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Abstract
Task requirements for image acquisition systems vary sub-

stantially between applications: requirements for consumer pho-
tography may be irrelevant - or may even interfere - with require-
ments for automotive, medical and other applications. The re-
markable capabilities of the imaging industry to create lens and
sensor designs for specific applications has been demonstrated in
the mobile computing market. We might expect that the indus-
try can further innovate if we specify the requirements for other
markets. This paper explains an approach to developing image
system designs that meet the task requirements for autonomous
vehicle applications. It is impractical to build a large number of
image acquisition systems and evaluate each of them with real
driving data; therefore, we assembled a simulation environment
to provide guidance at an early stage. The open-source and freely
available software (isetcam, iset3d, and isetauto) uses ray tracing
to compute quantitatively how scene radiance propagates through
a multi-element lens to form the sensor irradiance. The software
then transforms the irradiance into the sensor pixel responses, ac-
counting for a large number of sensor parameters. This enables
the user to apply different types of image processing pipelines to
generate images that are used to train and test convolutional net-
works used in autonomous driving. We use the simulation environ-
ment to assess performance for different cameras and networks.

Introduction
The market for image sensors in autonomous vehicles can

be divided into two segments. Some image sensor data is used
as images to the passengers, such as rendering views from behind
the car as the driver backs up. Other image sensor data is used by
computational algorithms that guide the vehicle; the output from
these sensors is never rendered for the human eye. It is reasonable
to expect that the optical design, sensor parameters, and image
processing pipeline for these two systems will differ.

Mobile imaging applications for consumer photography
dominate the market, driving the industry towards sensors with
very small pixels (1 micron), a large number of pixels, a Bayer
color filter array, and an infrared cutoff filter. There is a nascent
market for image sensors for autonomous vehicle decision-system
applications, and the most desirable features for such applications
are not yet settled. The current offerings include sensors with
larger pixels, a color filter array that comprises one quarter red
filters and three quarters clear filters, and no infrared cutoff fil-
ter (e.g. ON Semiconductor; Omnivision). The requirements for
optical properties, such as depth of field effects, may also differ
between consumer photography and autonomous vehicles. Con-
sumer photography values narrow depth of field images (bokeh),
while autonomous driving value large depth of field to support
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Figure 1: Variations in the camera architecture provide different
images to object detection networks. The same scene is shown
as measured by a pinhole camera (top left), a fish-eye lens (top
right), a red-clear sensor (bottom left), and a 2× 2 camera array
(bottom right).

detection and classification accuracy.
This is an early phase in the development of imaging sys-

tems for autonomous vehicles, and the space of potential camera
designs for autonomous vehicles is quite large (Figure 1). The
parameter choices range from color filter array, pixel size, op-
tics and camera array format and camera control algorithms (e.g.,
auto-focus, auto-exposure). The possibilities in the space of con-
volutional neural networks (CNNs) for analysis is at least as large,
and the network accuracy and resilience may depend on the type
of input data. Exploring this space, spanning the joint dependency
of hardware and network options using purely empirical methods,
is impractical and a number of groups are exploring simulation
tools that might be helpful. We describe an open-source and free
implementation of software tools that can help assess the relation-
ship between image capture devices and CNN performance.

Experimental methods
We implemented an open-source camera simulation environ-

ment to design and evaluate different image acquisition systems
(Figure 2). The system is divided into two main github reposito-
ries in the iset1 project on github. One repository includes meth-
ods for creating physically realistic spectral radiance distributions

1https://github.com/iset
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Figure 2: The isetauto simulation pipeline. Scene geometries and textures are read into iset3d, which creates a ray-traced spectral
irradiance at the sensor. The iset3d methods use a platform-independent Docker container with PBRT to calculate the ray-traced irradiance
and calculate pixel-level labels for objects and depths. The isetcam methods read the sensor irradiance and simulate the sensor responses
using a model that accounts for pixel geometry, color filters, electrical noise, and an image processing pipeline. The simulated sensor
values and pixel-level labels are used to train TensorFlow networks for object classification.

of complex driving scenes and uses ray tracing to compute quan-
titatively how scene radiance propagates through a multi-element
lens to form the sensor irradiance (iset3d). The other repository
includes methods for modeling imaging sensors, accounting for a
large number of sensor parameters, in order to transform the ir-
radiance into the sensor pixel responses (isetcam, formerly iset)
[1].

