
Continuous-Motion Text Input in Virtual Reality
Janis G. Jimenez, Jürgen P. Schulze; University of California San Diego; La Jolla, CA, USA

Abstract
Text input in virtual reality is a problem that does not cur-

rently have a widely accepted standard method. As VR head-
sets have become more commonplace, text input has also become
more important. Using a physical keyboard is not possible with a
head-mounted display that blocks the users visual field. The two
most popular solutions for text input in VR today are a virtual
keyboard interfacing with VR controllers and voice recognition.
However, they either require a handheld controller or a quiet en-
vironment. 3D-tracked controllers with a virtual keyboard can
simulate a real keyboard to an extent, but they suffer from a lack
of tactile feedback that makes typing slow and unintuitive. A more
intuitive solution is a Swype or SwiftKey-like algorithm, where the
path the users finger travels is used as input, as opposed to indi-
vidually pressing each key. We implemented a prototype for the
Oculus Rift with a Leap Motion controller on it that combines a
novel continuous-motion text input method with hand gestures to
demonstrate an all-purpose, intuitive method of text input. We
compare it to state-of-the-art VR keyboard input with a virtual
keyboard, as well as a head-directed input method.

Introduction
The main barrier to finding a comfortable and reliable way

of taking in text input is the fact that virtual reality headsets block
the users vision. Some headsets are add-ons to existing hardware,
so they have limited to no options for text input when they are
used in VR mode. This means they might not even come with a
controller, choosing instead to rely on gaze selection (looking at
a specific spot long enough to select it) along with any buttons
that are already on the headset itself. Examples of this are the
Samsung Gear VR and the Google Cardboard.

Those who do have a pre-existing controller follow the
Playstation VRs example. Their solution is to use either the con-
trollers that are already being used for the Playstation 4 or their
Playstation Move motion controllers. Their system for typing
messages is therefore the same as it is has been for most con-
soles: with a controller, the user uses the thumbstick (or touch-
pad) to slide over to the letter they want. With motion controls,
the controller itself becomes a cursor in 2D space that the user
moves over to the desired letter. Each letter must be individually
confirmed with the push of a button.

Since these headsets are mainly for playing video games,
there is no pressing demand to accommodate for text input, espe-
cially when the user has ways to input text on the existing system
with their headset off. However, there is a growing demand when
it comes to staying connected to ones phone while in VR. Some
headsets allow the user to connect their phone through Bluetooth
(or the headset display is their phone). The HTC Vive, for exam-
ple, allows the user to see text messages sent by their contacts and
call them with the built-in microphone. If its Vive for Android,
the user can also send Quick Replies, which are pre-made mes-

sages [21]. Generally, the user is expected to take off their VR
headset to type a custom message.

For headsets hooked up to a computer, the straightforward
solution is to use the keyboard. But again, these headsets com-
pletely block the users vision. The Oculus Rift, HTC Vive, and
Playstation VR all prefer to use their own controllers because they
will always be in the users hand. This mostly removes the issue
of having to search around in the dark for the right button once
the user becomes familiar with the controllers button layout, and
allows them to move around instead of having to sit at their desk.
However, there are some independent projects that accepted this
constraint and have made prototypes involving a physical key-
board.

Previous Work
Lachlan Sleight created a 3D replica of their keyboard and

used the Leap Motion controller to track where their hands are, so
the user can see both their hands and the keyboard through their
VR headset [24]. It is an ideal solution when sitting in ones office
and it is easy to learn, which will result in a fairly high word-per-
minute performance compared to the one-letter-at-a-time input of
most controllers, but not for general use.

In lieu of having to use a physical keyboard, some have opted
to use a digital one. A big hurdle that this option has to overcome
is the lack of tactile feedback, because there is no tangible con-
troller to assure the user that their input was received. If there
is no physical surface to press against, the user can’t intuitively
know when they are pressing something. For some, the solution
is to create hardware that can simulate that feedback. A group
of researchers from Rice University created special gloves that
use bladders that expand and contract to simulate the sensation
of touch in VR [30]. However, it is still in the prototype phase,
so how well it performs with a 3D keyboard remains to be seen.
Some have made prototypes that provide ample visual and audio
feedback to try to make up for the lack of tactile feedback.

