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Abstract
We propose a novel algorithm for text/figure separation tai-

lored for binary document images containing line drawings, block
diagrams, charts, schemes and other kinds of business graphics.
Most of the approaches for this task rely either on clever design
of visual descriptor allowing to easily distinguish text and graph-
ics regions or on the supervised learning using dataset of labeled
text/figure regions. Such approaches often provide moderate sep-
aration accuracy when applied to document images which con-
tain very diverse set of figure classes and lack sufficiently rep-
resentative labeled training dataset. In contrast, our method is
well-suited for vast variety of figure classes and capable of oper-
ating either in semi-supervised mode or unsupervised mode. We
achieve this by leveraging unsupervised learning algorithms ap-
plied to Docstrum descriptors extracted from regions of interest
and subsequent semi-supervised label propagation or unsuper-
vised label inference. Another advantage of our method is its suit-
ability for large scale data processing which is achieved through
efficient kernel-approximating feature mapping applied to Doc-
strum descriptors and two-level clustering where fast mini-batch
K-means algorithm is first applied to large scale data and only
small number of resulting cluster centroids is subsequently pro-
cessed by one of the more sophisticated clustering algorithms.

Introduction
Text/figure separation problem is relevant for various doc-

ument image analysis and processing tasks, e.g. document in-
dexing and retrieval, document object detection and recognition,
optical character recognition (OCR), document compression and
many more. Classification of regions of interest (ROI) into text
or figure class is of high importance in such applications since it
can significantly reduce the amount of data to be processed by the
subsequent stages by removing irrelevant regions (e.g. non-text
regions for OCR or text regions for image indexing/retrieval).

Most of the approaches proposed to solve this problem rely
on clever design of hand-crafted ROI descriptor producing eas-
ily distinguishable feature vectors for text and non-text regions.
Such approaches often exhibit high misclassification rate on fig-
ure classes which do not completely fit the considerations under-
lying the design of their features (or heuristics used to classify the
features).

Another family of approaches relies on supervised machine
learning algorithms trained on manually labeled datasets. Classi-
fication performance of such approaches heavily depends on rep-
resentativeness of the training dataset which is very difficult to
achieve if very diverse set of highly variable figure classes is to be
handled.

Our method combines the strong points of both families

of approaches while trying to mitigate their shortcomings. We
achieve that by applying unsupervised machine learning algo-
rithms to shape-based features extracted from document ROIs and
subsequent semi-supervised label propagation or unsupervised la-
bel inference

Related Works
One of the most popular families of text/non-text separation

methods is based on extracting simple features from document
ROI and then classifying those features using a few clever hand-
crafted heuristrics aimed at separating text from non-text regions.
Typical features used in such approaches are based on connected
components, run-length statistics, cross-correlation between scan-
lines, projection profiles or black pixel distribution (see review
in [1] and more recent methods in [2], [3], [4] and [5]). Such
approaches are often fast and efficient for documents where fig-
ures are photographs, paintings or other kinds of imagery signifi-
cantly different from text in structure, but for line drawings, espe-
cially text-rich block diagrams, electric schemes and similar ma-
terial such approaches often exhibit much worse accuracy. One
of their major weaknesses is that their heuristics are typically de-
duced from observations relevant for figures belonging to a par-
ticular class (or classes) and may not generalize well for other
classes, which is especially problematic for documents contain-
ing very diverse set of figure classes (as is the case for figures in
patent images) where some of the classes do not completely fit
those heuristics. For example, the methods relying on projection
or run-length histograms may incorrectly classify block diagrams
containing much of text as text regions.

This drawback is tackled by another family of approaches
relying on supervised machine learning algorithms applied either
to the features of the same kind as above or to the image pixel
data. Since the task of text/figure separation may be formulated
as a binary classification problem, approaches of this family typi-
cally utilize training on manually labeled dataset to learn the dis-
tinction between text and non-text regions, the examples includ-
ing shape-based features classification using k-nearest neighbor
(KNN) classifier [6] or multilayer perceptron (MLP) [7], while in
[8] support vector machine (SVM) classifier using gradient-based
T-HOG descriptor is utilized.

Such approaches might still suffer from insufficient discrim-
inative capability of hand-crafted features which cannot be com-
pensated by the classifier. So, more efficient approaches deal-
ing with image pixel data or low-level features were developed.
One prominent approach of such a kind is based on sparse cod-
ing techniques. For example, in [9] morphological component
analysis (MCA) using two pre-constructed discriminative over-
complete dictionaries (curvelet transform for graphics and undec-
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imated wavelet transform for text) is proposed, while in [10] im-
age patches classification based on sparse representations of the
patches in two sequences of learned dictionaries (for text and
graphical parts) is shown to provide better text/graphics separa-
tion and in [11] this method was further improved and elaborated.

However, supervised learning-based algorithms are often
prohibitively slow on large scale datasets (as is again the case for
patent images containing millions of regions) and they work best
when the training dataset has all relevant figure classes sufficiently
represented, so that the learning algorithm could learn how to dis-
tinguish each class from text. Such training dataset may not be
readily available for many kinds of documents, e.g. when the fig-
ure classes are so numerous and have very high within-class vari-
ation that creation of such dataset by manual labeling would be
prohibitively laborious. To remove the need for manually labeled
training dataset, the unsupervised learning-based methods were
developed: typically, K-means algorithm is used for clustering
statistical features computed using, for example, high-frequency
wavelet coefficients [12] or edge maps [13]. As we show fur-
ther in this paper, K-means algorithm, being unable to handle
non-convex, nested and elongated clusters, underperforms in the
text/figure separation problem, especially when using Euclidean
distance.

