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Abstract

Modern digital cameras have very limited dynamic range, which
makes them unable to capture the full range of illumination in
natural scenes. Since this prevents them from accurately pho-
tographing visible detail, researchers have spent the last two
decades developing algorithms for high-dynamic range (HDR)
imaging which can capture a wider range of illumination and
therefore allow us to reconstruct richer images of natural scenes.
The most practical of these methods are stack-based approaches
which take a set of images at different exposure levels and then
merge them together to form the final HDR result. However, these
algorithms produce ghost-like artifacts when the scene has mo-
tion or the camera is not perfectly static. In this paper, we present
an overview of state-of-the-art deghosting algorithms for stack-
based HDR imaging and discuss some of the tradeoffs of each.

Introduction
Natural scenes have a wide range of illumination and usually con-
tain very dark and very bright objects. Although our eyes can
accurately sense this large difference in light intensity—allowing
us to see dark and bright regions simultaneously—standard digital
cameras suffer from a very limited dynamic range and do not have
this capability. For example, a camera with an 8-bit imaging sen-
sor (which is common, especially for mobile cameras) can only
represent 255 distinct intensity levels between the darkest and
brightest portions of the image, which does not give us enough
bit-depth to represent detail in differently exposed regions.

Furthermore, imaging sensors are plagued by noise at low
light levels (where the signal-to-noise (SNR) ratio is poor) and
become saturated at high light levels (where the accumulator that
counts photons simply runs out of numbers), making it difficult
to recover the original scene intensity at each pixel from the fi-
nal image. Theoretically speaking, if the sensor had infinite bit-
depth (i.e., no quantization) and no noise, we could capture the
full illumination range in a scene by simply exposing the sensor
as long as possible while keeping the brightest region from be-
coming saturated. The result could then be simply scaled to any
desired exposure level without noise or quantization artifacts.

Unfortunately, real sensors are going to suffer from both
noise and coarse quantization levels for the foreseeable future,
which means that they cannot capture the full dynamic range of
many natural scenes. This fundamental limitation results in im-
ages that do not have the visual richness and detail of the natural
world. To address this problem, several technical solutions have
been explored. For example, custom camera hardware has been
proposed that will capture a wider dynamic range directly. These
include systems that have custom sensors (e.g., with different neu-
tral density filters over each pixel [33]) or use beam-splitters [43]
to capture differently exposed images simultaneously, which can
then be used to compute the final HDR result. Although some of
these systems have demonstrated impressive results, they are still
not widely available and are often quite expensive.

In this paper, we will focus instead on practical approaches
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(a) LDR input images (b) Ghosted HDR  (¢) Sen et al. [39]

Figure 1. (a) Stack of differently exposed images of a scene. The limited
dynamic range of the camera makes it unable to capture the interior and
exterior simultaneously, even though it was perfectly visible to the naked eye.
(b) High-dynamic range (HDR) image produced with the original merging
algorithm of Debevec and Malik [6] that leverages well-exposed information
from each image in the stack (see Eq. 1). Although the result contains well-
exposed detail in all regions of the image, there are objectionable ghosting
artifacts because of subject and camera motion while the stack was captured.
(¢) Result from the patch-based deghosting algorithm of Sen et al. [39]. This
result captured the full range of illumination without the ghosting artifacts. All
HDR results in this paper have been tonemapped for display.

to HDR imaging with standard image sensors. This is typically
done by capturing a stack of normal, low-dynamic range (LDR)
images at different exposures (known as an exposure stack),
which can then be merged together to produce the final result. For
example, we would take long exposures to capture all the detail in
the dark regions of the scene and short exposures to capture all the
bright details (see Fig. 1). However, because the images are taken
in a temporal sequence, there can be motion between them from
either dynamic objects or a moving camera, which results in ob-
jectionable ghosting artifacts in the final HDR image. The bulk of
this paper is dedicated for providing an overview of state-of-the-
art algorithms for deghosting these HDR images. We begin, how-
ever, by providing basic background on stack-based approaches
in the next section. Readers interested in more detail are referred
to other, longer overview papers on the subject [11, 38, 42].