Researchers and VR enthusiasts have created a variety of vir-
tual keyboard designs that can interact with hand-tracking sensors
(such as the Leap Motion Controller or the Microsoft Kinect):
One has the appearance of a regular QWERTY keyboard on a
mostly flat surface, with keys that move down as the users fingers
press them [5]. Another has the keyboard directly facing the user,
with keys lighting up and making a clicking sound when the users
finger is near enough to them [31]. Some may also add in a hover
check, where the user keeps their finger pressed on a key for a
short amount of time to confirm that it is the desired key [12].
These projects do free up the users hands by not requiring a con-
troller, but the lack of tactile feedback and the imperfect tracking
mechanisms of the sensors make typing slow and error-prone.

There are other ways to type on a virtual keyboard, how-
ever. The difficulty in selecting keys partially stems from a depth-
sensing issue, so a good way to circumvent this is to not rely on

IS&T International Symposium on Electronic Imaging 2018
The Engineering Reality of Virtual Reality 2018 450-1

https://doi.org/10.2352/ISSN.2470-1173.2018.03.ERVR-450
© 2018, Society for Imaging Science and Technology



depth at all. Some keyboards rely exclusively on the aforemen-
tioned hover check. This is how the Myo armband, a motion con-
trol device, allows the user to search the web [18]. But there is
still a more efficient way that does not force the user to wait for
every letter they want to type.

The Swype method of typing also does not need depth to
work [25]. On a phone, typing with Swype works as follows: the
user places their finger on the first letter of the word, then drags
their finger to each required letter without stopping. They only lift
up their finger once the word is finished. Swype will then guess
what word they were typing. If it guesses wrong, multiple auto-
complete options would be available to choose from. A phone
knows when to start and stop tracking input by sensing when the
users finger is touching the screen, but in VR, it could be con-
trolled by a button on the headset or a hand gesture. There have
been tests using the Leap Motion with a Swype keyboard [33],
and there have been rumors of Swype looking into virtual real-
ity [22], but to our knowledge nobody has implemented this yet.
For our prototype, we chose to create a VR application with hand
tracking and a 3D keyboard like the examples mentioned above,
but we combined it with a Swype-like method of text input to
demonstrate how this method works in virtual reality.

Hardware and Software
Our prototype was created in Unity version 5.5.1f3 and writ-

ten in C#. When deciding on the developer environment, we chose
Unity over Unreal Engine or Lumberyard for a number of reasons.
A large majority of developers use Unity because of how quickly
they can create a prototype [10]. Many of the projects mentioned
in the Related Work section used Unity to develop their proto-
types.

While there are many commercially available headsets, we
focused on choosing a headset that is widely used and compatible
with game-developing programs. The Oculus Rift and HTC Vive
are two of the most popular PC-based headsets, and are compati-
ble with a variety of devices. Unity is mainly compatible with the
Oculus Rift, Gear VR, the HTC Vive, and the HoloLens, though
it continues to add support for more types of headsets [26]. In this
project we use an Oculus DK2 head-mounted display.

As for a hand-tracking device, the two main competitors in
use are the Leap Motion Controller and the second-generation
Kinect (because the first-generation Kinect cannot keep track of
individual fingers). Both are compatible with the Oculus Rift, but
the library the Leap Motion Controller comes with is much easier
to work with when it comes to tracking individual fingers, while
the Kinect V2 requires finding a third-party library or algorithm
[Pte16]. The camera placement is also more convenient since the
Leap can be placed directly onto the headset, so we ultimately
chose the Leap Motion Controller, along with Leap Motion SDK
version 2.3.1.

We developed on a PC with a Windows 10 operating system.
It is the recommended OS by Oculus because they have stopped
development on OS X and Linux for the time being [3]. The Leap
Motion Controller SDK is also only available for Windows and
Android [16].