Finally, one important note regarding previously-developed
methods is that most of them are particularily concentrating on
the text extraction task, while we focus our work on the extrac-
tion of figures. Furthermore, most of the methods outlined above
typically work on the natural scenes (photographs or video se-
quences). This kind of data is vastly different in its structure
and properties of contained graphics from patent-like documents,
which are the focus of our work. Note also that many previ-
ous works use well-known UW-III and ICDAR 2009 datasets
for designing their hand-crafted features or training their classi-
fiers, which might negatively affect the generalization capability
of both features and classifiers in the context of our task, since
those datasets contain only small subset of figure classes present
in patent-like documents.

Description of Method
Algorithm Overview and Requirements

Since patent page images exhibit the aforementioned prop-
erties (large scale dataset with very diverse set of figure classes
having very high within-class variation), we use page images ex-
tracted from a randomly chosen subset of patents from USPTO
patent database to demonstrate our method. However, the method
itself is suitable for other document classes containing business
figures similar to the ones used in patents.

Figure 1. Flow chart of the proposed method.

Flow chart of our method is shown in Fig.1. Patent page im-
ages are first segmented into well-separated ROIs, then for each
ROI a descriptor is extracted and finally the resulting descriptors

are classified into one of the two classes: text or figure. We fur-
ther discuss the basic requirements for each of the stages which
motivated our choice of algorithms used in those stages.

Since text/figure separation is typically used as a pre-
processing stage preparing data for subsequent much more com-
plex stages, one would ideally expect the separation algorithm
to be relatively fast and lightweight (as compared to subsequent
stages, which could be, e.g. OCR or image indexing and retrieval
engine). This requirement implies usage of a lightweight global
descriptor extraction algorithm (rather than more costly aggrega-
tion of local descriptors, such as VLAD or Fisher Vector for SIFT
descriptors) producing low-dimensional feature vectors. In case
of black-and-white document images (such as patents) its also
quite logical to use a descriptor extraction algorithm specifically
tailored for document images containing text and line drawing
figure regions.

Another requirement, stemming from large number (mil-
lions) of available patents, is that the classification algorithm
should be suitable for processing large scale datasets. Due to the
lack of sufficiently representative labeled dataset for patent figures
the classification algorithm should provide either semi-supervised
(where only small portion of feature vectors are labeled and used
to propagate labels to unlabeled data) or unsupervised operation
(where dataset labeling is not required at all).

Finally, for the subsequent processing of text or figure re-
gions to be complete and efficient, we require the text/figure sep-
aration algorithm to provide high recall and good precision. Since
our specific focus in this work is on separation of figures for their
subsequent indexing and retrieval, we set the minimum levels for
figure ROI recall at 90% and for precision at 75%, which means
that we miss at most 10% of all figures and tolerate at most 25%
of text contamination in selected set of ROIs. Keeping both recall
and precision at least that high is quite crucial for figure retrieval
task, since low recall would result in too many figures being not
indexed while low precision would significantly increase excess
computations done for text ROIs.

In the following subsections we describe each stage in detail.

Page Segmentation
Since patent pages are binary document images which typ-

ically use Manhattan layout for text and figures, we use simpli-
fied version of very simple and fast Run-Length Smoothing with
OR (RLSO) segmentation algorithm [14]. Our version of RLSO
algorithm, being a variant of Run-Length Smoothing Algorithm
(RLSA), operates by first filling background pixel runs having
lengths below pre-defined threshold in both horizontal and ver-
tical directions and then selecting bounding boxes of the resulting
connected components as ROIs. RLSO is different from RLSA in
that it uses logical OR operation between horizontally and verti-
cally smoothed images instead of logical AND. Our modification
of RLSO further simplifies it by replacing sophisticated smooth-
ing threshold estimation with calculation of 90th and 80th per-
centiles of background pixel run lengths for horizontal and verti-
cal smoothing respectively.

The example of RLSO application to patent figures is illus-
trated in Fig.2, while Fig.3 shows the ROIs extracted from a mixed
content patent page. We discard too small ROIs having area (in
pixels) less than 0.1% of the entire image area.
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Figure 2. Left: Original patent page with five figures. Right: Result of

applying RLSO to the page: filled background pixels are magenta-colored,

connected components are highlighted by red bounding boxes.

Figure 3. ROIs extracted by RLSO from patent page image containing

mixed text and figure content.

Descriptor Extraction
For the image ROIs extracted by the simplified RLSO algo-

rithm we tried several global image descriptors tailored for bi-
nary document images: Hu moments [15], Haralick features [16],
Shape Context Descriptor (SCD) [17], Run-Length Histogram
(RLH) [18], Local Binary Pattern (LBP) [19], Adaptive Hierar-
chical Density Histogram (AHDH) [20], and Docstrum [21]. The
most distinct and consistent difference between feature vectors
for text and figure regions of our dataset is exhibited using Doc-
strum descriptor. This result is quite expectable, since Hu mo-
ments, Haralick features and LBP are designed primarily for tex-
ture classification, SCD is aimed at shape matching, RLH and
AHDH are well suited for document retrieval, whereas Docstrum
is designed for page layout analysis in text-only documents. This

design goal, as we show further, makes this algorithm produce
much more ”chaotic” feature vectors for non-text regions making
them easily distinguishable from more ”regular” feature vectors
produced for text regions.