Background on stack-based HDR imaging
The idea of combining differently exposed images together to
form an image with higher dynamic range is actually quite old.
Early photographers such as Hippolyte Bayard and Gustave Le
Gray were performing this technique in the mid 1800’s, combin-
ing differently exposed negatives to produce a print with signifi-
cant detail in both the bright and dark regions. In the context of
digital imaging, the modern stack-based HDR approaches were
first proposed by Madden [27] and later by Mann [30], but were
popularized by Debevec and Malik [6] with their seminal paper.
To understand how this process works, assume we acquire
a stack of N low-dynamic range images /,...,Iy with different
exposure times #q,...,ty. Our goal is to recover the incident ir-
radiance E (the amount of light power per unit area arriving on



the sensor), where the irradiance at pixel p is given by E(p). This
irradiance will be the same for all images assuming a static scene
and camera. The camera integrates this irradiance over the dif-
ferent exposure times and measures exposures Xi,...,Xy, where
each exposure is simply a linear function of incident irradiance
scaled by the exposure time: X (p) = E(p) - .

In order to make the images look better and model the hu-
man visual response, however, most cameras do not output the
X, exposures directly!, but rather apply a non-linear camera re-
sponse function f() to the exposure to get the resulting images:
It(p) = f(X;(p)). In order to perform the HDR reconstruction
process, we must undo this by first converting our input images
Iy,...,Iy to linear exposures Xj,...,Xy using the inverse of the
camera response function: X;(p) = f~'(I,(p)). Although this
requires the camera response function to be known, many ap-
proaches have been proposed to estimate it directly from the im-
age stack for static [6] or dynamic scenes [1, 14].

Once the exposures X; have been recovered, we then merge
them together and compute the estimated irradiance map E
by computing a weighted average of the measured irradiances
Ex(p) = Xi(p) /1 of each image:
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where we divide by the sum of the weights wy, to ensure they add
up to one (i.e., normalized), and the last equation is written in
terms of the input images using a function that maps LDR values
directly to HDR irradiance values: h(Ii(p)) = f~ ' (I(p)) /1.

To reduce the influence of over- or under-exposed pixels, De-
bevec and Malik [6] proposed a simple “triangle” function for the
weights: wy(p) = min(fi(p),255 — I (p)), assuming pixel values
in the range from O to 255. The resulting irradiance map E can
either be output as the final HDR result or tonemapped by apply-
ing a non-linear function for presentation on a low-dynamic range
display. Note that in this discussion, we ignored color channels
which are typically captured by a Bayer pattern which measures
different colors at each pixel and must be first be demosaiced to
get full RGB color. As observed by Tocci et al. [43], we must
perform merging prior to demosaicing as certain colors might be
saturated, causing discoloration artifacts if we merge afterwards.

A clever alternative to the standard HDR merge of Eq. 1 is
exposure fusion, proposed by Mertens et al. [31]. Exposure fu-
sion does not compute an HDR irradiance map, but rather directly
fuses the input low-dynamic range images I; to get another low-
dynamic range image / with well-exposed detail everywhere:
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Here, weights w; are computed by a product of contrast, satu-
ration, and well-exposedness metrics so that pixels in the input
images that do not meet these properties are weighted less or ig-
nored altogether. However, naive implementation of Eq. 2 does
not work, as all the images are at different exposure levels and
there will be visible seams where different images come together.

! An exception are RAW images, which are typically linear (no camera
response function applied) and so are equivalent to the exposures Xj.

To address this problem, exposure fusion blends the images by
first constructing a Laplacian pyramid of the input images [; and
a Gaussian pyramid of the weights wy. At each scale, the Lapla-
cian level of each image is multiplied by the Gaussian level of
the respective weight and summed over all images, producing a
Laplacian pyramid for the output which can then be reconstructed
to produce the final fused result. Exposure fusion can produce
nice images that do not require any tonemapping for display on
a low-dynamic range media. However, they have the limitation
that by definition an HDR image is never created. Therefore, it
cannot be used in situations where an HDR image is needed (e.g.,
lighting environment maps for rendering, post-production special
effects shots, for display on an HDR monitor, and so on).

Finally, so far we have proposed to change the exposure for
every image in the stack to capture the full dynamic range of the
scene. However, there is an alternative, stack-based approach for
HDR imaging known as burst HDR imaging that captures a se-
quence of equal, short-exposure images [16, 48]. Here, the ex-
posure is set short enough so that nothing in the image is satu-
rated, hence the only issues to deal with are noise and quantiza-
tion. These methods specifically address the noise by averaging
all the images in the stack together, effectively transforming the
HDR problem into a problem of denoising images.