Backend
For the Swype-like algorithm, Swype, Swiftkey, and Google

Keyboard have no publicly available source code online, though

Android phones automatically have a Swype keyboard. However,
the Android keyboard has a limited API to work with that is tar-
geted towards touchscreens, and it is quite difficult to interact with
through scripting, so we decided against directly using this key-
board and instead made our own keyboard with Unity. There are
many alternative open source projects available online, but most
if not all lack the complexity that the commercial apps have under
the hood, and our own backend would be easier to debug and build
upon. For our prototype, we focused on creating an intuitive, re-
sponsive keyboard and determining effective criteria for filtering
user input in the front-end, and a fast, accurate way to compare a
given word to a dictionary and auto-correct it on the back-end.

First, we needed a way to store words into a data structure
that could be built and traversed in polynomial time. A hash table
has quick O(1) access, but searching for the right word could lead
to O(n) search time, which would be ill-advised for a large dictio-
nary. Instead, we mainly looked at a ternary trie and a BK tree.
Both essentially have O(logn) search time, so we looked at how
the words were organized in each structure. A ternary trie has
a structure similar to both Binary Search Trees and Tries. Like
a trie, it would store words character-by-character, requiring w
nodes for a word of length w. A trie, however, would have all 26
letters as its children at every letter, so it would be very space-
inefficient with a large dictionary. Instead, a ternary trie is more
like a binary tree, but with up to three children at every level in-
stead of two. The left child has a value less than the current node,
and the right child has a value greater than it. The middle child is
for a node with a value that lies between the two other children.

The main issue with this structure was that it was suited more
for spell-checking and auto-complete, not auto-correct. The first
two rely on a sequential procedure, while auto-correct has to cover
many more cases. When a user types a word, they could ac-
cidentally transpose two letters, or forget a letter in the middle
of the word. They could even do this multiple times within the
same word. A ternary trie orders the letters of words sequentially,
though it can store a distance that would allow it to compare just
how different two words are from each other. With some toler-
ance to check against, it could still traverse the data structure and
find all words that fit with in the tolerance, but this means that it
would have to compare every substring it finds in its path, not just
every word.

We ultimately created a BK-tree [11, 32], a tree structure
proposed by Burkhard and Keller that relies on sorting words by
the distance between them. This means that each node is a word,

Figure 1. The Oculus Rift DK2 headset with the Leap Motion Controller

attached. [17]

450-2
IS&T International Symposium on Electronic Imaging 2018

The Engineering Reality of Virtual Reality 2018



not a letter. First, it picks an arbitrary node as its root. Then, to
add a node, it finds the distance between new node and the root
of the tree. It then traverses its children until it finds another node
that has the same distance. If it does, then it traverses that nodes
children, and continues doing so recursively until it cannot find a
node with the same distance. When it reaches this point, the new
node is added as a child to the node it stopped on. Building the
tree takes about O(nlogn): it takes O(logn) to place a single node
into the tree, and it places O(n) nodes.

Figure 2. An example of a BK-tree sorted by the Levenshtein Distance

between the words.

The distance used by the BK-tree is the Levenshtein Dis-
tance, [29] a number representing how many changes need to be
made to a word (deletions, insertions, or mismatched letters) in or-
der to turn it into another word. We relied on this metric because
it is a simple, discrete way to keep track of differences between
strings that is commonly utilized for a BK-tree (and is sometimes
used in ternary tries as well). For example, to change the word cat
to gate, the c must be changed to a g and an e must be added to the
end. Two changes must be made, so the distance between cat and
gate is 2. The Levenshtein Distance code works by maintaining
a matrix of integers holding the distance between substrings of
the two words. It iterates through both words, letter by letter, and
adds 1 to the count in the current index. Once it finishes iterating,
it returns the value at the last index.

The original Levenshtein Distance equation does not take
transpositions into account (cat and chat would have a distance of
3 without transpositions, and 1 with transpositions), so we coded
in the transposition check made by the Damerau-Levenshtein Dis-
tance version [28]. In addition to this, we added an extra check: a
keyboard neighbors check. When typing, it is not uncommon for
the user to accidentally choose a letter neighboring the letter they
actually wanted. To account for this, we have a dictionary storing
the surrounding neighbors for every letter and symbol on the key-
board. Each time it makes a comparison between the two words,
it will check if the two letters are neighbors of each other. If so,
it will add 1 to the distance; otherwise, it will add 2. To balance
this change, every increment that is not between two neighboring
letters will be doubled. This means that each deletion, insertion,
and non-neighbor mismatch will add 2 to the distance instead of
1.