Our implementation of Docstrum descriptor operates for
each ROI using the following steps:

1. Resize the ROI to the size of 500x500 pixels while preserv-
ing aspect ratio, that is, first the ROI is resized so that the
longest dimension (width or height) becomes 500 pixels,
then along the shortest dimension the ROI is padded to 500
pixels using background pixel value.

2. Connected components are extracted from the resized ROI
and their centroids are computed. The components having
bounding box width or height below 1% of the resized ROI’s
corresponding dimension are filtered out.

3. For all the pairs composed of centroid and each of its 5 near-
est neighbor centroids the 2D histogram of normalized dis-
tances and angles is built. Distances are normalized by di-
viding by the average distance of all the centroid pairs. If
the number of centroids is too small (below 4), uniform his-
togram is used.

4. The resulting 2D histogram is reshaped to 1D vector and
normalized to have L1-norm of unity.

Note that ROI resizing in step 1 and distance normalization
in step 3 differentiates our version of Docstrum from the original
algorithm described in [21]. We use ROI resizing to reduce com-
putational complexity of the algorithm (since most of the ROIs
have sizes much larger than 500x500 pixels) and the distance nor-
malization to make the descriptor invariant to scaling. Aspect
ratio preserving in step 1 is used to prevent distance/angle dis-
tribution skewing due to non-isotropic resizing. The destination
image size for the resizing step was chosen as a trade-off between
descriptor computation complexity and figure details preserving.
To build 2D distance/angle histogram we use 64 angle bins and
20 distance bins which results in 1280-dimensional feature vector.
These settings are again chosen as a trade-off between the descrip-
tor dimensionality and its discriminative capability for text/figure
separation.

Figure 4. Nearest neighbor pairings of connected component centroids for

example figure ROI.

The examples of nearest neighbor pairings of connected
component centroids for figure and text ROIs are shown in Fig. 4
and Fig. 5, respectively.
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Figure 5. Nearest neighbor pairings of connected component centroids for

example text ROI.

The Docstrum descriptors (depicted as 1D histograms) com-
puted using the above settings for the same figure and text ROIs
are shown in Fig. 6. As one can see, the histogram for text ROI
exhibits distinct regularly-spaced peaks, unlike the histogram for
figure ROI which looks much more chaotic.

Note that it’s possible to reduce descriptor dimensionality
(and, thus, computational complexity of descriptor computation
and processing) by further decreasing the size of ROI and his-
togram binning. For example, with 16 angle bins and 20 dis-
tance bins one can get 320-dimensional feature vectors. Although
the discriminative capability of the descriptor for such settings is
worse, it is still suitable enough for the task of text/figure separa-
tion.

Descriptor Classification
Flow chart of the descriptor classification is shown in Fig. 7.

First, descriptor feature vectors are optionally transformed by
kernel-approximating feature mapping, the resulting transformed
feature vectors are then clustered using mini-batch K-means al-
gorithm and then centroids of the resulting clusters are in turn
clustered by one of the more advanced clustering algorithms. The
resulting clusters of centroids are effectively aggregating clusters
corresponding to those centroids (output by the first level clus-
tering) into ”superclusters”. Finally, the resulting superclusters
are classified either by unsupervised label inference or by semi-
supervised label propagation using the subset of labeled feature
vectors.

To evaluate the quality of classification we also included
classification performance evaluation path consisting of manual
labeling the first level clusters and then computing precision, re-
call and F1 scores after supercluster classification.

Further we elaborate on each stage of the outlined flow chart.

Kernel-Approximating Feature Mapping
Since the Docstrum descriptor is a histogram, Euclidean

distances (or inner products) used by subsequent algorithms
are not much adequate as a measure of feature vectors prox-
imity. The popular kernels for histogram-based descriptors
widely used in computer vision and machine learning applications
are Hellinger’s (Bhattacharyya’s), χ2, intersection and Jensen-

Shannon kernels [22]. These kernels, along with their correspond-
ing distances are defined in Table 1, where we also include Jac-
card similarity score (adapted for histograms), which, to the best
of our knowledge, is not widely used in computer vision applica-
tions, but, as we show further, deserves attention in the context of
our task as well.

Histogram-oriented kernels and distances

Kernel K(x,y) D2(x,y) =
K(x,x)+K(y,y)−2K(x,y)

Hellinger ∑i
√

xi
√

yi ∑i(
√

xi−
√

yi)
2

Intersection ∑i min(xi,yi) ∑i |xi− yi|
χ2

∑i
2xiyi
xi+yi ∑i

(xi−yi)
2

xi+yi

Jensen-
Shannon

∑i
xi
2 log2

xi+yi
xi

+
yi
2 log2

xi+yi
yi

KL
(

x
∣∣ x+y

2

)
+KL

(
y
∣∣ x+y

2

)
(KL is Kullback-Leibler divergence)

Jaccard ∑i min(xi,yi)
∑i max(xi,yi)

2−2 ∑i min(xi,yi)
∑i max(xi,yi)

However, since the subsequent mini-batch K-means cluster-
ing algorithm is only able to use Euclidean distances between the
feature vectors, we have to transform Docstrum feature vectors
using suitable kernel-approximating feature mapping. Such fea-
ture mapping is defined as a mapping Ψ : ℜD → ℜN , such that
∀x,y ∈ℜD : K(x,y)≈ 〈Ψ(x),Ψ(y)〉, that is, linear (Euclidean) in-
ner product in the transformed feature space ℜN approximates
non-linear kernel K(x,y) in the original feature space ℜD. Since
a positive-definite kernel K(x,y) corresponds to a distance D(x,y)
given by D2(x,y) = K(x,x)+K(y,y)− 2K(x,y) [23], it’s easy to
see that ∀x,y ∈ ℜD : D2(x,y) ≈ ||Ψ(x)−Ψ(y)||2, where || · || is
Euclidean norm in ℜN , so the distance corresponding to the ker-
nel is also approximated by the same feature mapping.