The fundamental problem of all stack-based HDR methods
(whether standard HDR merge, exposure fusion, or burst HDR
imaging) is that they assume the scene radiance values are con-
stant during the capture of the entire stack. Objects moving from
frame from frame will cause ghost-like artifacts in the final result
(see Fig. 1b). Furthermore, unlike HDR camera hardware which
captures differently exposed images simultaneously, stack-based
approaches cannot guarantee recovery of the true high-dynamic
range information. For example, if the lady’s arm in Fig. 1 had
been blocking the window in the first three LDR images where
the exterior is well exposed, we would not have the necessary in-
formation to complete the window with 100% accuracy.

To address the ghosting problems with stack-based HDR
approaches, researchers have explored various deghosting algo-
rithms, which we will spend most of this paper reviewing. To
discuss them, we build on the taxonomy of deghosting algorithms
proposed by Sen et al. [39] and discussed elsewhere [11, 38].

Rejection methods

Some of the earliest HDR deghosting methods proposed
were rejection methods. These methods assume that only a few
pixels in the image contain moving objects, and that most of the
image is of static content (or that a simple alignment process can
be used to “freeze” most of the pixels). The basic idea behind
these methods is to determine which pixels are affected by motion
and to process them differently. Specifically, in pixels that con-
tain static objects, the standard HDR merge given by Eq. 1 can be
performed since it will not produce ghosting artifacts. This recon-
structs HDR information for most of the final image. For pixels
that contain moving objects, on the other hand, only a subset of
the input images that are deemed to be static are merged together.
In other words, information from pixels with moving objects is
rejected from the final result at these pixel locations.

The main difference between rejection-based methods is in
how they detect pixels affected by motion and how they decide
what subset of images to merge together at each pixel. Some al-
gorithms identify one of the images in the stack to be the reference
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(a) LDR input images (b) Heo et al. [17] (c) Sen et al. [39]

Figure 2. (a) Input images, with the brighter one chosen as the reference
to match. (b) The reference-based rejection method of Heo et al. [17] de-
tects motion in the region occluded by the head in the dark input image,
so it falls back to the reference. However, the reference is saturated in this
region, resulting in a gray “shadow” in the final result because the HDR irradi-
ance values are all clamped. (¢) For comparison, the patch-based synthesis
method of Sen et al. [39] is able to fill in the missing information.

image, which means the final HDR result will have that specific
composition, as if an HDR camera had captured it. Depending
on the algorithm, the reference is either selected by the user or
computed automatically (e.g., the picture with the best overall ex-
posure or the image in the middle of the stack).

Early reference-based, rejection algorithms used simple
heuristics to detect motion and then only merged together the im-
ages that were determined to be static with respect to the refer-
ence. For example, Grosch [13] propose a two-image approach
which maps pixels from the reference to the other exposure and
compares them. If their difference is larger than a given thresh-
old, only the reference is used in these regions. Gallo et al. [10]
build on this idea by comparing the patches surrounding the pix-
els instead, and doing so in the log domain. Min et al. [32] use
the input images to compute multilevel threshold maps which are
compared against that of a reference to determine regions with
motion. Wu et al. [47] use consistency in the radiance and color
across exposure to identify static pixels. Heo et al. [17] compute
joint histograms of the pixel values in the reference and the other
images. These histograms are converted into a joint probability
and ghosted regions are identified as those with a joint probabil-
ity less than a fixed threshold. Raman and Chaudhuri [36] extend
the algorithm of Gallo et al. [10] by segmenting the image into
super-pixels instead of patches to avoid edge artifacts.

The second class of rejection methods do not use a reference,
but must rather “stitch together” static portions of different images
to produce a coherent final result. The earliest example of these
reference-free rejection methods was the algorithm of Reinhard
et al. [37], which uses the weighted normalized variance at each
pixel to determine which ones are impacted by motion. Eden et
al. [7] first apply graphcuts on the input images to stitch together a
coherent “reference” that will not have the entire dynamic range.
The HDR result is then created by adding well-exposed detail
from the other exposures to regions where this reference is poorly
exposed. Khan et al. [26] use several iterations of kernel density
estimation to adjust the weights of the HDR merging process as-
suming that most pixels will be static. This reduces the contribu-
tion of pixels with dynamic content. Jacobs et al. [20] extend the
approach of Reinhard et al. [37] to detect motion using an local
entropy metric instead of normalized variance. Sidibe et al. [40]
identify static pixels by testing if pixel values increase as exposure
increases. Pece et al. [35] propose to compute the median thresh-
old bitmap (binary images with 1’s for all pixels greater than the
median value, 0 elsewhere) for each image in the stack and iden-
tify motion by comparing their values. Zhang and Cham [49] use
changes in the gradient between exposures to detect motion.
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Figure 3. The reference-free rejection method of Granados et al. [12] takes
the stack of images on the left and produces the result shown on the right. Al-
though most of the image is properly deghosted, reference-free approaches
often suffer from semantic artifacts such as the duplicated man (red arrows)
and the cut-off person (green arrow). Image courtesy of Granados et al. [12].