The next step is using the tree to come up with auto-correct
candidates. Once the user has finished typing a word, it traverses
the tree to find candidates within a certain tolerance threshold.
This O(logn) search process is as follows: it starts with a queue
containing the root of the tree and finds the distance between the
new word and the root word. If it falls within the tolerance thresh-
old, it is added to a list of possible auto-correct candidates. Then
it looks through its children and adds them to the queue if they

fall between the range of the previously calculated distance plus
or minus the tolerance. The current node is then dequeued and the
process loops until nothing is left in the queue.

Figure 3. Two matrices showing the Levenshtein Distances between the

substrings of kitten and sitting on the left, and Saturday and Sunday on the

right.[29]

The list of candidates is sorted by lowest to highest distance
to the new word. The first three words in the list are then dis-
played in the scene as possible candidates that the user can select
to correct the word they just typed. The results are then passed on
to the front-end logic, which will then display the results to the
user.

Continuous-Motion Text Input
After looking through some demos online, we decided to

build off of the Unity’s UI System in VR demo and tutorial pro-
vided online from the Oculus site [4]. The main component that
was crucial to this prototype was their gaze pointing code, which
has a cursor directly in the middle of the screen that follows the
users head motions. It provided a reliable backend for interacting
with Unitys user interface (UI) with a cursor. We combined this
with the Leap Motion Controller in two different ways: camera
gaze mode and finger pointer mode. In gaze mode, the cursor is
still tied to head movement, while in pointer mode, the cursor is
controlled by the pointer finger of the right hand. Both modes
are augmented by hand gestures, which control keyboard interac-
tions. There is also a third mode called one-letter, which will turn
off the Swype aspect of either mode and only take in one letter
at a time. Note that here, when a button is pressed, it means the
user made the appropriate gesture while the cursor is above that
button.

The Leap Motion Controller SDK provides multiple default
hand models. We chose the wire hand models because the colors
make it easy to know which hand the computer considers left or
right at any point. The wire model also blocks less of the users
view, which makes it easier to see the rest of the scene.

The scene is a flat 2D keyboard panel in world space made
with Unitys UI that has the same basic layout as a typical phone
keyboard, mainly so that most users will already be familiar with
the layout. It has the default ABC mode, and a SYM mode with
some basic symbols. To the left of the keyboard is the text box
panel where the users text is displayed. The backspace key will
delete the rightmost letter that has been typed into the text box if
pressed. Note that if the shift key is pressed, then all subsequent
words typed by the user (if not in one-letter mode) will be capital-
ized until it is pressed again. If the user is in one-letter mode, then

IS&T International Symposium on Electronic Imaging 2018
The Engineering Reality of Virtual Reality 2018 450-3



every subsequent letter typed by the user will be capitalized un-
til it is pressed again. Above these two panels is the auto-correct
panel, which will update with the recommended auto-correct can-
didates. It also has buttons that the user can press to switch be-
tween the different modes, and a Clear button that will erase all
the text in the text box panel when pressed.

We put the keyboard in World Space mainly due to the re-
sulting size of keyboard and text box. If we shrank the keyboard
more, it became difficult to see the individual keys, and putting
it in Screen Space would have forced it to this size so that the
whole UI component would be visible. Although the text box
panel would technically be on top of the keyboard in a typical
Android keyboard layout, we placed it to the side of the keyboard
to give the keyboard center stage in the scene, rather than push it
towards the bottom. The spacing between the keys also imitates
the Samsung Galaxy S7 phone layout we used as a reference, but
it was also so that it would be harder for the user to swipe over
a letter they didnt intend to include, due to the large size of the
cursor.

Figure 4. A screenshot of gaze mode showing the letters keyboard.

Figure 5. A screenshot of gaze mode showing the symbols keyboard.

