement, we measure the 

difference of BRISQUE [27] metric compared with original HR 

image, notated as D BRISQUE, the metric, which is known to 

have a high correlation with human subjective evaluation. 

We compared the performance of the proposed HRST method 

to the bicubic-interpolation and the three different methods: the 

super-resolution CNN (SRCNN) [18], deep networks for super-

resolution with sparse prior (SCN) [28], and very deep CNN-based 

super-resolution (VDSR) [19], which are currently the best 

performing CNN-based approaches, among the algorithms that 

have publically released the available code. In addition, for 

reference, we show the generated HR style images used for the 

proposed HRST.  

 Visual comparison of the super-resolved images is given in 

Figs. 4 and 5. For the images, the selected scaling factors were 0.4 

and 0.7, respectively. We can note that the existing SISR 

algorithms poorly restore fine and detail textures, and generally 

provide overly-smoothed results, although they successfully 

enhance coarse and apparent structures. In contrast, the proposed 

algorithm provides finer and sharper texture representations 

without introducing noticeable artifacts. 

 

 

 

5. Conclusion 
In this paper, we present a novel texture enhancement 

framework for SISR via HR style transfer algorithm. We 

effectively improve the spatial resolution on the texture regions as 

well as edge and line regions, which is yet unresolved by existing 

state-of-the-art SISR algorithms. For the texture enhancement, we 

first obtain an initial HR image from the interpolated LR image, 

and then generate the HR style image from the initial HR image 

via down-scaling and tiling process. By properly combining 

semantic information of both the HR style and the initial HR 

images via the customized style transfer algorithm, we finally 

generate the texture-enhanced HR image. Experimental results 

demonstrate that the proposed algorithm can provide realistic and 

more visually pleasing SR images with finer and sharper textures, 

compared to the existing SR algorithms, without introducing 

undesirable artifacts. 
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