
Image Systems Simulation for 360◦ Camera Rigs
Trisha Lian, Joyce Farrell, Brian Wandell
Stanford Center for Image Systems Engineering, Stanford, CA

Abstract
Camera arrays are used to acquire the 360◦ surround video

data presented on 3D immersive displays. The design of these ar-
rays involves a large number of decisions ranging from the place-
ment and orientation of the cameras to the choice of lenses and
sensors. We implemented an open-source software environment
(iset360) to support engineers designing and evaluating camera
arrays for virtual and augmented reality applications. The soft-
ware uses physically based ray tracing to simulate a 3D virtual
spectral scene and traces these rays through multi-element spher-
ical lenses to calculate the irradiance at the imaging sensor. The
software then simulates imaging sensors to predict the captured
images. The sensor data can be processed to produce the stereo
and monoscopic 360◦ panoramas commonly used in virtual re-
ality applications. By simulating the entire capture pipeline, we
can visualize how changes in the system components influence the
system performance. We demonstrate the use of the software by
simulating a variety of different camera rigs, including the Face-
book Surround360, the GoPro Odyssey, the GoPro Omni, and the
Samsung Gear 360.

Introduction
Head mounted visual displays can provide a compelling and

immersive experience of a three-dimensional scene. Because the
experience can be very impactful, there is a great deal of interest
in developing applications ranging from clinical medicine, behav-
ioral change, entertainment, education and experience-sharing [1]
[2].

In some applications, computer graphics is used to gener-
ate content, providing a realistic, but not real, experience (e.g.,
video games). In other applications, the content is acquired from a
real event (e.g., sports, concerts, news, or family gathering) using
camera arrays (rigs) and subsequent extensive image processing
that capture and render the environment (Figure 1).

The design of these rigs involves many different engineering
decisions, including the selection of lenses, sensors, and camera
positions. In addition to the rig, there are many choices of how
to store and process the acquired content. For example, data from
multiple cameras are often transformed into a stereo pair of 360◦

panoramas [3] by stitching together images captured by multiple
cameras. Based on the user’s head position and orientation, data
are extracted from the panorama and rendered on a head mounted
display. There is no single quality-limiting element of this system,
and moreover, interactions between the hardware and software
design choices limit how well metrics of individual components
predict overall system quality. To create a good experience, we
must be able to assess the combination of hardware and software
components that comprise the entire system.

Building and testing a complete rig is costly and slow; hence,
it can be useful to obtain guidance about design choices by using

Figure 1. Overview of the hardware and software components that com-

bine in an camera rig for an immersive head-mounted display application.

(A) The simulation includes a 3D spectral scene, the camera rig definition,

and the individual camera specifications. This simulation produces a set of

image outputs. (B) The images are then processed by a series of software

algorithms. In this case, we show a pipeline that produces an intermediate

panorama representation and the viewport calculations that render an image

dependent on the users head position.

a simulation of the system. This paper describes software tools
that simulate controlled 3D realistic scenes and image acquisi-
tion systems, in order to generate images produced by specific
hardware choices. These images are the inputs to the stitching
and rendering algorithms. The simulation enables engineers to
explore the impact of different design choices on the entire imag-
ing system, including realistic scenes, hardware components, and
post-processing algorithms.

Software Implementation
The iset360 software, which models the image capture

pipeline of 360 camera rigs, has portions in MATLAB and
portions in C++. The simulation software is freely avail-
able in three repositories within the ISET GitHub project:
https://github.com/ISET 1.

Figure 2 and Figure 3 summarize the initial stages of the
workflow. The first portion of the code creates realistic 3D scenes
and calculates the expected sensor irradiance given a lens descrip-
tion. To do so, we start with a 3D, virtual scene that is constructed
using 3D modeling software (e.g. Blender or Maya). The scene
is converted into a format compatible with PBRT [4], which is
implemented in C++.

PBRT is a quantitative computer graphics tool that we use
to calculate the irradiance at the sensor as light travels from the
3D scene, through the lens, and onto the sensor surface. We aug-
mented the PBRT code to return multispectral images, model lens
diffraction and simulate light fields [5]. To promote platform in-

1The three repositories are iset360, iset3d, and isetcam

1IS&T International Symposium on Electronic Imaging 2018
Photography, Mobile, and Immersive Imaging 2018 353-1

https://doi.org/10.2352/ISSN.2470-1173.2018.05.PMII-353
© 2018, Society for Imaging Science and Technology



Figure 2. The iset360 software uses computer graphics to define a 3D

scene spectral radiance and calculate how that passes through the lens to

become the sensor spectral irradiance. (A) The scene geometry is shown

as a set of meshes. The camera position and lookAt direction are indicated

by the red icon. Example object textures are shown in the panel at the left.