The cursor itself was taken from the Oculus demo and re-
painted to match the colors of the scene. The size of the cursor
is different depending on the mode the user is in. In gaze mode,
the cursor is the same size as what the demo provided because it
doesnt get in the way of the background but is also big enough
to see. The circle shape with a hole in the center is also useful
because the letter will be visible in the center when the user is
hovering over it instead of blocking it. Pointer mode, however,
slightly increases the size of the cursor, as seen in image 4.3. This
is because pointer mode is harder to control and jitters a bit, so
the larger cursor size helps to stabilize it.

The Oculus demo handles the logic behind how the cursor

knows what button it is hovering over. Originally we had tried
using 2D collisions between the colliders of the cursor and the
keyboard buttons, but there was a peculiar invisible offset that the
collider boundaries would not show, which skewed the input the
keyboard received. The demos logic instead relies on casting a
ray away from the camera towards the scene and keeping track of
what it collides with.

Below the keyboard is some text kept for the purpose of de-
bugging. The top left text states whether it correctly knows that
the user is pinching or not. If the user is pinching, it will say De-
bug: pinching!, otherwise it will say Debug: not pinching. The
text on the right keeps track of the users speed. The threshold for
what is considered fast or slow is currently determined by a hard-
coded number in the code, so it will say Speed: SLOW if at or
below that speed, and Speed: FAST otherwise. The bottom left
text object states what the current mode is. At startup, the default
mode is gaze, so the text will say Current Mode: GAZE.

The main gesture used in this project is the pinch gesture.
This gesture was chosen because most of the other gestures were
removed by the Orion update to Leap Motion to be reworked.
The pinch gesture is actually a short method that checks if each
finger is bent or not. If all five fingers are bent, then the hand
is pinching, otherwise it is not. When the left hand does a pinch
gesture, the cursor will start reading in the letters it is directly
hovering over. It will keep doing this until the left hand stops
pinching. At that point, it will add the word to the text box, then
calculate and display the possible auto-correct candidates. If it
is in one-letter mode for either of these options, then instead the
user will type one letter at a time. They can go to the desired letter,
make the pinching gesture with their left hand, then stop pinching
and it will add that letter to the text box panel.

As for the amount of auto-correct candidates, the Android
phone also has three candidates. We attempted adding more, but
that meant shrinking the buttons. Sometimes the length of the
word would extend past the button, and shrinking the font made
it difficult to read the word. It would be possible to comfortably
add more if the UI panels were stretched out more to the sides,
but we kept it at three to maintain the current layout style. If the
cursor just took in every letter that the user hovered over, it would
be difficult to make out any comprehensible word, so there had
to be a restriction on what letters were included in the final word.
We had at first tried to weight the letters using a combination of
velocity checking and the change in direction. Basically, as the
cursor is moving, it would constantly update the current velocity
of the cursor. Every few frames, it would create a vector in the
direction its currently facing. When it reached a letter, if the ve-
locity was below a certain number, it would compare the current
vector to the previous vector it calculated to find the change in
angle. This angle would be used to give the letter a weight, and
only letters above a certain weight would be included in the final
word. The rest would be handled by the auto-correct.

In practice, however, the change in angle did not seem to
follow the desired behavior, and we instead decided to simplify
so it would only do a velocity check. When the user is going
across the letters, all of them are added to the word, but they have
a negative weight. If the user slows down on a letter below some
threshold, the letters weight is updated to a positive value. Once
the user stops making a pinching gesture, all the letters that have
a non-negative weight are added to the final word and returned.

450-4
IS&T International Symposium on Electronic Imaging 2018

The Engineering Reality of Virtual Reality 2018



Discussion
Since this is a simpler prototype, there are several areas

where it could benefit from further improvements. One major
issue is how unstable and shaky the cursor is when in the second
mode (using the right hand). This is due to the cursors depen-
dency on the movement of the head, and the shorter distance be-
tween the pointer finger and cursor (compared to the camera and
cursor). Smoothing out the movement would likely improve the
speed and accuracy of this mode.