The geometry and material properties of the scene are man-
aged using methods in iset3d that organize the inputs to the
Physically Based Ray Tracing (PBRT) software packaged in a
platform-independent Docker container. PBRT uses geometric
optics to compute how light rays propagate from light sources,
interact with objects in the scene and arrive at the camera aper-
ture [2]. PBRT includes a camera model that traces rays from the
aperture through multi-element spherical lenses with each surface
being defined by its curvature and wavelength-dependent indices
of refraction [3]. Finally, we added a diffraction module that ran-
domizes the ray angular direction by an amount that depends on
the rays distance from the aperture [4]. The iset3d methods return
an estimate of the spectral irradiance distribution at the image sen-
sor plane.

The spectral irradiance is converted to a sensor response us-
ing isetcam2. The isetcam software contains a phenomenologi-
cal model of the image sensor array. Given the spectral irradi-
ance, isetcam calculates the predicted array of pixel responses,
accounting for the sensor geometry and electrical characteristics.
The isetcam repository includes image processing methods that
can form part of an image processing pipeline that converts pixel
responses to an sRGB image. Taken together, the iset3d and iset-
cam methods produce simulated camera images of a scene.

Finally, the simulated camera images are used for training
and testing convolutional neural nets (CNNs) used in autonomous
vehicle applications. The ground-truth labels for training and test-
ing is provided by the iset3d methods. These methods label each
image pixel for its depth, object label, and material property. The
scripts controlling the CNN calculations for the automotive simu-
lations in this paper are in a third repository, isetauto 3, that relies
on iset3d and isetcam.

2https://github.com/ISETCAM/isetcam/wiki
3https://github.com/isetcam/isetauo

Table 1: General camera parameters.

Parameter Value

Resolution 640×480
Pixel size 3 µm
Sensor diagonal 2.42 mm
Dark voltage 1 mVs−1

Read noise 1 mV
Voltage swing 1 V
Field of view 44 deg
Lens model pinhole
Bit depth 8 bits

Scene generation
We explored the influence of camera design for city driv-

ing using a background environment of a city model spanning
four blocks, each approximately 100× 100 meters. The blocks
were visually distinct, comprising a variety of different buildings,
plants, and other typical city objects (lamps, benches, mailboxes).
We added test objects (cars, people and buses) from three differ-
ent categories at semantically meaningful locations within the city
blocks: Cars were placed on the streets, pedestrians on or near the
sidewalk. For this project we had 12 car models, 24 pedestrian
models and 2 bus models. Each model is scaled to approximately
correct dimensions, and we generated five arrangements for each
of the four blocks, producing 20 distinct city scenes. By varying
camera placement, we generated several thousand images.

Camera
We simulated a camera using the specifications of typical

cameras for autonomous driving applications (Table 1; [5]). Auto-
motive sensors have significantly larger pixels and lower sampling
resolution compared to those used in mobile imaging. The re-
duced resolution is motivated in part to reduce the computational
complexity of real-time automotive calculations, and also because
majority of neural networks are designed to process low resolu-
tion images at their inputs. Using larger pixel size also increases
sensitivity, well-capacity, and improves low light performance.

