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Abstract 

The goal of autofocus is to enable a digital camera to capture 
sharp images as accurately and quickly as possible in any lighting 
condition without human intervention. Recent developments in 
mobile imaging seek to embed phase-detection sensor pixels into 
the image sensor itself because these phase-detection sensors are 
able to provide information for controlling both the amount and the 
direction of lens offset and thereby expedite the autofocus process. 
Compared to the conventional contrast-detection autofocus 
algorithms, however, the presence of noise, the lack of contrast in 
the image, and the spatial offset between the left and right phase 
sensing pixels can easily affect phase detection. In this paper, we 
propose to address the issue by characterizing the relation between 
phase shift and lens movement for various object depths by a 
statistical model. Experiments are conducted to show that the 
proposed method is indeed able to improve the reliability of phase-
detection autofocus. 

1. Introduction  
The proliferation of smartphone has made phone camera a 
predominant imaging device for most people. It is commonly 
agreeable that the tiny phone camera is an iconic element of the 
smartphone. Considering that the camera has to capture sharp 
images as fast as possible in any condition without human 
intervention, it is fair to say that the most challenging image 
processing task of a phone camera is autofocus. An autofocus 
algorithm usually consists of two components: focus measurement 
and search strategy. The former measures how sharp an image is or 
how close the in-focus position is during an autofocus process, and 
the latter determines how to reach the in-focus lens position given 
current and previous focus measurements.   

Autofocus algorithms that use image contrast (equivalently, 
image sharpness) as focus measurement are collectively called 
contrast-detection autofocus (CDAF). In CDAF, the image contrast 
is first calculated in either the image domain [1], [2] or the 
frequency domain [3]. Then a lens movement is made according to 
the search strategy [3], [4]. As the lens sweeps across its active 
motion range, the image contrast forms a “hill-shaped” trajectory 
with the peak at the in-focus position. The trajectory is referred to 
as focus profile in this paper. Because image contrast as a focus 
measurement is relatively reliable, CDAF has been a useful 
technique. However, when the image has low contrast, especially 
when the image is blurry, CDAF may fail to give a good estimate 
of lens movement, resulting in poor autofocus performance. 

Autofocus algorithms that use image phase shift as focus 
measurement are collectively called phase-detection autofocus 
(PDAF). Such algorithms are developed for sensors with phase 
sensing elements that are normally classified into left and right 
sensing elements. Depending on the design considerations, these 
phase sensing elements can be placed sparsely or densely on the 
image sensor, and the left and right pixels may or may not be 
colocated. In theory, when an object is in-focus, the left image 
formed by the left pixels is aligned with the right image formed by 
the right pixels. When the object is out-of-focus, the two images 

are out of alignment [5]. The sign of the shift between the two 
images reflects the order of the focal plane with respect to the 
object. If the object is behind the focal plane, the left image has a 
positive shift with respect to the right image. On the other hand, if 
the object is in front of the focal plane, the left image has a 
negative shift with respect to the right image. While the sign of the 
phase shift determines the direction of the lens movement, the 
magnitude of the phase shift indicates the distance between the 
object and the focal plane. The larger the shift is, the larger the 
distance is [5].  

If the phase information is noise-free, the phase shift between 
the two phase images can be precisely computed without error, so 
can the travel distance of the lens to the in-focus position. In 
practice, however, the phase shift can seldom be error-free due to, 
for example, image noise, sparsity of phase sensors, and spatial 
offset between corresponding left and right pixels. Our previous 
study showed that, although a Gaussian filter can be applied to 
improve the quality of phase shift measurement [9], it is still 
insufficient to guarantee a successful autofocus process. More 
work is needed. 
 The objective of this work is to investigate how to make a 
reliable estimate of lens movement from noisy phase information. 

         
(a) 

         

(b) 

Figure 1. An illustration of the formation of left and right phase 
images for PDAF. (a) The left light ray coming off an object 
point behind the focal plane reaches a left (blue) pixel sensor, 
and the right light ray reaches a right (yellow) pixel sensor. (b) 
The responses of all such left (right) pixel sensors form a left 
(right) phase image.  
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We resort to a statistical approach to characterize the relation 
between phase shift and the distance to the in-focus position. The 
statistical model is then exploited to determine the lens travel 
distance given that the object to be focused on can be at any 
possible depth. Since the resulting PDAF algorithm is to be 
integrated with a CDAF algorithm [6], [13], [14] that requires three 
or more data points located on both sides of the hill-shaped focus 
profile, we need to move the lens to the hillside (slope region) of 
the focus profile as fast as possible by PDAF and let CDAF take 
over the remaining autofocus process.   
 The rest of the paper is structured as follows. The principle of 
phase detection is described in Section 2. Then our proposed 
PDAF algorithm is described in Section 3, followed by 
experimental results in Section 4. The experimental results are 
discussed in Section 5, followed by the conclusion of the paper in 
Section 6. 