Concerning the code, the most troublesome part would have
to be the auto-correct. While it does contain the desired word most
of the time, our UI only displays the first three results, weighted
by distance. If there are more than three words that have the same
distance, theres a chance the desired word will not be displayed
as one of the three options. For earlier tests, we used a small dic-
tionary of a few hundred words to catch any larger-scale bugs that
could appear. Then we switched over to a much larger dictionary,
which is directly from Linux 14.04s dictionary file. Suddenly, the
auto-corrects accuracy dropped significantly because there were
many more words that fell into the same Levenshtein Distance tol-
erance. We attempted to fix this using two different approaches,
and neither one passed what we called a hello test. This simply
means that the user types out the word hello using the Swype-
like method and looks at the three candidates that show up. We
chose the word hello because it is a fairly common word that has
double letters in it. Duplicate letters cannot currently be typed
out with this prototype. We considered adding in a gesture that
would indicate that a letter would be counted twice, but the more
natural solution is that the autocorrect should be smart enough to
account for it. So instead, we have a test for local repeats that
decreases the overall distance by one for every immediate dou-
ble found in the word (i.e., the two ts in potted count, but not the
ones in potato). This could have unintended consequences on the
calculated Levenshtein distances, however.

The first approach we wrote was to sort the candidates by
their Levenshtein distance to the users typed word. Those with
the lowest Levenshtein distance would be at the front of the list.
However, other words like hell, well, and bell would show up first
simply because they were found as candidates before hello was
found, and they have the same Levenshtein distance. Then we
instead used a 5,000 word frequency dictionary from a word fre-
quency site [8] and sorted the words by frequency. Even then,
words like well, tell, and help would come first because they were
considered more frequent than hello. Even sorting by both meth-
ods combined would not be enough. Note that in both of these

Figure 6. A screenshot of pointer mode.

cases, hello is correctly found as a candidate, but it does not reach
the criteria to make it to the front of the list. The ideal solution
would be to train it on user input so that it would learn what words
are more commonly typed and offer more accurate suggestions,
but I did not have the time to implement this.

In the back-end chapter, we mentioned that when calculat-
ing the Levenshtein Distance, it would check if the two compared
letters were neighbors on the keybord. This keyboard neighbors
dictionary stores the neighbors of letters as they appear in a typical
Android keyboard, but any other keyboard would have to manu-
ally change this because the entries are all hard-coded strings of
characters. It is also missing some symbols that usually come with
phone keyboards (curly braces and the tilde, to name a few). Our
current dictionary was filtered to leave out any umlauts, accent
marks, and so on for the sake of simplicity. It also uses case-
insensitive matching when calculating Levenshtein distance.

Concerning speed, the prototype would never experience
slow-downs except when we would purposely cause it to slow
down and print out debug output. The one exception is when we
used the Linux dictionary file, which contains around 99,000 rows
of words. It would take around 3 seconds at start-up to build the
dictionary, freezing the program until it finished. Perhaps multi-
threading this, along with having a smaller dictionary of the most
common words so the user can start typing immediately, could al-
leviate this drop in performance. After startup, however, searches
were still fast and there were no significant framerate drops.

Other than the somewhat unreliable auto-correct perfor-
mance, another issue that keeps it from truly imitating Swype is
the fact that it weights letters by speed. If a user does not slow
down for a few milliseconds at each letter, the program might
not include that letter in the final word. At that point, it starts to
resemble a hover technique more than Swype. It is still more effi-
cient, because the waiting times for most hover-based programs is
still much longer, but the user cannot simply remain at the same
fast speed the entire time and still obtain their desired word, so
balancing the speed check with other factors would be critical.

Conclusion and Future Work
For this project, we were able to create a prototype utilizing

a Swype-like algorithm in virtual reality using a hand-tracking
device to simulate typing on a 3D keyboard. We implemented
both a gaze-based and a finger-based cursor control, and included
a single-letter mode to compare with the Swype-like mode. A
useful next step for this project would be to hook up the UI from
this project to the official Swype or Swiftkey backend and then
test its performance. This project has several shortcomings that
cannot quite measure up to a polished, widely-used back-end that
has been optimized through several iterations, so having access to
something more stable would be ideal.