Since Hellinger’s, χ2, intersection and Jensen-Shannon ker-
nels are additive and γ-homogeneous, their approximating feature
mappings can be derived in closed form [22]. For Hellinger’s
kernel we use exact dimensionality-preserving mapping, which
takes a square root of each component, while for χ2, intersec-
tion and Jensen-Shannon kernels we use approximating mappings
from [22] with 5 components, which results in mappings of a form
Ψ : ℜ1280 → ℜ6400 (5 times 1280). For feature vectors in our
dataset such mappings provide distance approximation accuracy
of 6%.

In contrast to other histogram-oriented kernels, Jaccard ker-
nel is neither additive nor γ-homogeneous (or stationary), so it’s
much more difficult to derive approximating feature mapping for
it in closed form. Therefore, we used siamese neural network to
train approximating feature mapping for this kernel. The archi-
tecture of the network is shown in Fig. 8.

The input to the network is composed of two randomly-
selected Docstrum feature vectors x and y (each being 1280-
dimensional). Each of the two vectors is fed into its own fully-
connected (FC) layer having Parametric Rectified Linear Unit
(PReLU) activation [24] and 5000 outputs. Both FC+PReLU lay-
ers share all the weights during training, so each of them actually
performs the same feature mapping Ψ : ℜ1280→ ℜ5000 which is
being trained by the network. The outputs of the FC+PReLU lay-
ers, Ψ(x) and Ψ(y), are fed into L2 distance computation layer,
which computes squared Euclidean distance ||Ψ(x)−Ψ(y)||2 and
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Figure 6. Docstrum descriptors for figure (left) and text (right) ROIs. Docstrum is computed for ROIs having a size of 500x500 pixels using 64 angle bins and

20 distance bins.

Figure 7. Flow chart of the descriptor classification.

Figure 8. Siamese neural network used to train feature mapping for approx-

imation of Jaccard kernel. The red-delineated layers have shared weights

and constitute the feature mapping Ψ being trained by the network. Where

appropriate, layer output dimensionality is given in parentheses.

does not contain learnable parameters. The resulting squared dis-
tance is the output of the network. The squared Jaccard kernel
distance D2(x,y) is used as the target output during training, while
Mean Absolute Percentage Error (MAPE) is used for training loss
function. The weights of FC layer are initialized using Glorot uni-
form initialization [25], PReLU parameters are initialized to zero
and Nesterov ADAM [26] is used as optimizer algorithm. After
training for 300 epochs using batch size of 10000 feature vector
pairs, the network achieves test accuracy of 7% (MAPE) in Jac-
card distance approximation which is comparable to that for the
other kernels.

Note that we still use Euclidean distance (which we refer to
as ”linear kernel”) for the subsequent feature vector processing
stages alongside other kernels mentioned above, in which case

the kernel approximation stage is not used.

First Level Clustering
We chose mini-batch K-means algorithm [27] for the first

level clustering stage due its fast performance, suitability for large
scale processing and generally good quality of the resulting clus-
tering.

However, this algorithm, like the standard K-means algo-
rithm, is not capable to correctly handle non-convex or elongated
clusters, which may well be the case for our task. We verify this
hypothesis by running K-means clustering configured to output
small number of clusters (from 2 to 10) on transformed Docstrum
descriptors and visually inspecting the ROIs corresponding to the
feature vectors of the resulting clusters. This test shows that the
resulting clusters contain mixture of both text and figure ROIs
without clear domination of one of the classes. However, when
we increase a number of clusters to 20 and higher, the output clus-
ters become dominated by either text or figure ROIs, which sup-
ports our hypothesis, since higher number of requested clusters
allows K-means algorithm to subdivide non-convex or elongated
text/figure clusters into smaller convex and isotropic subclusters
without much intermixing. By varying requested clusters number
from 2 to 1000 and visually inspecting the results, we found 100
clusters to be optimal trade-off between cluster purity and com-
putational complexity of K-means clustering.

We run mini-batch K-means algorithm configured to output
100 clusters with mini-batch size of 1000 feature vectors for 100
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Figure 9. The examples of clusters output by the first level clustering using different kernels. Columns represent three types of clusters: text, figure and mixed.

epochs, until mini-batch inertia, averaged over several latest mini-
batches, almost stops improving.

The examples of resulting clusters (composed of tiled ROIs
corresponding to cluster’s feature vectors) are shown in Fig. 9.
Three types of typical clusters are represented: text, figure and
mixed. One can see that text and figure clusters are almost 100%
pure (contain ROIs of only one class text or figure), while typi-
cal mixed clusters are dominated by one class and contain at most
30% of impurity from the other class. We performed manual anal-

ysis of those mixed clusters which shows that they contain less
than 10% of all the feature vectors of our dataset, so the total im-
purity percentage is less than 3%, which can be safely neglected
in the context of our task. So, for further processing and analysis
we assume that the first level clustering outputs sufficiently pure
text and figure clusters.