One of the state-of-the-art, rejection methods is the algo-
rithm of Granados et al. [12], which uses a model that accounts for
measurement noise to identify consistent subsets of pixels in the
stack that can be merged together without ghosting. Since these
subsets can be different from pixel to pixel (resulting in spatial ar-
tifacts), they propose an optimization with a coherency term that
attempts to select the same subsets for neighboring pixels. How-
ever, this can still result in semantic errors (e.g., a moving object
appearing twice in the final image, such as shown in Fig. 3) and
so manual intervention is sometimes needed.

Finally, there are clever reference-free rejection methods that
use rank minimization [34]. They observe that for static scenes all
exposures X; are linearly related since X; = E - t;. Therefore, af-
ter removing global motion due to camera motion using homogra-
phies (see more in the next section), they stack all the exposures
X, together to form a matrix and they compute a rank-1 matrix
that represents their measured exposures as close as possible plus
some sparse ‘“noise” representing the regions affected by motion.
In this way, they attempt to reject the misaligned content.

Discussion

Advantages: Rejection algorithms tend to be fairly robust. easy
to implement and fairly fast. For this reason they are widely im-
plemented in various HDR applications on mobile devices as well
as in commercial HDR packages. These algorithms are best suited
for largely static scenes (e.g., a set of buildings, a courtyard, etc.)
with only small dynamic objects (e.g., people walking around).

Disadvantages: Rejection algorithms have many problems. First,
they are unable to handle moving HDR content since they only
reconstruct HDR information using the standard merge in static
regions. If an object has HDR content but moves from image to
image, the algorithm can only use information from one image
and will lose the HDR detail. Furthermore, these algorithms as-
sume most of the image is static, since these are the only regions
where HDR information is reconstructed. For this reason, they
cannot handle large moving content, such as a full-frame, moving
subject. Rejection methods that use a reference have problems if
motion is detected in regions where the reference is poorly ex-
posed, since they fall back to the reference in this region (see
Fig. 2). Similarly, reference-free rejection-based methods can
produce images with duplicate objects or similar artifacts because
they do not enforce the semantic meaning of the scene.



Alignment methods

The second kind of early deghosting algorithms were alignment
methods. As their name implies, these methods attempt to “align”
or warp the images in the stack to register them with a reference
image. Once the images are aligned, standard HDR merging using
Eq. 1 can be used since the scene is now essentially “static.” To
accomplish this, some early alignment methods used rigid trans-
formations to align the images together. For example, Ward [46]
observes that some image stacks could be aligned with simple
translations that can be efficiently found by comparing the im-
ages’ median threshold maps. Tomaszewska and Mantiuk [44]
extend this idea to compute homographies by applying RANSAC
on the SIFT feature matches between the images.

More sophisticated methods used more advanced, non-rigid
warping techniques based on optical flow. The earliest known ex-
ample of this is by Bogoni [4], which first applies an affine trans-
form to globally align the images together. This is done by com-
puting optical flow fields between the images in multiscale fash-
ion from coarse to fine using a Laplacian pyramid, and then fitting
affine models to these flow fields using weighted least-squares.
The affine transforms are used to warp the images, and then a sec-
ond optical flow computes the final deformation field to warp the
individual source images to the reference.

Kang et al. [24] also propose an optical-flow-based approach
for capturing HDR video from two alternating exposures (see
more on this topic later in the paper). Specifically, they use
gradient-based optical flow to compute the bidirectional flow from
each image to its neighbors, as well as unidirectional flows from
the neighboring frames to the current frame. These flows are used
to compute four warped images by deforming the two neighboring
frames, and the resulting images are then merged together with
the reference (the current frame) using a weighting scheme that
rejects pixels that are still misaligned.