If the current prototype back-end code was kept, the auto-
correct would have to be greatly improved. As mentioned in the
Issues chapter, training it on user input would be a great way to
teach it to display more accurate suggestions. As for the hand-
tracking, one way to enhance it would be to combine it with a con-
troller with built-in haptic feedback, like the Hands Omni gloves
from Rice University that inflate bladders [30], or the GloveOne
gloves that use vibrations [9]. While our approach sidesteps the
need for haptic feedback, it would be useful to test the Swype
approach in VR with an experience that better resembles the sen-

IS&T International Symposium on Electronic Imaging 2018
The Engineering Reality of Virtual Reality 2018 450-5



sation of using Swype on ones phone.

References
[1] Edgar Alvarez. Samsung made a web browser for the Gear VR.

https://www. engadget.com/2015/12/01/samsung-internet-for-gear-
vr/, 2015. Engadget, Accessed: 2017-02-20.

[2] Jon Axworthy. The origins of virtual reality.
https://www.wareable.com/wearable-tech/origins-of-virtual-reality-
2535, 2016. Wareable, Accessed: 2017-02-22.

[3] Atman Binstock. Powering the Rift. https://www3.oculus.com/en-
us/blog/powering-the-rift/, 2015. Oculus Blog, Accessed: 2017-03-
15.

[4] Andy Borrell. Unitys UI system in VR.
https://developer3.oculus.com/blog/unitys-ui-system-in-vr/, 2015.
Oculus VR, Accessed: 2016-08-15.

[5] Joshua Corvinus. VR hex keyboard using Leap Motion.
https://www.youtube.com/watch?v=ZERwYJVZOgk, 2016.
Youtube, Accessed: 2017-02-20.

[6] CrashCourse. The future of virtual reality: Crash course games.
https://www.youtube.com/watch?v=BfcBjJ3c9lg, 2016. PBS Digi-
tal Studios, Accessed: 2017-02-15.

[7] Benj Edwards. Unraveling the enigma of Nintendos Virtual Boy, 20
years later. https://www.fastcompany.com/3050016/unraveling-the-
enigma-of-nintendos-virtual-boy-20-years-later, 2015. Fast Com-
pany, Accessed: 2017-03-1.

[8] Word Frequency. Corpus of contemporary American English.
http://www.wordfrequency.info, 2017. Word Frequency data, Ac-
cessed: 2017-03-07.

[9] GloveOne. Gloveone: Feel virtual reality.
https://www.kickstarter.com/projects/gloveone/gloveone-feel-
virtual-reality, 2015. Kickstarter, Accessed: 2017-03-15.

[10] David Jagneaux. Why Epics Tim Sweeney is fine with more
devs using Unity. https://uploadvr.com/tim-sweeney-on-unreal-vs-
unity-priority-on-shipping/-first-and-foremost-with-ease-of-use-
accessibility-being-second/, 2016. Accessed: 2017-03-15.

[11] Nick Johnson. Damn cool algorithms, part 1: BK-trees.
http://blog.notdot.net/2007/4/Damn-Cool-Algorithms-Part-1-
BK-Trees, 2007. Nicks Blog, Accessed: 2016-08-15.

[12] Zach Kinstner. Hoverboard VR interface.
https://www.youtube.com/watch?v=hFpdHjA9uR8, 2015. Youtube,
Accessed: 2017-02-20.

[13] Patrick Kolan. Ign retro: Virtual Boy revisited.
http://www.ign.com/articles/2008/01/14/ign-retro-virtual-boy-
revisited, 2008. IGN, Accessed: 2017-02-22.

[14] Henry E. Lowood. Virtual Reality (VR).
https://www.britannica.com/technology/virtual-reality, 2015.
Encyclopaedia Britannica, Accessed: 2017-02-26.

[15] Palmer Luckey. Oculus Rift: Step into the game.
https://www.kickstarter.com/projects/1523379957/oculus-rift-
step-into-the-game, 2012. Kickstarter, Accessed: 2017-02-22.

[16] Leap Motion. Leap Motion developer.
https://developer.leapmotion.com/#101, 2017. Leap Motion,
Accessed: 2017-03-15.