Neural networks
We trained and tested two object detection network architec-

tures, SSD-Mobilenet [6] and RFCN-Resnet101 [7]. We modi-
fied the architectures to directly operate on 640× 480 input im-
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Figure 3: Simulated scenes. The city backdrop and objects were either purchased (https://www.cgtrader.com) or downloaded from free
sites. The original images were adjusted so that cars were roughly 2 m wide and pedestrians about 1.8 m tall. Objects were placed using
simple scene generation principles (cars mainly in roads, people mainly on sidewalks). The cameras were placed randomly in the scene
near a plane parallel and 1.5 m above the road. The camera ’look at‘ direction was randomly arranged within a cone near the plane. The
realism of the simulated scenes will continue to improve as we develop better material models and develop procedural models for adding
more objects.

ages. We initialized networks with weights optimized for ob-
ject detection on MS COCO dataset [8, 9] and tuned them us-
ing 2200 synthetic images and as many as 1000 epochs. Perfor-
mance plateaued after training for 100 epochs, and thus we used
this number of training epochs in our experiments. The detec-
tion performance of three classes - cars, pedestrians and buses -
was measured using mean average precision (mAP) at 50% in-
tersection over union (IoU) between estimated and ground truth
bounding boxes [10].

Rendering at scale
Quantitative computer graphics using ray tracing is compute-

limited, not memory-limited. Moreover, physically based ray
tracing is not well-suited to GPU-based rendering. Consequently,
the preferred method for speeding up the ray-tracing calcula-
tion is to leverage multi-core architectures and cloud-scale job
scheduling. Specifically, it takes about 10 minutes to render a
single 640×480 image, using 1024 rays per pixel, on a machine
equipped with two 8-core Intel Xeon processors; rendering a col-
lection of images sufficiently large for machine learning algorithm
training and evaluation is prohibitively slow with only one ma-
chine. Using cloud resources, in our case the Google Cloud Plat-
form, we created many images in parallel to create a significant
data set in a practical amount of time.

Experiments
We describe two experiments that illustrate how to use simu-

lation to understand the impact of different camera architectures.
The first experiment analyzes the impact of the cameras image
processing pipeline on network performance. The second exper-
iment analyzes network resilience to errors that arise from auto
exposure algorithms.

In both experiments, we trained and tested using simulated
images. These were generated by placing a virtual camera within
the city scenes at random locations but near the ground. Specifi-
cally, the camera viewing direction was initialized within a plane
1.5 m above the ground, and then the ’look at‘ direction was mod-
ified by varying the pan over a range of −10 deg to 10 deg, and
randomizing the tilt and roll over a range of −5 deg to 5 deg. The
networks were altered so that the input size matched the size of
the simulated images (640×480).

Image processing pipeline
Consumer photography applications use a sophisticated pro-

cessing pipeline that is optimized and standardized to produce a
good visual reproduction of the original scene when the images
are rendered on a display. Many aspects of the image process-
ing pipeline are designed to match the properties of the human
visual system. Here we explored whether these operations benefit
convolutional neural network performance, as well.

Figure 4 shows three stages in a conventional image process-
ing pipeline that would be used for a sensor with a color filter
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Figure 4: Three stages of the image processing pipeline. The simulated sensor irradiance data are transformed into the digital values
sampled from the pixels (raw). These are then converted an RGB image using bilinear demosaicing (linear). A color transform and a
nonlinear power function transform these values to a final representation (sRGB) .

array (CFA) arranged in a Bayer pattern (RG;GB). The pixel val-
ues read from the sensor is the raw input. Each pixel measures a
pixel value from one of the three color filters. These data are typ-
ically demosaiced, in this case by linearly interpolating the image
to represent RGB values at every position. The pixel values in
this representation are a weighted sum of the number of photons
incident at the pixel, hence we call this representation linear. The
third stage shows the output of the image processing pipeline, a
color-corrected image in sRGB space. This representation is cal-
culated by applying (a) color transformations that account for the
color filters and the illuminant, and (b) a nonlinear calculation that
produces RGB values suitable for display on a typical monitor. In
the pipeline used here, we chose a linear color transformation that
mapped the pixel data of a Macbeth chart into a calibrated color
space (CIE XYZ), and a gray-world illuminant correction algo-
rithm. The data are gamma encoded to approximately match the
industry-standard sRGB representation.