However, one can notice that the smallest impurity is
achieved when using Jaccard kernel, significantly higher impurity
is achieved when using χ2 and Jensen-Shannon kernels, while
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intersection and linear kernels are the worst in terms of cluster
impurity. As to the Hellinger’s kernel, since it provides cluster-
ing results even worse than the linear kernel (while offering no
performance benefits over it) we do not use this kernel for further
stages (except for the exact kernel variant of our method).

Second Level Clustering
Since K-means clustering outputs convex clusters which tend

to be isotropic and such cluster geometry is most likely not the
case for Docstrum feature vector clusters corresponding to text
and figure ROIs, we have to aggregate clusters resulting from the
first level clustering into larger clusters (which we refer to as ”su-
perclusters” hereinafter) by a clustering algorithm capable of han-
dling non-convex non-isotropic clusters. Because most of such
algorithms scale poorly to large number of samples, we chose to
apply them to the centroids of the clusters output by the first level
clustering rather than to much more numerous actual feature vec-
tors. Since the number of such centroids is 100 (or less), we are
no longer constrained by the requirement of suitability for large
scale processing.

We tried several algorithms for the second level clustering:
K-means with k-means++ initialization [28], affinity propagation
[29], mean shift [30], spectral clustering [31], agglomerative clus-
tering using several linkage methods [32], DBSCAN [33], hierar-
chical DBSCAN (HDBSCAN) [34], BIRCH [35], and one-class
SVM [36] using linear, RBF and sigmoid kernels (which are in
fact combined with one of the histogram-oriented kernels given in
Table 1 due to kernel-approximating feature mapping stage). Note
that the last one is actually a novelty detection algorithm which re-
quires clean dataset for training, but we found that it nevertheless
performs quite well for our task. We also tried another algorithm
for novelty and outlier detection: fitting an elliptic envelope to the
data using minimum covariance determinant estimator [37], but it
fails due to the fact the data has neither unimodal nor symmetric
distribution.

Note that, since for χ2, intersection, Jensen-Shannon and
Jaccard kernels the dimensionality of the transformed feature
space is several times higher than that of the original Docstrum
descriptor, the first level clustering for those kernels, being the
most time-consuming stage of our method, takes 2-3 times longer
than for linear kernel (i.e. for original Docstrum feature vec-
tors). So, one apparent way to improve the computational per-
formance of our method is to omit kernel-approximating feature
mapping stage, but use one of the histogram-oriented kernels dur-
ing the second level clustering. This may be achieved by using
clustering algorithm capable of taking as input kernel matrix (or
distance matrix for distance-based algorithms) instead of feature
vectors, since this matrix for the centroids of the clusters output
by the first level clustering is much smaller (only 100x100) than
for the large scale dataset input to the first level clustering (which
may contain millions of vectors). Such algorithms include affinity
propagation, agglomerative clustering with single, complete, av-
erage and weighted linkages, DBSCAN, HDBSCAN, one-class
SVM and spectral clustering. Since in this case we use exact ker-
nels/distances applied to Docstrum feature vector pairs rather than
their approximations, we refer to this modification of our method
as ”exact kernel variant”, in contrast to ”approximate kernel vari-
ant” described earlier. We use both variants in our experiments
and compare their performance.

For each of the second level clustering algorithms, we vary
its most important parameters in a wide range to find the combina-
tions of parameter values delivering the best performance in terms
of precision, recall and F1 scores. Note that for agglomerative
clustering we use both unstructured and structured variants, the
latter using connectivity matrix computed from the k-neighbors
graph.

Supercluster Classification
The second level clustering stage outputs typically small

number of superclusters. To classify those superclusters into
”text” or ”figure” class we have to leverage some additional
source of information about those classes. Depending on the out-
put of the second level clustering stage we employ one of the two
modes of supercluster label inference: 1) unsupervised labeling is
used when the second level clustering stage outputs 2 superclus-
ters, 2) label propagation is used otherwise (when there’re more
than 2 superclusters).

In the unsupervised mode we utilize general statistical in-
formation about the classes: in case of patent ROIs we use the
observation that text ROIs strongly dominate, so we classify the
larger of the two superclusters as a text one, while the smaller one
apparently corresponds to figure ROIs.

In the label propagation mode we use small labeled subset of
our dataset, obtained from the observation that there’s a number of
patents without figures, which can be readily identified by the ab-
sence of words ”fig”, ”drawing”, ”##str” in their full text versions.
All ROIs (and their corresponding Docstrum feature vectors) from
such patents are labeled as text ones. Then for each superclus-
ter we compute its ”text contamination”, i.e. the fraction of its
ROIs which belong to this text-labeled subset. Supercluster clas-
sification is then performed as labeling the superclusters having
text contamination above a certain threshold as corresponding to
text ROIs and the rest of the superclusters as figure ones (thereby
propagating text label from the small labeled subset to the entire
supercluster having high text contamination). The value of the
threshold is computed as a percentile of text contaminations of all
the superclusters, while the percentile value itself is varied from 0
to 100% alongside the second level clustering algorithm parame-
ters. Since the text-only patents contain text ROIs which are quite
representative for the entire set of patent text ROIs, i.e. contain all
classes of text regions specific to patents (heading text, table text,
regular text boxes, etc), this text label propagation works quite
well for our task.