[17] Leap Motion. Oculus Rift DK2 setup.
https://developer.leapmotion.com/vr-setup/dk2, 2017. Leap Motion,
Accessed: 2017-03-15.

[18] Myo. Connect with Myo. https://www.myo.com/connect, 2016.
Myo, Accessed: 2017-03-15.

[19] Oculus. Oculus. https://www.oculus.com/, 2017. Oculus, Accessed:

2017-03-15.
[20] Vangos Pterneas. Finger tracking using Kinect V2.

http://pterneas.com/ 2016/01/24/kinect-finger-tracking/, 2016.
Vangos Pterneas Blog, Accessed: 2017-03-15.

[21] Adi Robertson. HTCs hands-free VR phone tool
is as clever and frustrating as the Vive itself.
http://www.theverge.com/2016/4/6/11377740/ htc-vive-vr-
bluetooth-phone-notifications-hands-on, 2016. The Verge, Ac-
cessed: 2017-02-20.

[22] Sascha Segan. Swype working on typing by waving hands
in the air. http://www.pcmag.com/article2/0,2817,2380227,00.asp
#fbid=bidQg4EBxv7, 2011. PC Mag, Accessed: 2017-01-25.

[23] Sid Shuman. Playstation VR: The ultimate faq. http://blog.us.
playstation.com/2016/10/03/playstation-vr-the-ultimate-faq/, 2016.
Playstation, Accessed: 2017-02-20.

[24] Lachlan Sleight. Leap keyboard demo.
https://www.youtube.com/watch?v=ckAGpmf21a8, 2014. Youtube,
Accessed: 2017-02-20.

[25] Swype. Swype home. http://www.swype.com/, 2017. Swype, Ac-
cessed: 2017-02-20.

[26] Unity. VR devices. https://docs.unity3d.com/Manual/VRDevices.
html, 2017. Unity Documentation, Accessed: 2017-03-15.

[27] Unknown. The history of stereo photography.
http://www.arts.rpi.edu/r̃uiz/stereo history/text/historystereog.html,
1996. Rensselaer Polytechnic Institute, Accessed: 2017-02-28.

[28] Wikipedia. Damerau Levenshtein distance.
https://en.wikipedia.org/wiki/Damerau, Levenshtein distance,
2017. Wikipedia, Accessed: 2016-08-15.

[29] Wikipedia. Levenshtein distance.
https://en.wikipedia.org/wiki/Levenshtein distance, 2017.
Wikipedia, Accessed: 2016-08-15.

[30] Mike Williams. Gamers feel the glove from Rice engineers.
http://news.rice.edu/2015/04/22/gamers-feel-the-glove-from-rice-
engineers-2/, 2015. Rice University News and Media, Accessed:
2017-03-15.

[31] Chris Wren. www.wrenar.com VR keyboard w/Oculus Rift and
Leap Motion. https://www.youtube.com/watch?v=67Hyb2w1xFs,
2014. Youtube, Accessed: 2017-02-20.

[32] Xenopax. The BK-tree - a data structure for spell checking.
https://nullwords.wordpress.com/2013/03/13/the-bk-tree-a-data-
structure-for-spell-checking/, 2013. Xenopax, Accessed: 2016-08-
15.

[33] Adrian Zugaj. Test: Using Leap Motion with Swype keyboard.
https://www.youtube.com/watch?v= -4k0PnU46o, 2013. Youtube,
Accessed: 2017-02-20.

Author Biography
Janis Jimenez received her Master’s degree in computer science in

March 2017 from the University of California San Diego. Her research
focus was on novel user interfaces for head-mounted display based virtual
reality systems.

Dr. Jurgen Schulze is an Adjunct Professor in the computer sci-
ence department and a Research Scientist at UC San Diego’s Qualcomm
Institute. He is the Director of Immersive Visualization Lab at the Qual-
comm Institute and he teaches computer graphics and 3D user interfaces.
His research is in scientific visualization, immersive virtual environments,
human-computer interaction. He holds an M.S. degree from the University
of Massachusetts and a Ph.D. from the University of Stuttgart, Germany.

450-6
IS&T International Symposium on Electronic Imaging 2018

The Engineering Reality of Virtual Reality 2018