2. Background 
Consider a camera pointing at an object behind the focal plane of 
the camera as shown in Fig 1(a). Part of the light emitted from the 
object point enters the camera and forms an image on the image 
sensor. For the image sensor, masks are placed above the left (right) 
pixels to block light coming from the right (left) and thereby 
prevent it from reaching the photodiodes underneath the masks. In 
this way, the left (right) pixels can only detect the light coming 
from the left (right) side of the pixels. The responses of the left 
(right) pixels to an object point form the left (right) point spread 
functions (PSFs) of the camera. A conceptual sketch of left and 
right PSFs is shown in Fig. 1(b).  

The responses of the left (right) pixels to all scene points form 
the left (right) phase images, which in theory can be obtained by 
convolving the scene with the left (right) PSF. Specifically, let 
𝑠(𝑥, 𝑦)  denote the scene and ℎ((𝑥, 𝑦)  and ℎ)(𝑥, 𝑦)  the left and 
right PSFs, respectively. (Note that, for simplicity, Fig. 1(b) only 
shows one-dimensional responses of the left and right pixels, but 
the two dimensional responses can be easily extended from the 
one-dimensional responses by treating each row of the two-
dimensional responses as a separate one-dimensional response.) 
The left and right phase images, denoted by 𝑙(𝑥, 𝑦) and 𝑟(𝑥, 𝑦), 
respectively, can be described by the following equations:  
 
 𝑙 𝑥, 𝑦 = 𝑠 𝑥, 𝑦 ∗ ℎ( 𝑥, 𝑦 , (1) 

 
  	𝑟 𝑥, 𝑦 = 𝑠(𝑥, 𝑦) ∗ ℎ)(𝑥, 𝑦). (2) 

 
 
 In general, when the object point is behind the focal plane, the 

left phase image is a right-shifted version of the right phase image; 
the further away the object point is, the larger the shift is. On the 
other hand, when the object point is in front of the focal plane, the 
left phase image is a left-shifted version of the right phase image; 
the closer the object point is, the larger the shift is. 
 
2.1 Phase Shift Estimation 
For an out-of-focus object, the phase shift between the left and 
right phase images can be modeled by a one-dimensional 
translation, 

 𝑟 𝑥, 𝑦 = 𝑙(𝑥 + 𝛥𝑥, 𝑦), (3) 
 
 where the sign and the magnitude of 𝛥𝑥 indicate the direction and 

the amount of the phase shift, respectively. Then 𝛥𝑥  can be 

estimated by phase correlation [8]. Specifically, let 𝐿 and 𝑅 denote 
the 2D Fourier transform of 𝑙(𝑥, 𝑦) and 𝑟(𝑥, 𝑦), respectively. The 
correlation matrix 	𝑝 𝑥, 𝑦 , whose peak location represents the 
phase shift, is given by the following formula:  

 𝑝 𝑥, 𝑦 = ℱ56{ (∘)
|(∘)|

}, (4)  

where ℱ56 ∙  denotes the inverse two-dimensional Fourier 
transform, “◦” denotes entry-wise  multiplication, and “		”	denotes 
complex conjugate. 

Ideally, the correlation matrix should have a single peak, from 
which the phase shift can be determined. However, due to the 
presence of image noise, the correlation matrix is usually noisy and 
may contain false peaks. Chan et al. [9] alleviated the impact of 
noise on phase shift calculation by smoothing the correlation 
matrix with a Gaussian kernel g(x), 

 𝑝< 𝑥 = 𝑝=(𝑥) ∗ 𝑔(𝑥), 
 
 

(5) 
 
 where 𝑝= 𝑥 , called the correlation curve in this paper, is a row 

of	𝑝 𝑥, 𝑦 , and  𝑝<(𝑥) represents the filtered result. Note that, even 
though the correlation matrix is two dimensional, one dimensional 
filtering is performed in practice since the phase shift is one-
dimensional. The effect of Gaussian filtering is shown in Fig. 2. 
The blue curve represents the correlation curve before the 
Gaussian filtering is performed, and the red curve represents the 
filtered version. It can be seen that the unfiltered correlation curve 
is very noisy, from which it is difficult to determine the phase shift.  
After filtering, the correlation curve becomes smoother, making it 
possible to estimate the phase shift by finding the peak of the curve,  

 Δ𝑥 = argmax
D
	𝑝< 𝑥 . (6) 

Note that only integer phase shifts can be determined from Eq. 
6. In practice,  the phase shift is usually between ±2; therefore,  
only a total of five different lens travel distances is resulted. To 
make lens movements finer, a subpixel accuracy for phase shift 
estimation is required. We adopt an interpolation-based method 
proposed by Tian et al. [10] to obtain subpixel phase shifts. 