Note that the unsupervised mode does not use any labeled
data at all, only general a-priori information about distribution of
text/figure ROIs in the dataset. The label propagation mode only
uses small subset (less than 1%) of the dataset labeled as data of
one class (text ROIs in our case) using additional side information.
Note that in this mode supervised approach is not applicable since
we’ve got labeled data for only one class of the two.

Classification Performance Evaluation
In order to quantitatively evaluate the quality of text/figure

separation provided by different variants and parameter combina-
tions of our method, we need ground truth labels for our dataset.
The classification of entire patent pages as being text or figure
pages available on USPTO or Google Patents does not provide
precise labeling of ROIs since a patent page may contain ROIs of
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both classes: e.g. figure pages contain textual elements (patent
numbers, figure titles, etc), while text pages of patents related
to chemistry frequently contain figures of chemical compositions
mixed with text regions. Another motivation not to use external
ground truth labels is that there may be no external source of such
labels for other classes of documents requiring text/figure separa-
tion.

So, we use ground truth labels produced manually by visual
inspection of random subsets of ROIs for each of the clusters pro-
duced by the first level clustering stage (it’s quite feasible due to
relatively small number of clusters output by this stage). Since,
as we mentioned earlier, those clusters are dominated by ROIs of
single class (text or figure), we label all ROIs of a given cluster as
belonging to the dominating class of this cluster. As we estimated
earlier, this approach would suffer from mislabeling to the accept-
ably small extent (less than a few percent of mislabeled ROIs).

Having manually labeled all of the ROIs in our dataset, we
evaluate the quality of text/figure separation using widely used
classification performance metrics such as recall, precision and
F1 score computed by comparing labels predicted by our method
and the ones provided by the manual labeling (we consider fig-
ure ROIs as positive samples and text ROIs as negative ones). It
should be noted, however, that our results for those metrics are
only approximate due to the mislabeling mentioned above.

Note that the manual labeling is only used for the classifica-
tion performance evaluation and for the search of optimal param-
eters of our method, while the method itself is fully automatic and
does not rely on any manual work.

Experimental Results
Experimental Conditions

We implemented our method in Python using NumPy/SciPy
packages. Scikit-learn [38] and fastcluster [39] were used for
kernel approximation and clustering and Keras [40] was used for
building and training siamese neural network, image and descrip-
tor data were stored in HDF5 format using PyTables package [41].
Scikit-image [42] was used for image processing operations.

The test system had 8-core AMD FX-8350 CPU and
NVIDIA GeForce GTX 780 GPU (used to train the neural net-
work).

The dataset used for our experiments was composed of
12100 randomly selected patents downloaded from USPTO site
(without any topic limitations). The patents were taken from the
time span of 2005 to 2013. This approach resulted in highly di-
verse set of patent figures from a vast variety of domains (elec-
tronics, construction, machinery, chemistry, etc). The total of 1.1
million ROIs was extracted from the patent pages using the RLSO
segmentation procedure.

Out of those 12100 patents only 197 were text-only patents,
from which 10458 text ROIs were extracted (less than 1% of all
ROIs).

Timing of Processing Stages
The most time-consuming part of our method was training

siamese neural network to obtain approximating feature mapping
for Jaccard kernel (more than 20 hours). Docstrum descriptor
computation and transforming Docstrum feature vectors using
kernel-approximating feature mapping took ∼ 1.5 hours. Further,
the first level clustering stage took∼ 3 hours for linear kernel,∼ 7

hours for each of the χ2, intersection and Jensen-Shannon ker-
nels and ∼ 10.5 hours for Jaccard kernel. All subsequent stages
(the second level clustering and supercluster classification) took
negligibly small time (a few seconds) as compared to the previ-
ous stages. So, most of the time in the classification pipeline is
consumed by the first level clustering (especially when non-linear
kernel is used).

This distribution of processing times supports our decision
to split clustering into two stages performed by different algo-
rithms (fast mini-batch K-means for the first stage and one of the
more sophisticated algorithms for the second stage), since oth-
erwise the clustering would be prohibitively slow for any of the
well-performing algorithms.

Results for Approximate Kernel Variant
We evaluated classification performance of the approximate

kernel variant of our method using the method outlined above for
all combinations of variable parameters involved in the second
level clustering and supercluster classification stages. The total
number of tried parameter combinations for the approximate ker-
nel variant was 406665.

Classification performance results for approximate kernel vari-
ant

Clustering
algorithm

χ2 Inter-
section

Jaccard
Jensen-
Shannon

Linear

Affinity
propaga-
tion

0.68 0.68 0.70 0.63 0.53

Agglo-
merative
clustering

0.86 0.75 0.90 0.76 0.65

BIRCH 0.77 0.81 0.90 0.79 0.68
DBSCAN 0.80 0.94 0.78 0.86 0.70
HDBSCAN 0.68 0.89 0.81 0.76 0.64
K-Means 0.75 0.78 0.81 0.68 0.68
Mean shift 0.70 0.66 0.64 0.65 0.61
One-class
SVM

0.79 0.73 0.60 0.69 0.76

Spectral
clustering

0.88 0.85 0.87 0.76 0.78

Table 2 shows the classification performance results for this
variant: each table cell contains the result (F1 score) for the pa-
rameter combination which delivers the highest F1 score for a
corresponding pair of the second level clustering algorithm and
approximated kernel (indicated by row and column labels respec-
tively). For each second level clustering algorithm the best result
(in terms of F1 score) is indicated in bold.

