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Abstract

Accurate 3D hand pose estimation plays an important role
in Human Machine Interaction (HMI). In the reality of HMI,
Jjoints in fingers stretching out, especially corresponding finger-
tips, are much more important than other joints. We propose a
novel method to refine stretching-out finger joint locations after
obtaining rough hand pose estimation. It first detects which fin-
gers are stretching out, then neighbor pixels of certain joint vote
for its new location based on random forests.

The algorithm is tested on two public datasets : MSRA 15 and
ICVL. After the refinement stage of stretching-out fingers, errors
of predicted HMI finger joint locations are significantly reduced.
Mean error of all fingertips reduces around Smm (relatively more
than 20%). Stretching-out fingertip locations are even more pre-
cise, which in MSRA15 reduces 10.51mm (relatively 41.4%).

Keywords
Random Forest, Hand Pose Estimation, Human Machine In-
teraction, Fingertip Detection

1. Introduction

Hand pose estimation plays an important role in Human Ma-
chine Interaction (HMI), such as virtual reality (VR), augmented
reality (AR) and remote control. Estimating hand poses from indi-
vidual depth images has drawn lots of attention from researchers
[1, 2, 3,4, 5, 6, 7], thanks to the availability of depth cameras
[8,9, 10, 11], such as Microsoft Kinect, Intel Realsense Camera
etc.

Recently convolutional neural networks [12, 13, 14, 6, 15, 7]
and random forests [2, 3, 16, 17, 4, 5] are two mainstreams in
hand pose estimation. The performances of these two methods are
roughly comparable. But random forests can achieve faster pre-
diction without any GPUs, so it is beneficial to implement online
real-time application with only CPUs based on random forests.

Joints in palm such as the wrist and five finger roots have
lower degree of freedom (DOF) than those in fingers. Consid-
ering kinematic constraints of hand joints, [3] proposed a hierar-
chical regression method, which first regresses locations of joints
with relatively low DOF and then those with higher DOF. He also
introduced a cascaded framework to refine joint locations itera-
tively.

However, due to extremely high fingertip flexibility, similar
part confusion, large range of movement and poor depth quality
around fingertips, the errors of fingertip locations are improperly
high, almost always the highest in all joints. In the reality of HMI,
crucial actions such as clicking and zooming depend heavily on
stretching-out fingers, especially extended fingertips. Therefore,
more accurate estimation of stretching-out finger joints, especially
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fingertips, is in urgent need.

In this work, we present a novel scheme named Interactive
Hand Pose Estimation (IHPE) to address the conflicts between H-
MI demands and large errors of fingertip locations in hand pose
estimation. We first use cascaded hierarchical regression in [3]
to get rough locations of hand joints. This module is implement-
ed by reproducing corresponding algorithms in [3] as our base-
line, including two kind of stages: palm stages and finger stages.
Inspired by fingertip detection and corresponding root localiza-
tion proposed in [18], we then introduce a refinement stage to
re-estimate joint locations of stretching-out fingers. In the refine-
ment stage, we first detect where the stretching-out fingers are,
based on Key Joints Localization algorithms in our previous work
[18]. Then we incorporate the information provided by predic-
tion of our baseline, to distinguish which fingers these detected
extended fingers are. Finally, for each joint to be re-estimated,
its neighbor foreground pixels (the pixels inside the hand region
after segmentation are defined as foreground pixels) vote for it-
s location using random forests. The average result of all votes
won by the joint is its new location after refinement. As shown
in our experiments, after the refinement stage of stretching-out
finger joints, the errors of stretching-out finger joint locations are
significantly reduced, especially the fingertips.

Our main contribution is the refinement method proposed to
improve estimating locations of extended finger joints, particular-
ly fingertips, after getting some poor results while estimating all
joints. The accuracy gap between estimating locations of extend-
ed fingertips and other joints can be remarkably reduced after our
refinement stage. It benefits the users by providing them more
satisfying experience in HMI applications, such as VR and AR.

2. Cascaded Hierarchical Regression

In this section, we give a brief introduction of our baseline:
Cascaded Hierarchical Regression.

