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Abstract
High quality, 360 capture for Cinematic VR is a relatively new and
rapidly evolving technology. The field demands very high quality, distortion-
free 360 capture which is not possible with cameras that depend on fish-
eye lenses for capturing a 360 field of view. The Facebook Surround 360
Camera, one of the few “players” in this space, is an open-source license
design that Facebook has released for anyone that chooses to build it from
off-the-shelf components and generate 8K stereo output using open-source
licensed rendering software. However, the components are expensive and
the system itself is extremely demanding in terms of computer hardware
and software. Because of this, there have been very few implementations
of this design and virtually no real deployment in the field. We have im-
plemented the system, based on Facebook’s design, and have been testing
and deploying it in various situations; even generating short video clips.

We have discovered in our recent experience that high quality, 360
capture comes with its own set of new challenges. As an example, even
the most fundamental tools of photography like “exposure” become difficult
because one is always faced with ultra-high dynamic range scenes (one
camera is pointing directly at the sun and the others may be pointing to a
dark shadow). The conventional imaging pipeline is further complicated
by the fact that the stitching software has different effects on various as-
pects of the calibration or pipeline optimization. Most of our focus to date
has been on optimizing the imaging pipeline and improving the qual-
ity of the output for viewing in an Oculus Rift headset. We designed a
controlled experiment to study 5 key parameters in the rendering pipeline
– black level, neutral balance, color correction matrix (CCM), geomet-
ric calibration and vignetting. By varying all of these parameters in a
combinatorial manner, we were able to assess the relative impact of these
parameters on the perceived image quality of the output.

Our results thus far indicate that the output image quality is greatly
influenced by the black level of the individual cameras (the Facebook cam-
era comprised of 17 cameras whose output need to be stitched to obtain a
360 view). Neutral balance is least sensitive. We are most confused about
the results we obtain from accurately calculating and applying the CCM
for each individual camera. We obtained improved results by using the
average of the matrices for all cameras. Future work includes evaluating
the effects of geometric calibration and vignetting on quality.

Introduction
The Facebook Surround 360 Camera System is composed of 17 in-
dividual cameras, including 3 fisheye lenses, that work together to
form a 360 image and/or video content. During the render process,
there is are files used in order to control correction of color, dark
noise, vignetting and other factors that affect the rendering process.
The values in this file are extremely important for the output quality

Figure 1. Surround 360 camera at RIT

of the rendered capture data. This project focused on selecting these
numbers in order to produce quality result.

Facebook designed this product to have people in the field of
cameras, photography and videography shoot footage in this for-
mat and share it on Facebook. There was no intention of selling the
product for profit. The system is actually a “do-it-yourself ” type of
project. Facebook has the hardware design and software under open-
source licensing, [1] so anyone can view what materials they need to
buy, how to put the product together, and what software to use to
get it working.

Because of the open nature of the project, it is hard to know
how many people actually possess on one of these systems. Although
there are a few Facebook groups revolving around this topic, there
does not seem to be much content generated from the product. There
are people discussing it and posting pictures of them shooting, how-
ever, it seems as though there are some bottle necks in the rendering
process that hinder one’s ability to easily produce an accurate and
high quality output. This is what we worked on to try to help solve
that problem.

The rendering process of this system involves unpacking raw
image files from a pair of merged files, demosaicing the raw frames,
inferring structure from motion and optical flow, stitching the in-
dividual frames together into a large frame, generating stereo pairs,
and encoding the stereo frames as a video. Because of bandwidth and
speed issues (each second captured generates approximately 3 giga-
bytes of data; rendering takes much longer than capture), render-
ing is performed after capture is completed, and is accomplished us-
ing one of the open-source tools from the Facebook-provided suite.
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Figure 2. Rendering time per frame, as a function of frame resolution

Rendering time varies quadratically with respect to final frame res-
olution, as is apparent from Figure 2.

Statement of problem
We encountered problems with the quality of the rendered video
when using rendering settings provided by Facebook (though for a
different instance of the camera). Figure 3 shows two frames from
early rendering efforts. This convinced us that a systematic investi-
gation of rendering settings was necessary.

Experimental
In a systematic experimental design, the experimenter must iden-
tify the variables to be manipulated (the “factors”). [2, chapters 10
and 11] The factors were selected from settings files that controlled
the rendering process, one file for each camera, written in Javascript
Object Notation ( JSON). We referred to these files as “JSON files”
for convenience. The factors we adjusted were the Black Level, the
White Balance, and the Color Correction Matrix (CCM). Other
factors considered were Falloff (vignetting) Correction and Geom-
etry Correction. These were held constant during the experiment.

Not only must the factors be identified in an experimental de-
sign, but the values for each must be specified. While these may be
set a priori, before beginning the experiment, they may be varied
during the progress of an experiment, particularly in experiments
with open-loop feedback, such as response surface exploration. [3]
The specific values for a factor are referred to its “levels” in the nomen-
clature or experimental design. [2, ibid] The levels for each of the
three principal factors are enumerated below:

Factor 1: Black Level setting
One value (as an unsigned 16-bit integer) is specified for the red
black level, one for green, and one for blue.

Level 1: Obtain the black levels from one camera, and use them for
all cameras (“1 for all;” baseline)

Level 2: Obtain black levels from all cameras, average them across
cameras, and use the same values for all cameras (“Average”)

Level 3: Obtain RGB black levels for each camera, and use that
camera’s own black level (“Camera-specific”)

Figure 3. Early renderings.