(B) The scene radiance is traced through a multi-element spherical lens to

form the sensor irradiance. The lens file describe the surface positions, cur-

vatures, apertures and wavelength-dependent indices of refraction. A wide-

angle lens prescription is shown above.

dependent sharing, the augmented PBRT code is compiled into
a machine-independent Docker container 2. This portion of the
code is in the iset3d repository.

A small library of pre-converted and formatted scenes from
[6] are included with the software. The scene files describe the
size and distance of objects in meters, material properties such as
image textures and BRDFs, and the placement and type of lights.
In addition, one can specify the spectral power distribution of the
lights, as well as the spectral reflectance of objects. Many of these
values can be changed programmatically once the scene has been
imported into the iset360 software.

In the expected usage, the user controls the iset360 simula-
tion pipeline using a Matlab script. Typically, the user imports the
PBRT scene data using the command recipe = piRead(sceneFile).
The return is a Matlab object (recipe) whose parameters specify
the scene data and camera settings. We loop through each camera
in the rig, setting its position, lens and sensor parameters, before
calculating its sensor irradiance (irradiance = piRender(recipe),
units: photons/s/nm/m).

Figure 4 summarizes the final portion of the code that con-
verts the sensor irradiance into the expected image (rgb) data. The
format of the sensor irradiance data is compatible with isetcam,
Matlab code which models the geometric, colorimetric, and elec-
trical properties of the pixels and sensor [7]. A large number of
parameters can be specified by adjusting the iset360 recipe and
the isetcam sensor parameters. These range from scene properties
(e.g., lighting, materials, geometry), to camera array (positions,
lens prescriptions), to sensor properties (e.g., pixel size, color fil-
ter array, sensor and pixel noise, etc.)

For example, we specify a camera position and viewing di-
rection using a LookAt parameterization which describes an ori-
gin (from), a target (to) and an up direction (up). We describe

2Available at: https://hub.docker.com/r/vistalab/pbrt-v3-spectral/

Figure 3. The second stage of the software uses a ray-tracer to compute

the sensor irradiance which is represented here by an image. The sensor

irradiance is multispectral; above we show the irradiance curve for a single

pixel, as well as the depth map generated by the renderer.

Figure 4. The final stage of our software models the sensor and ISP prop-

erties of the simulated camera. (A) The color filter transmittance is shown

for the simulated scene. (B) The raw sensor data overlaid with the Bayer

filter pattern for a small portion of the sensor is shown. (C) The final image

(rgb) after image processing. These images can eventually be passed to a

post-processing pipeline, as shown in Figure 1.

multi-element lenses by their component positions, curvatures,
thicknesses, diameters, and wavelength-dependent indices of re-
fraction. The toolbox includes a small library of spherical lenses,
and additional ones can be added when the lens prescription is
known. Within the iset360 camera structure, we specify the aper-
ture diameter and the position of the sensor. Within the isetcam
structures we specify the color filter array, pixel sizes, and elec-
trical noise. The iset360 repository includes software that creates
the images included here and shows how the functions are called
and parameters are set.

There is one additional feature of the simulation environment
that may prove important. It is possible to create ground-truth
pixel-level representations of the depth map as well as the perfect
viewport image. Ultimately, such information may provide an op-
portunity to improve stitching and viewport rendering algorithms.

Computation time is largely consumed by the ray-tracing

2
353-2

IS&T International Symposium on Electronic Imaging 2018
Photography, Mobile, and Immersive Imaging 2018



Figure 5. Simulation of the Facebook Surround360 camera rig. (A) An image of the rig and list of simulation parameters for the lens and sensor. (B) The

camera positions (blue dots) and lookAt directions (red). Cameras 1-14 are positioned around the circumference. Cameras 0, 15 and 16 are pointing toward the

ceiling and floor. (C) Images from four cameras on the circumference (9,10,11,2) and two fisheye cameras (0,15).

step; the other computations take less than a minute, but it takes
about 2 hours to render a 4 megapixel image on an 8-core ma-
chine. The rendering time for the whole rig can be minimized us-
ing parallel machines for each camera. To simplify this, we made
the computation compatible with Google Cloud and implemented
a Matlab toolbox3 to set up the connection to Google Cloud. Once
the toolbox is initiated with a user’s account, the render command
can be invoked so that each camera image is rendered in parallel
on the cloud, in its own docker container, as managed by kuber-
netes (k8s). Each image renders in about an hour, but there is
little penalty for multiple images. For example, a set of sixteen
4-megapixel images from a camera rig can be rendered in parallel
in less than an hour, corresponding to about 4 minutes per image
to simulate the rig.