From this table one can see that among the kernels the best
results are provided by the Jaccard, intersection and χ2 kernels,
while among the second level clustering algorithms the best re-
sults are delivered by agglomerative clustering, BIRCH, DB-
SCAN, HDBSCAN and spectral clustering. The best result over-
all is achieved using DBSCAN with intersection kernel.

Note that linear kernel results are substantially worse than
those of the non-linear kernels for all used second level cluster-
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ing algorithms, which supports our choice of using transform ap-
proximating one of the non-linear kernels as a first stage of our
classification method.

To visualize precision-recall results we used the following
approach: for each second level clustering algorithm (or each ap-
proximated kernel) we compute convex hull of all the precision-
recall points associated with this algorithm (or kernel) and plot
upper right segments of this convex hull (which correspond to
the best results, i.e. both high precision and high recall). Fig. 10
shows precision-recall (PR) curves plotted using this approach for
the approximate kernel variant of our method. Those curves sup-
port the conclusions of the above analysis of Table 2.

We selected three best-performing results for further analy-
sis (underlined in Table 2): DBSCAN with intersection kernel,
spectral clustering with χ2 kernel and agglomerative clustering
using complete linkage with χ2 kernel. Although some other set-
tings provide better F1 score than the latter two of the selected re-
sults, they offer no improvement over DBSCAN with intersection
kernel in terms of both precision and recall, while agglomerative
clustering with χ2 kernel offers better recall (at the cost of worse
precision) and spectral clustering with χ2 kernel provides a good
trade-off between the two.

Results for Exact Kernel Variant
For the exact kernel variant of our method the total number

of tried parameter combinations was 438170. Table 3 shows the
classification performance results for this variant.

Classification performance results for exact kernel variant

Clustering
algorithm

χ2 Hel-
linger

Inter-
section

Jaccard
Jensen-
Shannon

Linear

Affinity
propaga-
tion

0.67 0.70 0.74 0.74 0.67 0.53

Agglo-
merative
clustering

0.94 0.94 0.94 0.94 0.94 0.65

DBSCAN 0.93 0.93 0.89 0.89 0.93 0.70
HDBSCAN 0.76 0.78 0.68 0.68 0.78 0.64
One-class
SVM

0.34 0.29 0.41 0.42 0.32 0.66

Spectral
clustering

0.87 0.84 0.90 0.93 0.87 0.78

From this table one can easily see that among the kernels
the best results are provided by the Jaccard and χ2 kernels (simi-
larly to the approximate kernel variant), as well as Hellingers and
Jensen-Shannon kernels. Among the second level clustering algo-
rithms the best results are provided by agglomerative clustering,
DBSCAN and spectral clustering algorithms (again similarly to
the approximate kernel variant).

From these results one can see that this variant offers a viable
alternative to the much more computationally-demanding approx-
imate kernel variant, since the most time-consuming stage (first
level clustering) for linear kernel is more than twice faster than
for any of the non-linear kernels.

Discussion of Best-Performing Configurations
Since the first level clustering stage using linear kernel (uti-

lized in the exact kernel variant) outputs larger number of mixed
clusters (thereby providing less pure separation) than when us-
ing non-linear kernels, we selected for further analysis three best-
performing configurations out of all the configurations tried for
the approximate kernel variant.

Best-performing configurations summary

2nd level cluster-
ing algorithm,
approximated
kernel

2nd level
clustering
parameters

Selected
figure
ROIs,
%

Per-
centile
value,
%

F1,
preci-
sion,
recall

Agglomerative
clustering, χ2

Nclusters = 2,
complete
linkage

28 0
0.86
0.75
1.00

Spectral cluster-
ing, χ2

Nclusters = 10,
K-means label
assignment

23 12.5
0.88
0.82
0.95

DBSCAN, inter-
section

ε = 0.43
(Nclusters = 5),
Nsamples = 5

18 0
0.94
1.00
0.89

The summary of the second level clustering algorithm pa-
rameters as well as supercluster classification parameters (per-
centile value) delivering the best results in the approximate kernel
variant is given in Table 4.

From this table one can see that in terms of precision/recall
performance these three variants provide two extreme cases and
a trade-off in-between: on one extreme is unstructured agglomer-
ative clustering with χ2 kernel providing 100% recall (and 75%
precision), on the other extreme is DBSCAN with intersection
kernel providing 100% precision (and 89% recall), while spec-
tral clustering with χ2 kernel achieves intermediate 82% precision
and 95% recall.

For agglomerative clustering with χ2 kernel the optimal
number of (super)clusters is two, which makes it possible to use
this configuration for unsupervised mode. This result is quite nat-
ural for agglomerative clustering algorithm with complete link-
age which is known for its ”rich get richer” behavior resulting in
small number of uneven-sized clusters. For the two remaining
configurations the number of output superclusters is 10 (spectral
clustering) and 5 (DBSCAN) which does not allow usage of un-
supervised mode.