Jinno and Okuda [21] use Markov Random Fields to estimate
the local displacement to align the images together as well as the
occlusion and saturation to reject certain regions from the merg-
ing step. Zimmer et al. [50] use an energy-based optical flow opti-
mization that is robust to changes in exposure to align the images.
The data term in their energy function tries to align the image to
the reference while the regularizer ensures that the flow is smooth
wherever the reference is poorly exposed. Hu et al. [18] compute
dense correspondences between the images using the patch-based
non-rigid dense correspondence (NRDFC) algorithm [15], and fill
in holes of missing information with pasted pixels from the trans-
formed source. Finally, Gallo et al. [9] propose an algorithm de-
signed to do the alignment very quickly for mobile applications.
They observe that for images taken in a fast burst, the motion
tends to be very limited, so instead of computing optical flow at
every pixel of the image, they only compute it at sparse locations
and interpolate it to the rest of the pixels.

Discussion

Advantages: Unlike rejection methods that compute the HDR ir-
radiance value at each pixel using only information from the same
pixel through the stack, alignment methods can in theory handle
true, dynamic HDR content because they can move information
between pixels. This gives them a significant advantage in recon-
structing true HDR content for dynamic scenes.

Disadvantages: However, alignment methods for HDR recon-
struction suffer from several serious problems. First of all, the

inputs

Zimmer et al.

Senetal.

Zimmer et al. [50] Sen et al. [39]

Figure 4. The input stack in the top row is aligned to the reference (mid-
dle image) using the method of Zimmer et al. [50] to produce the sequence
shown in the middle row. Because of the complex deformations of the child’s
face, their optical-flow method cannot align the images properly, resulting in
visible artifacts in the final HDR result shown at the bottom. On the other
hand, the method of Sen et al. [39] simultaneously solves for the aligned im-
ages and the final HDR result, producing aligned images that are properly
aligned with the reference yet capture the detail in the different exposures.

methods that perform simple registrations [46, 44] cannot handle
the kind of general motion that happens in natural scenes. Fur-
thermore, even algorithms based on optical flow have trouble with
complex scenes, since optical flow can be fairly brittle for the
cases of complex deformable motion. One example is shown in
Fig. 4 where the state-of-the-art alignment algorithm of Zimmer
et al. [50] produces visible artifacts compared to other methods.
For this reason, alignment algorithms are often used in conjunc-
tion with a rejection method as well to handle any left over mis-
alignments. Finally, these approaches cannot handle disoccluded
content because they cannot synthesize new information. For ex-
ample, in the scene in Fig. 2, no amount of warping of the dark
exposure would produce the correct result because the occluded
content is simply missing in that image.

Patch-based optimization methods

Until recently, all HDR deghosting algorithms were either rejec-
tion or alignment methods. Then in 2012, Sen et al. [39] intro-
duced a new kind of deghosting algorithm using patch-based syn-
thesis that addresses the problems with both rejection and align-
ment methods. To do this, they propose a new equation called
the HDR synthesis equation which embodies the goals of all
reference-based HDR reconstruction algorithms: 1) to produce an
HDR result that resembles the reference image in the parts where
the reference is well exposed, and 2) to add detail wherever the
reference is poorly exposed using well-exposed information from
other images in the stack . This equation can be written as:

Energy(E)= Y [0er(p) - [|n(Jres(p)) — E (p) >+
peEpixels

(1= tet(p)) - Empps (E | I, ... In)]. (3)

The first term states that the desired HDR image E should be sim-
ilar to the LDR reference I¢ in an L, sense, where function /()
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maps the LDR values of I.¢ (which are, say, 0 to 255) to the
floating-point irradiance domain: h(let(p)) = f~ ! (het(P)) /tret-
This should only be done where the reference is well exposed,
which is controlled by the oyf term, a trapezoidal function in the
pixel value domain that favors values near the middle of the pixel
value range and down-weights values at the extremes.

In the parts of the image where the reference image I is
poorly exposed (indicated by 1 — o), the algorithm must draw
information from the other images in the stack. Since we are as-
suming that there is motion, this cannot be enforced using an L,
norm, so instead Sen et al. propose to use a metric derived from
the bidirectional similarity metric (BDS) of Simakov et al. [41]:

BDS(T | S) =

mmd (P,O)+ mmd (Q,P). 4

Islé 0¢ %
This original function measures the similarity (or rather the dis-
similarity) of a pair of images (source S and target T') by comput-
ing the patchwise distance between patches P and Q. It is min-
imized when all patches P in source S are equal to patches Q in
target T (given by the first term, known as completeness), and all
patches Q in target T are identical to patches P in source S (second
term, known as coherence).