Results
We created iset360 scripts to model four different camera

rigs. We have access to some but not all of the parameters. To cre-
ate the simulations we used the available information, and when
we could not find an exact part we used components with similar
properties. For example, we chose lens prescriptions from [8] that
matched the field of view of each camera. We also simulated the
correct sensor resolution and size and approximated the camera
positions. Key rig parameters are listed in Figures 5-8; the ap-
proximations can become more exact as we obtain more vendor
information.

The scripts included in the iset360 github repository specify
the full set of parameters needed to generate raw sensor data. To
simplify the visual presentation of the images, we converted the
raw sensor data to sRGB format using the default image process-
ing settings in the isetcam toolbox.

3https://github.com/ISET/isetcloud

Facebook Surround360
Facebook has published the specifications of the Sur-

round360 rig along with software that implements the stitching
algorithm [9]. The rig has two sets of cameras: The first set com-
prises 14 cameras placed in a circle around a 460 mm diameter
circle. Each camera has a wide-angle lens. The second set com-
prises three cameras with fisheye lenses placed on the top and
bottom of the rig (Figure 5).

We simulated the first set of cameras using a wide angle lens
with a FOV of 112◦ and a focal length of 6 mm to best match the
actual wide-angle lens on the Surround360 (Sunex DSL318, FOV
= 110◦, Focal length = 7.0 mm). Due to limitations on the wide-
angle lens prescriptions available to us, we used a relative aperture
of (f/8) which differs from the Sunex (f/2.4). We simulated a 4.1
megapixel, 1” sensor with 5.5 um pixel size to match the Point
Grey Grasshopper 3 used in the Facebook Surround360.

In this configuration, there is substantial overlap in the field
of view between adjacent cameras. In principle, it is possible to
use such images as inputs to stereo algorithms and make depth
estimates of much the surrounding environment. The image pairs
are unlike many stereo rigs or the human visual system in which
the two eyes converge on a common point in the scene; in this rig
the LookAt directions of adjacent cameras diverge.

Furthermore, notice that the images in Cameras 9 and 10 -
as well many other examples - include objects with very different
intensities. Compensating for the difference in level and ambi-
ent illuminant color will be an important part of panorama con-
struction. Also, the unequal spatial resolution of the two fisheye
cameras are a potential source of difficulty in achieving a uniform
spatial resolution as the viewer looks around.

3IS&T International Symposium on Electronic Imaging 2018
Photography, Mobile, and Immersive Imaging 2018 353-3



Figure 6. Simulated images from the GoPro Odyssey rig. This rig consists

of 16 GoPro cameras arranged in a ring. Four images from adjacent cameras

are shown on the right. Other details as in Figure 5.

GoPro Odyssey
The GoPro Odyssey rig (Figure 6) consists of 16 cameras

(GoPro Hero) arranged in a ring with a diameter of roughly 300
mm, smaller than the Facebook Surround360. The GoPro Hero
sensor size is smaller than that of the Facebook sensor. To account
for this difference, we scaled the same 112◦ FOV wide-angle lens
used in the Surround360, to produce an image that matched the
smaller sensor size. Due to the extra cameras and smaller rig
radius, the images from the Odyssey rig overlap more than the
images captured on the Facebook rig, which may make stitching
more robust. The absence of the fisheye lens cameras limits the
ability to provide a good view when looking directly up or down.

Samsung Gear 360
The Samsung Gear 360 design (Figure 7) is very different

from the rings shown previously. This rig includes only two cam-
eras with fisheye lenses placed back to back. The camera field
of views do not overlap, and thus the stitching algorithm incor-
porated with the camera produces monoscopic panoramas, not
stereoscopic ones. The dual lenses on the Gear 360 have a FOV of

Figure 7. Simulated images from the Samsung Gear 360, which consists

of two camera with fish-eye lenses facing opposite directions.

180◦, however the fisheye lens prescriptions available to us have
a maximum FOV of 144◦, so the simulation is missing portion of
the image. Even with the full 180◦ the stitching algorithms for this
camera must compensate for the large geometric distortions and
inhomogeneous spatial resolution of the two fisheye lens images.

GoPro Omni
The GoPro Omni (Figure 8) has six outward facing cameras

placed on the surface of a cube. Like the Samsung Gear 360,
this rig is used to produce monoscopic panoramas. The simula-
tion uses a wide-angle lens with 112◦ FOV to match the sensor
size, while the actual GoPro camera has a slightly larger FOV of
122.6◦. Hence, the images in our simulation somewhat underes-
timate the overlap between images from adjacent cameras.

Discussion
The iset360 simulation images can be used in several differ-

ent ways. In one application, the user can evaluate how variations
in camera position that might arise during manufacturing would
affect the stitching algorithms performance. Similarly, the user
can evaluate how different lens choices affect the amount of data
available for the pipeline to generate viewports at challenging po-
sitions, such as the poles.