One important concern is a possible dependence of the op-
timal parameters given in Table 4 on the properties of a particu-
lar dataset for which those parameters were obtained, and, thus,
usability of those optimal parameters in a general case for other
datasets. For the first configuration (using agglomerative cluster-
ing) the optimal parameters include setting number of clusters to
two and usage of complete linkage. Both settings are perfectly
generic for the task in hand, since the aim of our method is to sep-
arate two distinct clusters, one of which being strongly dominat-
ing, so complete linkage promoting the ”rich get richer” behavior
is a natural choice here. For the third configuration (using DB-
SCAN clustering) the optimal settings include setting the radius
of sample neighborhood (which is determined by the properties of
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Figure 10. PR curves for the approximate kernel variant of our method. Left: PR curves for different second level clustering algorithms, right: PR curves for

different approximated kernels. Markers indicate best-F1 points.

the Docstrum descriptor, the used kernel and the classes to be sep-
arated rather than by the properties of the dataset) and the number
of samples in a neighborhood for a point to be considered as a
core point (the default generic value of 5 appears to be optimal).
The common parameter for all configurations, percentile value,
for both the first and the third configurations is zero which means
that a single supercluster having the minimum text contamination
is labeled as a figure supercluster, which also seems to be quite
generic setting. To confirm the theoretical considerations outlined
above, we applied our method using the optimal parameters from
Table 4 (for the first and the third configurations) to reasonably-
sized random subsets of our dataset and visually inspected the
output. This experiment showed good text/figure separation for
different kinds of patent figure and text regions, thus supporting
the idea of usability of those optimal settings for a general case.

However, for the second configuration (using spectral clus-
tering) the optimal parameter values (Nclusters = 10 and percentile
value of 12.5%) do not exhibit the same stability for different
subsets of our dataset, neither do they have a strong theoretical
ground for their generality, since Nclusters which is above two
may indeed indicate the number of subclasses of main classes
present in the particular dataset (e.g. different kinds of text or
figure ROIs). Thus this configuration should be used with caution
on datasets which are significantly different from the patent ROI
dataset we used to derive it.

Finally, it is noteworthy to mention that our results for clas-
sification performance comparison for the second level clustering
algorithms are in a good consistency with the behavior of differ-
ent clustering algorithms illustrated in [43]: only three clustering
algorithms were able to correctly handle both non-convex cluster
toy datasets (one of which also contains nested clusters): agglom-
erative clustering, spectral clustering and DBSCAN and these are
the three best-performing second level clustering algorithms in
the approximate kernel variant of our method. This observation

suggests us an intuition that for our dataset we may have similar
supercluster geometry (non-convex and possibly even nested). To
get an insight into the geometry of the text/figure clusters, we per-
formed non-linear dimensionality reduction on Docstrum feature
vectors transformed by the mapping approximating intersection
kernel using t-SNE method and used the resulting 2D embedded
space to plot the point clouds corresponding to feature vectors
labeled as ”text” and ”figure” by our method using the third con-
figuration of Table 4 (the best one in terms of F1 score). The
scatter plot of those point clouds in 2D embedded space is shown
in Fig. 11

Figure 11. Scatter plot for t-SNE components computed for Docstrum fea-

ture vectors of ROIs classified as being text and figure ROIs by our method.

One can see that ”text” points form several clusters, some of
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them having sophisticated non-convex geometry and being quite
distant from one another, while a majority of ”figure” points form
a dense well-localized cluster surrounded by the text clusters. Al-
though this embedded space may lack dimensions to fully rep-
resent the original cluster geometry, the scatter plot in this space
still serves to support our intuition and, thus, the choice of the best
performing second level clustering algorithms. This sophisticated
cluster geometry may also be responsible for the inferior clas-
sification performance of configurations using one-class SVM.
Since one-class SVM is a novelty detection method, it is a natu-
ral choice for our task, where we have training subset for the text
class and aim at identifying figure class as outliers for the text
class. However, even when using generalized RBF and sigmoid
kernels (through the combination of histogram-oriented kernel in
kernel-approximating feature mapping stage and RBF or sigmoid
kernel in SVM itself), one-class SVM fails to achieve classifica-
tion performance of the algorithms which are especially efficient
in handling complex cluster geometry (such as DBSCAN and ag-
glomerative clustering).

Conclusion
We proposed a new method of text/figure separation for bi-

nary document images containing highly diverse set of figure
classes (e.g. patents). Our method offers significant advantages
over the previously-known approaches: it can separate many fig-
ure classes misclassified as text by more simple methods, is suit-
able for processing large scale datasets and is capable of work-
ing in either unsupervised mode (using only general a-priori in-
formation about the text/figure distribution in the dataset) or in
semi-supervised mode (using small subset of the data labeled
as text). These advantages come from the usage of the Doc-
strum descriptor, kernel-approximating feature mappings for var-
ious histogram-oriented kernels (including χ2, intersection and
Jaccard) and efficient two-level clustering (using mini-batch K-
means, agglomerative clustering and DBSCAN algorithms).

We showed the efficiency of our method on very large and
diverse patent image dataset, where it achieves F1 scores of 0.86
for unsupervised mode and 0.94 for semi-supervised mode. The
optimal parameters for the various stages of our method are ob-
tained using extensive parameter optimization performed on this
dataset. We analyzed the experimental results of our method and
motivated our design choices by both theoretical considerations
and experimental evidences.

Our method may be used as a preprocessing stage for var-
ious document image processing tasks: document indexing and
retrieval, document object detection and recognition, OCR, docu-
ment compression and many more.
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