 

Figure 2. An example correlation curve before and after the 
Gaussian filtering is performed. The blue curve represents the 
correlation curve before performing the Gaussian filtering, and 
the red curve represents the filtered result. 
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3. Determine Lens Movement from Phase Shift 
Determining lens movement from phase shift at each step of an 
autofocus process entails an estimation of the travel distance of the 
lens to the in-focus lens position. This operation is highly sensitive 
to noise due to the fact that the phase data are not noise-free. We 
address the noise issue by using a statistical model to characterize 
the relation between the phase shift and the lens movement for 
various object depths. This is done offline with sufficient data. 
Then, the resulting statistical model is used in the autofocus 
process to determine the lens travel distance from phase shift. 

3.1 Data Preparation 
In the data preparation step, the data for creating the statistical 
model were collected by capturing the focal stacks of 28 different 
scenes with various depths. For each image in a focal stack, we 
estimated the phase shift between the left and right phase images. 
The corresponding distance to the in-focus position was known a  
priori in the setup. Thus we can obtain the distribution of phase 
shifts as a function of the distance to in-focus lens position. The 
resulting plot is called phase shift profile in this paper. Fig. 3(a) 
shows an example phase shift profile and the corresponding focus 
profile obtained in this data preparation step. It can be seen that 

phase shift is roughly proportional to the lens position and close to 
zero at the in-focus lens position. Fig. 3(b) shows the phase shift 
distribution for all the 28 scenes.  

 3.2 Mathematical Formulation 
Let 𝑃 denotes the phase shift between the left and right images and 
𝑋  denotes the distance to in-focus lens position. We model the 
distribution of the phase shift given the distance to in-focus lens 
position as a Gaussian distribution, 

 
𝑓L|M 𝑝 𝑥 =

1

2𝜋𝜎 𝑥 Q
𝑒
5(S5T(D))

U

QV D U ,  (7) 

 
      (a) 

 
      (b) 

Figure 3. (a) An example focus profile (red) and phase shift 
profile (blue) with in-focus position at 500. (b) Distribution of 
phase shifts plotted against the distance to in-focus position. 

  

  

(a) 

 

(b) 

Figure 4. (a) Probability density function of the distance to in-
focus position when phase shift is equal to 0, 0.5, 1, and 2. (b) 
Lens travel distance calculated by the proposed method for 
different phase shifts. 
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where 𝜇(𝑥) and 𝜎 𝑥 , respectively, denote the sample mean and 
variance of the phase shift calculated at lens position 𝑥.  
 We then employ the Bayes’ theorem to obtain the distribution 
of the distance to in-focus position given the phase shift as follows: 

 
𝑓M|L 𝑥 𝑝 =

𝑓L|M 𝑝 𝑥 ∙ 𝑓M 𝑥
𝑓L|M 𝑝 𝑥 ∙ 𝑓M 𝑥D∈YZ

, (8) 

where 𝑆D  denotes the range of lens positions. Assuming the in-
focus lens position is uniformly distributed (hence 𝑓M(𝑥)  is a 
uniform distribution), we have  

 
 

 

(9) 

Example distributions of the distance to the in-focus position are 
shown in Fig. 4(a). We can see that, as the phase shift becomes 
larger, the distribution shifts to the right, meaning that the distance 
to the in-focus position is larger. 
 Finally, the lens movement can be determined by 
 
 max 𝑥 				𝑠ubj.				𝐹M|L 𝑥 𝑝 ≤ c, (10) 

where 	𝐹M|L 𝑥 𝑝  is the cumulative distribution function of 
𝑓M|L 𝑥 𝑝 , and c ∈ [0, 1]  controls the aggressiveness of the lens 
movement―the higher c is, the larger the lens movement for the 
same phase shift. Fig. 4(b) shows the lens travel distance plotted 
against the phase shift when c is set to 0.6. It can be seen that the 
larger the phase shift is, the longer the distance. When the phase 

shift is larger than 1.5, the lens travel distance increases very 
slowly and almost reaches saturation. We make a conservative lens 
movement decision when the phase shift is relatively large, 
because larger phase shift is less reliable.  

4. Experiment 

4.1 Setup 
The PDAF platform including the image sensor used in our 
experiment is shown in Fig. 5. The sensor size of the camera is 
3280×2464 pixels, and the size of the left and right phase images 
are both 410x154 pixels. The range of lens movements is 
uniformly partitioned into 600 units. In other words, the lens 
moves at an integer number of units, and the total number of 
possible lens positions is 600. 
 We tested our PDAF algorithm on a number of scenes with 
objects at various depths. We launched the autofocus process 140 
times, each time from a different initial lens position, and 
terminated the process after four lens movements were made or 
after the in-focus position was reached, whichever came first. A 
total of 28 scenes were used as test data in the experiment. 