Figure 5 summarizes detection results for the SSD and
RFCN networks. The height of each bar represents the mean av-
erage precision for testing and training on one of the three types
of data. For the SSD network, object detection performance was
lowest for the raw data and similar for the linear and sRGB data.
We suspect this small difference arises because the spatial aver-
aging for the demosaicking (linear, sRGB) have slightly higher
pointwise signal-to-noise than the raw data. For the RFCN net-
work the three cases are not meaningfully different, and this net-
work has uniformly higher mean average precision than the SSD
network.

We performed an additional experiment to assess whether
training with the different inputs produce very different network
parameters. Specifically, we assessed performance for a network
trained with raw and linear on sRGB images. Training with raw
data does not transfer well to the sRGB task, with a performance
decline of about 20%. Training with linear data reduces perfor-
mance with sRGB data by about 10%.

Neural network resilience to exposure errors
Auto-exposure (AE) is a fundamental camera algorithm

whose purpose is to estimate camera settings (aperture, pixel con-
version gain, and exposure duration) so that the acquired pixel
responses span the dynamic range. In practice, exposure algo-
rithms often acquire several frames to stabilize, particularly for

a dynamic scene such as a vehicle leaving a tunnel and emerging
into daylight. Under these conditions frames with sub-optimal ex-
posures will be acquired and processed; we tested the resilience
of a detection network with respect to bias errors in the exposure
settings.

To simplify the auto exposure robustness, we fixed the the
mean sensor illuminance (1000 lx), pixel gain (1.0) and aperture
and swept out the exposure duration. We considered an exposure
setting with a mean pixel response of 0.4 of the voltage swing
to be ideal, and we simulated we exposure errors that deviated
from ideal by a factor of 2i where i ∈ [−4,4]. The exponent is
sometimes called the bias of the exposure value (EV), and EV = 0
is a correctly exposed frame (Figure 6).

To establish an upper bound on performance, we first trained
and tested each network to each of the separate EV bias lev-
els, determining network parameters optimized for each exposure
bias. We used these measurements to establish an upper bound on
performance. This bound defines an ’unreachable‘ performance
level, the shaded region in each of the panels in Figure 7; the
accuracy estimates should fall below this shaded region. To ex-
plore robustness, we first trained the baseline network using only
unbiased images (EV = 0, solid curve), and we then tested perfor-
mance using images with varying amounts of EV bias (EV mix,
dashed curve), a common data augmentation strategy. In the EV
mix case each bias was represented by equal number of exam-
ples, and the total number of training images was the same as the
EV = 0 and optimal conditions.

The analysis reveals that the RFCN network is more resilient
than the SSD network to exposure value bias. Training with a
mixture of exposure values (EV mix) helps network resilience at
the cost of lowering the accuracy, for an equal number of train-
ing images. Finally, the asymmetry of the curves around EV = 0
value shows that both networks handle underexposed images bet-
ter than overexposed ones.

Discussion
There is substantial interest in using synthetic images for for

autonomous vehicle applications where data in dangerous driving
conditions are difficult to obtain. This article provides an addi-
tional reason for using synthetic images: to explore the range of
image acquisition architectures that might improve performance
and reduce system cost. In the following, we describe how our
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(b) RFCN-Resnet101
Figure 5: Network performance when trained and tested using
raw, linear and sRGB data. Accuracy is measured as a fraction,
the intersection of union (IoU) between the true bounding box and
the estimated bounding box. The mean average precision (mAP)
across many test images and classes is reported. The SSD net-
work (a) performs best when trained with linear data; accuracy
decreases by 15 percentage points when trained with raw data.
The RFCN network (b) has higher accuracy than SSD for all of
the data types, and the performance when trained using raw data
is only slightly lower than training with the other types.

work relates to other projects developing image simulation tools.

Related work
Tsirikoglou et al. describe procedural methods for creating

a large variety of plausible driving scenarios [11]. They advocate
using ray tracing methods to generate images rather than rasteri-
zation methods from game engines. In support of this view, they
show that training networks on synthetic ray-traced images per-
form better on camera images compared to networks trained on
rasterized images. Specifically, they report that training a net-
work on the SYNTHIA [12] data set yields an accuracy of 21%,
the rasterized images from Grand Theft Auto yields an accuracy
of 31%, and their ray-traced images yields an accuracy of 37%.
In the case of analyzing indoor scenes, Zhang et al. report similar
findings - pre-training with a large synthetic ray-traced data set
improves network performance tested on camera data [13].