Iset3d includes methods that generate pixel-level specifica-
tions of the scene properties, such as the distance to each point
in the image. In addition, the simulation contains information on

4
353-4

IS&T International Symposium on Electronic Imaging 2018
Photography, Mobile, and Immersive Imaging 2018



Figure 8. Simulated images from the GoPro Omni rig which consists of 6

cameras arranged in a cube.

object locations, material properties and lighting. Such precise
information cannot be easily obtained when testing real rigs. This
information can support the at least two types of algorithm devel-
opment.

First, one can generate a perfect panorama directly from
the rays in the scene and compare it to a panorama generated
by stitching together images captured by a rig to see how accu-
rately the scene was reproduced. This information can be used
to evaluate the overall image quality and accuracy of the sys-
tem. Second, the raw sensor data and ground truth data can
be used with machine-learning methods, to derive stitching al-
gorithms that produce accurate stereo panoramas. For example,
one can simulate an ideal camera rig and produce a target stereo
panorama. Then one can train a network to learn the transforma-
tion from the rig under test to the ideal representation. Finally,
the iset360 methods permit the user to simulate the capture of ex-
actly the same test scene with different rigs. Comparisons of two
rigs with exactly the same scene is difficult to achieve with real
measurements. The simulation method enables the user to spec-
ify image quality and test targets and then to use the simulation to

evaluate two different rigs from the same conditions.

Author Biographies
Trisha Lian received her BS in Biomedical Engineering from

Duke University (2014) and is currently a PhD student in Electri-
cal Engineering at Stanford University. Her work has focused on
the development of simulation tools for novel camera systems, as
well as simulation of the human visual system.

Joyce Farrell is the Executive Director of the Stanford Center
for Image Systems Engineering and a Senior Research Associate
in the Department of Electrical Engineering at Stanford Univer-
sity. She received a doctorate from Stanford in 1981 and has
worked at several companies and research institutions, including
the NASA Ames Research Center, New York University, the Xerox
Palo Alto Research Center and Shutterfly.

Brian A. Wandell is the first Isaac and Madeline Stein Fam-
ily Professor. He joined the Stanford Psychology faculty in 1979
and is a member, by courtesy, of Electrical Engineering, Ophthal-
mology, and the Graduate School of Education. He is Director
of Stanfords Center for Cognitive and Neurobiological Imaging
and Deputy Director of Stanfords Neuroscience Institute. Wan-
dells research centers on vision science, spanning topics from vi-
sual disorders, reading development in children, to digital imag-
ing devices and algorithms for both magnetic resonance imaging
and digital imaging.

References
[1] L. M. Williams, A. Pines, A. N. Goldstein-Piekarski, L. G. Rosas,

M. Kullar, M. D. Sacchet, O. Gevaert, J. Bailenson, P. W. Lavori,
P. Dagum et al., “The engage study: Integrating neuroimaging, vir-
tual reality and smartphone sensing to understand self-regulation for
managing depression and obesity in a precision medicine model,” Be-
haviour research and therapy, 2017.

[2] J. Bailenson, Experience on demand : what virtual reality is, how it
works, and what it can do. New York: W.W. Norton & Company,
2018.

[3] S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo: Panoramic stereo
imaging,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 23, no. 3, pp. 279–290, 2001.

[4] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering:
From theory to implementation. Morgan Kaufmann, 2016.

[5] A. Lin, J. E. Farrell, and B. A. Wandell, “Spectral optics simulation
for rapid image systems prototyping: Ray-tracing, diffraction and
chromatic aberration,” in Applied Industrial Optics: Spectroscopy,
Imaging and Metrology. Optical Society of America, 2014, pp.
JW3A–2.

[6] B. Bitterli, “Rendering resources,” 2016, https://benedikt-
bitterli.me/resources/.

[7] J. Farrell, G. Ng, X. Ding, K. Larson, and B. Wandell, “A display
simulation toolbox for image quality evaluation,” Journal of Display
Technology, vol. 4, no. 2, pp. 262–270, 2008.

[8] W. J. Smith, Modern Lens Design (McGraw-Hill Professional Engi-
neering). McGraw-Hill Education, 2004.

[9] B. Cabral, “Introducing facebook surround 360: An
open, high-quality 3d-360 video capture system,” 2016,
https://code.facebook.com/posts/1755691291326688/introducing-
facebook-surround-360-an-open-high-quality-3d-360-video-capture-
system/.

5IS&T International Symposium on Electronic Imaging 2018
Photography, Mobile, and Immersive Imaging 2018 353-5