The BDS metric has been used successfully in synthesis ap-
plications (Simakov et al. used it for image retargeting) because
the completeness term guarantees that all of the source informa-
tion is found somewhere in the target, and the coherence term
ensures that the result does not have objectionable artifacts since
those are not found in the source. To apply this to HDR synthe-
sis equation in Eq. 3, Sen et al. [39] first extended BDS to use
N source images from the stack in what is called the multi-image
bidirectional similarity metric (MBDS):

MBDS(T | Sy,...,

This simply ensures that all patches from the N sources are found
in the target and that all patches in the target can be found in one
of the sources. The main modification for the HDR application is
the weight wy (P), which ensures that only well-exposed patches
are used in the completeness term. In other words, patches that are
over- or under-exposed need not be included in the final result.
Finally, we must put MBDS into a form that can be plugged
into Eq. 3, since BDS (and hence MBDS) operates on LDR
patches. To do this, MBDS of Eq. 5 is applied to all N source
images in the input stack /1, . .., Iy by defining an energy function
that tries to keep each exposure of the estimated HDR image E as
similar as possible to all input sources adjusted to that exposure:

Empps(E | I1,....Iy) =
N

Y MBDS(I*(E) | g} (1), ...
k=1

8N (Iv)), (6)

where 7%() is a function that computes the LDR image from the
estimated HDR irradiance map E that resembles the k™ expo-
sure, and g’;( ) maps the ¢™ LDR source to the k" LDR ex-

posure: gq( ) = I¥(h(I,)). Essentially, this function ensures that
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Figure 5. Deghosted HDR results from the patch-based optimiza-
tion of Sen et al. [39] on the (cropped) input LDR images shown.

every exposure of the HDR image lk(l:f ) contains only informa-
tion found in the exposure-adjusted versions of all N input images
so that the final HDR result will not have artifacts, and that well-
exposed information from all these images can be found in the
final HDR result which will add well-exposed detail from the en-
tire stack. This energy equation is plugged in to the second term
of Eq. 3, which combined with the first term satisfies the goals of
reference-based HDR reconstruction as specified before.

_ To optimize Eq. 3, Sen et al. introduce auxiliary variables
Iy, ...,Iy which represent the aligned LDR images and is equiva-
lent to I = [¥(E). They then solve for these aligned LDR images
and the HDR result simultaneously by rewriting Eq. 3 as:

Energy(E,fl,.. N/ Z [aref MA(Iet(p)) — (P)HZ

pEplxeli

+ (1= aer(p ZMBDS(Iugl(h) ey (y))
k=
N

= aur(p) Lo ) ~ERIIF]- )

where the first term is the same as before, the second term has
been modified to do the MBDS on the aligned LDR images Z( and
the last term has been introduced to enforce the relationship be-
tween the aligned LDR images and the final HDR result based on
the merging process of Eq. 1 (the wy(p) function simply applies
the normalized “triangle” merging weights proposed by Debevec
and Malik [6]). Eq. 7 can now be optimized with a two-stage al-
ternating minimization algorlthm that solves for the HDR result
E and the aligned LDR images /i, . IN simultaneously:

Stage 1: The algorithm first optimizes for the aligned LDR im-
ages Iy, ...,Iy using a bidirectional search-and-vote process [41]
accelerated by PatchMatch [2], thereby minimizing the second
term in Eq. 7. This adds information into each aligned LDR im-
ages from all the other images in the stack in order to handle
things like disocclusions that can reveal previously unseen con-
tent at that exposure level.

Stage 2: The algorithm optimizes for E by merging the aligned
images L,... Iy together with Eq. 1 (minimizing the third term
of Eq. 7), and then injects the parts of the reference image that are
well-exposed into the result (minimizing the first term of Eq. 7).
The resulting irradiance map estimate E is used in the next iter-
ation as the initial target for the search-and-vote process, which
forces the aligned images to be aligned with the reference.

As is common for patch-based algorithms [2, 5, 41], the al-
gorithm is performed at multiple scales, starting at the coarsest
resolution and gradually working to the finest, to keep the opti-



mization from settling on a local minimum. Once finished, the
algorithm returns both the desired HDR image E as well as the
“aligned” images at each exposure I been ,TN. Results produced
with this algorithm is shown in Fig. 5 and throughout the paper.