We support the principle of using ray-tracing to obtain the
most realistic synthetic images. There is a significant computa-
tional cost, but the quality of the ray-traced images is very impor-
tant for the process of camera design.

Buckler et al. analyze how the camera image processing
pipeline influences computer vision algorithm performance [14].

EV 0

EV -2 EV +2

EV -4 EV +4

Figure 6: A simulated scene captured with the correct exposure
value (top), under-exposed (left), or over-exposed (right). Such
images, with different amounts of exposure value bias, were used
for training and testing to explore network resilience to imperfec-
tions in the auto-exposure algorithm.
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(b) RFCN-Resnet101
Figure 7: Network resilience to exposure value bias. The bound-
ary of the shaded region marks the upper bound on accuracy; it is
estimated by training and testing the network using sRGB images
at each EV bias. The two curves show accuracy when trained at
EV = 0 and tested at multiple EV values (solid) or trained at mul-
tiple EV values (dashed). The two panels are for the SSD (a) and
RFCN (b) networks. The RFCN network has higher performance
and better resilience, at a higher computational cost.
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They set out to simplify processing to reduce power consumption,
while maintaining accuracy across a range of computer vision al-
gorithms. They do not use an end-to-end camera simulation to
investigate this issue; instead they approximate sensor data from
existing RGB images [15]. They report that demosaicing, the ma-
jor differences between raw and linear, and tone mapping, the
major difference between linear and sRGB, both influence algo-
rithm performance.

The SSD network performance differs between raw and de-
mosaiced, as described by Buckler et al., but the difference is
much smaller for the RFCN network. Tone-mapping had almost
no effect on performance for both networks. These experiments
suggest that camera architecture should be evaluated for specific
networks. The end-to-end simulation enables such a co-design
methodology (e.g., Diamond et al. [16])

Conclusions
The contributions of this paper are:

1. A collection of open-source, free software tools that im-
plement end-to-end simulation from a spectral scene, ray-
traced through the optics to the sensor irradiance, sampled
by a sensor model, transformed by an image processing
pipeline and delivered to a CNN.

2. An assessment of the impact of the image processing
pipeline for consumer photography on the performance of
two CNNs.

3. An assessment of network resilience as measured by how
accuracy varies with imperfect auto-exposure settings.

Some networks can be effectively trained to use raw sen-
sor data, bypassing the image processing pipeline, and other net-
works can be effectively trained with linear data without color
transforms or tone-mapping. We evaluated parameter generaliza-
tion by training on raw or linear sensor data and testing on sRGB
images; in both cases we found a significant (25%) reduction in
accuracy (poor generalization). Hence, achieving a high level of
performance requires training with the specific data type.

The limits on network generalization between image data
types is supported by Tsirikoglou, et al. [11] who trained net-
works trained using SYNTHIA, Grand Theft Auto and Ray-
Tracing and assessed performance on Cityscapes images. The
generalization between data types is low, with accuracy dropping
by even more than 50%. The poor generalization is also supported
by Buckler, et al. [14]. These results and ours suggest that train-
ing a network with images from one type of camera may produce
solutions that do not generalize to other cameras. We conclude
that co-design of the camera and network is a preferred approach.
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[15] S. Kim, H. Lin, Z. Lu, S. Süsstrunk, S. Lin, and M. Brown, “A new
in-camera imaging model for color computer vision and its applica-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 34, no. 12, pp. 2289–2302, 2012.

[16] S. Diamond, V. Sitzmann, S. Boyd, G. Wetzstein, and F. Heide,
“Dirty pixels: Optimizing image classification architectures for raw
sensor data,” arXiv preprint arXiv:1701.06487, 2017.

7IS&T International Symposium on Electronic Imaging 2018
Photography, Mobile, and Immersive Imaging 2018 161-7