4.2 Performance Evaluation 
An example lens trajectory of an autofocus process is shown in Fig. 
6, for which the initial lens position was 790, and the in-focus 
position was 290. Our algorithm made large lens movements at 
first and gradually decreased the lens travel distance as the lens 

Table	1.	The	probability	that	the	lens	reaches	the	hill	side	of	
the	focus	profile	after	each	movement		

# movements Distance between initial position and in-focus 
position 
100 200 300 400 500 

1 0.73 0.70 0.25 0.00 0.00 
2 0.87 0.80 0.71 0.79 0.83 
3 0.90 0.85 0.89 0.92 0.91 
4 0.94 0.86 0.93 0.93 1.00 
 

 
(a) 

 
(b) 

Figure 5.  (a) Our PDAF development platform. The red box 
indicates the location of the camera module. (b) Phase sensor 
pattern. Yellow cells represent the right pixels, blue cells 
represent the left pixels, and the rest are regular pixels. The red 
box indicates the basic phase sensor placement pattern that 
repeats throughout the sensor. 

 

 
Figure 6. An example lens trajectory in an autofocus process. 
The blue curve represents the focus profile. The orange dots 
represent the lens positions in a sequence of movements, with 
the number represents the order of movement. The initial lens 
position is 790 and the in-focus lens position is 290 in this 
case.  
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moved closer to the in-focus position. A desirable PDAF algorithm 
should get out of the flat area (reach the hillside) of the focus 
profile as fast as possible while avoiding back-and-forth lens 
movements; therefore, it should be capable of adjusting the lens 
travel distance according to the distance to in-focus position. 

It is commonly agreeable that CDAF is more accurate for the 
estimation of in-focus lens position than PDAF when a sufficient 
number of data points near the in-focus position are available, and 
that PDAF is able to quickly move the lens to the hillsides of the 
focus profile. Therefore, it is reasonable to launch PDAF first and 
let CDAF take over the rest of the autofocus process afterwards. 
We evaluated the performance of the proposed PDAF algorithm by 
counting the percentage of times that it moves the lens to the 
hillside of the focus profile. In this experiment the hillside region 
for each focus profile is manually determined.  

The results are shown in Table 1. It can be seen that when the 
lens is at a distance of 500 from the in-focus position, at least two 
lens movements are needed for the lens to reach the hillside of the 
focus profile. This is the case where the lens is farthest from the in-
focus position in the experiment. In the other cases, the lens may 
have a chance to reach the in-focus position in just one movement. 
Such behavior is expected, because we take a conservative 
approach to prevent large lens movements so that a poor estimate 
of the travel distance would not result in a catastrophic effect in the 
autofocus process. From the user experience point of view, a 
smooth ride to the sharpest image with as little bouncing as 
possible is more desirable than a bumpy ride that generates video 
frames of rapid alternating sharpness. It can also be seen from 
Table 1 that the probability for the lens to reach the hillside of the 
focus profile generally increases with the number of movements. 
After the third movement, it is higher than 85 percent. The results 
show the effectiveness of the proposed method.  

5. Discussions 
This paper describes part of our efforts toward a complete 
autofocus system employing both CDAF and PDAF.	 A 
preliminary result of the integrated autofocus using the 
development board described in Section IV can be found online 
[11]. The demo video was obtained by testing our algorithm on 
four different scenes, including the standard ISO chart, a low 
textured object, and two outdoor scenes. It can be seen that, in 
average, our algorithm is able to bring the lens to the in-focus lens 
position in 6 steps, or equivalently 0.2 seconds at 30fps video rate.   

It was brought to our attention that some recent image sensors 
with built-in PDAF are able to complete the autofocus process in 
as short as 0.03 seconds [12]. It seems the performance of such 
sensors is attributed to high-speed and high-density collocated 
phase sensors that can generate phase shift data at a rate much 
higher than 30fps. The on-board autofocus capability also saves 
data communication between the sensor and the image processor. 
However, it should be noted the proposed approach can be 
implemented as part of the on-board processing. Furthermore, as 
noisy phase information is common to PDAF sensors and 
algorithms, the proposed statistical method can be used by these 
image sensors to make reliable estimates of lens movement from 
phase shift data. That is, our method can be combined with cutting-
edge imaging hardware to further increase the autofocus 
performance. 

6. Conclusion 
The phase data obtained for PDAF are intrisically noisy, which 
severly affects the performance of PDAF. In this paper, we have 

presented a statistical approach to address the issue. The proposed 
method is able to make the lens reach the slope of a focus profile in 
three moves in 85% of the test cases, allowing for a nice leverage 
of the complementary nature of PDAF and CDAF. Once the lens is 
at such position, it becomes relatively easy for CDAF to bring the 
lens to the in-focus position with precision. 
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