Hu et al. [19] later proposed a related patch-based HDR re-
construction algorithm which solves for the aligned LDR images
I yeen jN by minimizing the following energy function:

EnergY(ngfefau) = Cr(};calreﬁgfef) +CI (Zﬁllwu)' (8)

where u is the displacement field that warps image I; to match
the reference. The first term, C,(), enforces that the final aligned
image /; actually matches the reference:

Clihersh) = X (1) = ghesllrer P +
pepixels (9)

+711VZe(p) ~ Veks e (P)) 2 )

where the reference image is mapped to the k™ exposure by func-
tion g’r‘ef(). Unlike Sen et al. [39], this method assumes that the
camera response curve is not known so it solves for gfef() on the
fly. Since this can introduce errors, they leverage earlier work
that successfully matches patches with different exposure levels
by comparing both the color and the gradient terms [5], which
gives them more flexibility during the matching process. B

The second term in Eq. 8 enforces that the aligned image I},
should resemble the original input image I after being warped by
deformation field u to try to keep it free of artifacts:

Glitew) =5 X (170) = Pu(p +u(p)) P +
p (10

+7 IV(PH(p) ~ VL (p+u(p)) ),

where ¢ is a normalization factor and P;(p) represents a patch in
image I around pixel p. To minimize Eq. 8, Hu et al. propose a
three-stage iterating optimization which, like the previous method
of Sen et al. [39], is also performed at multiple scales:

Stage 1: First, the algorithm estimates all gfef() functions by com-
paring the intensity image histograms [14] at the coarsest level of
the pyramid. It also estimates the displacement field u in Eq. 10
using generalized PatchMatch [3].

Stage 2: The algorithm then refines the aligned estimate INk by av-
eraging information between g& . (Ie¢(p)) and Iy (p +u(p)), using
weights that account for how over-exposed or under-exposed the
reference would be in each region. Since it has to do this for both
the color and gradient domains, the algorithm essentially must
solve a screened Poisson equation [5].

Stage 3: Finally, the updated I, is used to correct gfef(). As the al-
gorithm iterates and moves to finer levels, u is linearly upsampled
but gk () is left the same.

Discussion

Advantages: Patch-based optimization algorithms are fundamen-
tally different than previous rejection or alignment methods. Un-
like rejection methods, patch-based methods can bring HDR in-
formation from different pixels across the stack and so can han-
dle dynamic HDR content. Furthermore, unlike alignment meth-
ods, they can synthesize missing information due to occlusions or

camera motion, and are able to handle complex deformations to
produce better aligned images and therefore better HDR results.
In fact, algorithms like that of Sen et al. [39] effectively combine
both alignment and rejection in the inner loop of the optimization.

This has made patch-based HDR reconstruction methods the
most successful HDR deghosting algorithms to date. For ex-
ample, Tursun et al. [45] conducted a user study to examine
HDR quality and found that the methods of Sen et al. [39] and
Hu et al. [19] ranked first and second, respectively, with a size-
able margin over other state-of-the-art methods. More recently,
Karaduzovic-Hadziabdic et al. [25] also found that the method of
Sen et al. [39] outperformed others for most scenes. Finally, while
most algorithms require that the image stack be captured only by
varying the exposure time between images (changing settings like
the aperture affects the depth-of-field, which makes images diffi-
cult to align or deghost), Sen et al. [39] showed that their patch-
based method is able to handle changes in depth-of-field automat-
ically, thereby enabling longer exposures than could be done by
simply changing the exposure time.

Disadvantages: Although patch-based HDR reconstruction al-
gorithms produce high-quality results, they are computationally
expensive and require fairly long computation times. For exam-
ple, Tursun et al. [45] report that the algorithms of Sen et al. [39]
and Hu et al. [19] took an average 209.78 and 230.36 seconds, re-
spectively. This algorithmic complexity makes them challenging
to port to mobile devices, at least in their current form. Finally,
although their quality is superior to all previous methods, these
algorithms still produce artifacts, especially in scenes with very
complex motion and extreme dynamic range. The Sen et al. [39]
algorithm, for example, tends to leave some noise in the dark re-
gions, while the Hu et al. [19] method sometimes overblurs detail
or produces artifacts where the reference is poorly exposed.

Learning-based methods

The most recent kind of stack-based, HDR deghosting method
is the learning-based method proposed by Kalantari and Ra-
mamoorthi [23], which uses deep learning to reconstruct the final
HDR image (see Fig. 6). Their approach assumes that the stack
is composed of three differently exposed images /1, >, I3 with the
middle image I, as the reference. After using optical flow to align
the two other images to it, they replace the standard merging step
of Eq. 1 with a deep learning network that removes the ghosting
artifacts caused by misalignments from the optical flow. Specifi-
cally, they propose and analyze three different architectures based
on a four-layer convolutional neural network (CNN):

1. The direct approach, which takes in the aligned images as
input and outputs the HDR result directly.

2. The weight estimator (WE), which outputs the three blend-
ing weights wi,w,, w3 used in Eq. 1 to compute the final
result.