Frames from videos rendered with generic settings. Top frame shows ver-
tical banding, with boundaries between side cameras apparent. Bottom
frame shows horizontal banding, with boundaries between top and side
cameras, and side and bottom cameras, most apparent.

Factor 2: White Balance
Three floating point multipliers (one for each of red, green, and blue)
are specified.

Level 1: 1.0, 1.0, 1.0 (“ones;” baseline)

Level 2: Determine white balance for one camera, apply same val-
ues to all cameras (“1 for all”)

Level 3: Determine white balance for each camera and apply it to
that camera (“Camera-specific”)

Factor 3: Color Correction Matrix
A 3×3 color correction matrix is specified in floating point. Facebook
recommends the rows sum to one so the matrix does not materially
affect neutral balance.

Level 1: Identity matrix (“identity matrix;” baseline)

Level 2: Compute matrix for each camera, apply average matrix to
all cameras (“Average”)

Level 3: Compute matrix for each camera and apply it to that cam-
era (“Camera-specific”)

For falloff correction we employed values provided by the Face-
book team. The geometric correction parameters used for all runs
were determined using the procedure recommended by Facebook.

We did not vary other settings in the JSON files. Our experi-
ment was further controlled by using the same raw capture files for
each experimental run. This precluded factors such as lighting, frame
rate, temperature, or others from varying from run to run.
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a.

b.
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d.
Figure 4. Selected renderings for standard scene.

Baseline rendering is shown in (a). In (b), camera-specific white balance
is used, with other factors at baseline. In (c), camera-specific black level
settings are used. (d) used camera-specific settings for both black levels and
white balance. Together, these images are the responses for a 2×2 factorial
experiment with the factors white balance and black level.

Table 1. Image quality by black level and white balance settings.
These runs were made with color correction matrix at baseline (identity
matrix), Facebook-supplied falloff correction, and RIT-generated geom-
etry correction. The numbers in the body of the table are subjectively as-
signed quality ratings, on a scale of 0 (worst) to 10 (best).

White Black Level
Balance
level “1 for all” “Average” “Camera-

Specific”

Ones

3; vertical
bands at
transitions
between side
cameras
objectionable

2; vertical
bands ob-
jectionable

6; no banding
visible; color is
incorrect

One for all (not run)
2; vertical
bands ob-
jectionable

8

Camera-
Specific

3; Some
banding
visible

2; vertical
bands ob-
jectionable

9; banding not
detected; good
consistency
between
cameras;
colors not
completely
accurate

Results and Discussion
In all of our testing, the black level values were the rendering pa-
rameters with the greatest influence on the quality of the stitched
output image. This was found across different scenarios and lighting
conditions as well as a variety of testing combinations. These values
must be obtained at each individual capture location in order to ac-
count for sensor temperature. This also requires inputting the values
into the JSON files of each camera before going through the ren-
dering process. This allows for the highest amount of consistency
between cameras. The procedure resulting in the most consistency
in the output image used the black level values specific to each indi-
vidual camera in the system. The effect of black level setting may be
evaluated by comparing subfigures (a) and (c) in Figure 4.

White balance did not show as much importance as the black
level in terms of camera consistency. However, these values proved
more important for accurate reproduction of colors. The black level
adjustment allows for matching between all 17 cameras, but white
balance adjustment allows for more accurate color balance of the
captured scene. The setting resulting in the most accurate output
image used white balance values specific to each camera. The JSON
file for each camera was given the RGB values needed to adjust the
white balance of the scene based on that camera’s response to a gray
card in its field of view. The effect of white balance setting may be
evaluated by comparing subfigures (a) and (b) in Figure 4.

Based on our results, the effect of the color correction matrix
(CCM) is not as apparent as the other two parameters tested. How-
ever, again, in terms of accurate color reproduction, it allows for
more color accuracy than simply adjusting the white balance. Ad-
justing white balance results in somewhat accurate colors, but ad-
justing both the white balance and CCM results in even more ac-
curate colors. The procedure resulting in the most accurate output
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image used a CCM that was an average matrix calculated from all
the CCMs of the 17 cameras of the system. This combination of in-
dividual black level values, single-camera white balance values, and
average CCM values produced the most consistent and accurate out-
put image. Using camera-specific CCMs resulted in increased band-
ing artifacts; an average CCM computed from all cameras produced
the best result.

Conclusions
Of the factors investigated, the black level appeared to have the
greatest impact on image quality. Unless black levels specific to each
camera were used, the boundaries between cameras in the stitched
images were visibly obvious and objectionable. Even with baseline
settings for the other factors, using camera-specific black level com-
pensation produced an acceptable visual state (refer to Figure 4c).

Because the RGB black levels are dependent on temperature
and shutter speed, and vary from one camera to the next, a black
frame needs to be taken for each camera on location for each shoot,
at the same shutter speed used for the capture.

Regarding white balance, the best results were found when us-
ing RGB white balance values that were obtained from a single cam-
era. This is done by using a gray card and compensating for the white
balance of the scene (refer to Figure 4b).

When the system was originally defined, no camera with masked
pixels seemed to offer the resolution, size, framerate, and transfer
speed that cinematic-quality full-sphere VR capture requires. Now
that cameras with masked pixels that meet these requirements are
available, they should be considered for new builds of this system
so that the quality-critical compensation for each camera’s specific
black levels may be more conveniently performed.

Future Work
Our plans include a closer look at the CCM settings, and investi-
gation of the geometric and falloff (vignetting) settings. We are also
considering solutions for increasing dynamic range to permit better
capture of daytime outdoor scenes.
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