3. The weight and image estimator (WIE), which computes
refined versions of the two aligned images as well as the
weights used to merge them together.

To train their systems, they built a dataset with image stacks of dif-
ferent dynamic HDR scenes. Since they need ground-truth HDR
results, they capture a static set (where the subjects are still) as
well as a dynamic set (where the subject and camera can move) for
every scene. The middle image of the static set is then used as the
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Kalantari and Ramamoorthi [23] Sen et al. [39]

Figure 6. Results of the learning-based method of Kalantari and Ra-
mamoorthi [23] from the image stack shown on the left. For completeness,
we show the comparison against the patch-based synthesis algorithm of Sen
et al. [39]. Images courtesy of Kalantari and Ramamoorthi [23].

middle image of the dynamic set to create a new stack is used as
input to the network. The training itself is done using tonemapped
HDR images in the loss function, which they found worked bet-
ter than using the HDR ground truth directly. The authors report
that while the WIE network produces the lowest numerical error,
detail is better preserved with the WE architecture.

Discussion

Advantages: The results of this learning-based approach are im-
pressive, although the difference with the results of other state-
of-the-art algorithms, such as patch-based synthesis [39], is rela-
tively small. However, the biggest advantage of this algorithm is
its speed: the authors report that it takes only 30 seconds to pro-
duce an image. For this reason, it is highly likely that future HDR
reconstruction algorithms, especially for mobile devices, will be
learning based.

Disadvantages: As with all learning algorithms, this one needs a
large dataset to learn to work robustly for a diverse set of scenes.
As such, it is difficult to know what scenes it will not work for, or
even what the failure cases will be. Furthermore, since their loss
function tests against the tonemapped ground truth, they need a
differentiable tonemapping function to perform backpropagation.
This severely limits the kinds of tonemappers that can be used. In
this work they use the p-law function, which is a common range
compressor for audio processing but not for tone mapping as it
produces results that appear “washed out” and of low contrast.

Extensions to HDR video

The stack-based deghosting algorithms presented so far are nor-
mally used to capture still images, but some of them can be modi-
fied to reconstruct high-dynamic range video captured with alter-
nating exposures. In this application, the camera takes a sequence
of differently-exposed images, usually in an alternating pattern of
two or three exposures, which the algorithm must use to produce
an HDR sequence of frames. Clearly, the reference-free rejection
methods cannot be used for this application, since they do not
produce an image that adheres to a real image.

The first to tackle such a problem was Kang et al. [24], whose
method using optical flow was described earlier in this paper.
Later, Mangiat and Gibson [28, 29] proposed to overcome the
problems with optical flow by using a block-based motion estima-
tion approach, filtered to remove block boundary artifacts. Cur-
rently, the state-of-the-art approach for stack-based HDR video is
the algorithm of Kalantari et al. [22], which extends the patch-
based algorithm of Sen et al. [39] to make the HDR video streams
temporally coherent (see Fig. 7). To do this, they modify the HDR
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Figure 7.  Stack-based acquisition for HDR video. The top row
shows the captured frames with three alternating exposures. The
bottom row shows the HDR video result reconstructed by the patch-
based algorithm of Kalantari et al. [22].

image synthesis equation shown in Eq. 3 to perform a bidirec-
tional similarity between adjacent frames to maintain temporal
coherence. They also use optical flow during the optimization to
constrain the patch-based search.

Future directions and conclusion

Although HDR imaging has improved tremendously in the past
20+ years, there is still much work to be done. Deghosting algo-
rithms could still be improved, especially for scenes with very
complex motion and extreme dynamic range. Exploring other
machine learning approaches, or combinations of machine learn-
ing and patch-based synthesis, seems like a promising way to do
this. Furthermore, since machine learning has been shown to
be very successful in image synthesis applications, researchers
have started to explore the idea of single-image HDR where the
HDR content is hallucinated [8]. Along with work on new sensors
and camera technology, this would enable broader dynamic-range
capture with each image and would reduce the need for stack-
based approaches.

In conclusion, we have presented the basics of stack-based
HDR imaging and discussed four different approaches to perform
the deghosting that occurs in dynamic scenes: rejection, align-
ment, patch-based synthesis, and learning-based methods. Of
these, patch-based synthesis approaches provide high-quality re-
sults but are expensive to compute, while machine-learning meth-
ods seem to offer a good combination of quality and speed.
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