As clarified in [3], joints in different parts of the hand have
large variance of flexibilities, so regressing all joints together may
cause unnecessarily high complexity and degrade model’s perfor-
mance. We divide the whole regression task into two subtasks,
palm stages and finger stages, as Sun. do in [3]. In palm stages,
we regress locations of only those joints in palm such as the wrist,
finger roots and the palm center. Then we regress joints in five
fingers respectively with locations of joints in palm fixed. Be-
sides, we use cascaded architecture in both palm and finger stages
like [3] does. Specifically in this paper, we assign three stages to
both palm regression and finger regression. Each stage produces
coordinate differences between ground truth and predictions of
last stage (Eq.(1)). Details of the training algorithm is shown in
Table.1. While testing, the output models of the training algo-
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Table.1. Our baseline training procedure

Algorithm 1 Training algorithm for our baseline

1. input: depth image I;, ground truth pose 6;, and initial

palm pose 67 for all training samples i
2. fort=11toT do
3. §67=0r—g""
4 learn random forest R?"' to approximate 69{’
5

o/ = 07"~ 4 RPA (1,67~ "), update palm joint loca-

tions
6. initialize finger poses 6;°(f = 1,2,3,4,5), so that five fin-
gers are in the direction of a vector pointing from wrist (or
palm center) to middle finger root
7. fort=1toT, do [finger stages]
8. for f=11to5 do
-1
9. 56/ =6/ 0/
10. learn random forest R/ to approximate 56if
11. /" = o/*~' LRI (I;,6/""), update finger joint loca-

tions
12. 6 =6/ U{6/} s=1 2345 update all joints

13. OUtpUt.' {Rp’t}tzl’z_.u’]'l s {Rf’t}t:ll,mA,TZ;f:l‘2.,~~u5

[palm stages]

rithm are used to perform regression in a similar procedure as
training.

860" =0, — 6! (1)

Note that we don’t use 3D Pose Normalization or 3D Pose Indexed
Features as in [3]. We use traditional pixel difference features
instead (Eq.(3)).

3. Stretching-Out Finger Joint Refinement

We introduce our refinement of stretching-out finger joint lo-
cations in this section. It is divided into two stages. First we de-
tect which fingers are stretching out. Then for each joint in these
fingers, its neighbour pixels vote for its location through random
forests.

3.1 Stretching-out fingers detection

We detect stretching-out fingers based on hand mask images
(Fig.1(a)), using the method proposed in our previous work [18].
As clarified in [18], palm center can be defined as the point with
maximal distance to the nearest palm boundary point (Fig.1(b)).
After the palm center is localized, it scans the palm boundary and
get distances between boundary points and palm center. Those
points with local maximal distance are stretching-out fingertips,
if their distance exceeds a global threshold and the curvature is
large enough. Then corresponding finger roots can be localized
based on locations and fingertips and the palm center (Fig.1(c)).

Then we obtain rough locations of other joints in these de-
tected stretching-out fingers through interpolation according to
finger root and tip locations. To distinguish which these extend-
ed fingers are, index, ring or others, we calculate the distances
between each detected finger and five fingers predicted from our
baseline (Fig.1(d)) respectively. Each detected stretching-out fin-
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ger is distinguished as the one with the minimum distance to it
(Eq.(2)).

. 2
F= argmiy—; 2345 Z (Hen];axk,j o el{aseline,jHZ) 2
j€9f

f
where Gmask_’j

stretching-out fingers detection, Glfweline’j is the location of the

is location of the j joint in finger f from

' joint in finger f from baseline prediction.
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..h
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Figure 1.
transform, the brightest point is palm center. (c)Detected finger tips and
roots. (d)Prediction of the baseline.

(d

Stretching-out fingers detection. (a)Hand mask. (b)Distance

3.2 Neighbour pixels voting

We introduce our refinement stage in this section. After de-
tecting stretching-out fingers, we aim at re-estimating locations
of joints in detected stretching-out fingers, except the finger root
which is in palm area. Briefly speaking, for each stretching-out
fingers, the joints will get votes from foreground pixels around
them. The average of votes each joint got is set to be its location
after this refinement stage.

3.2.1 Depth difference feature

As proposed in [19], depth difference features (Eq.(3)) are
capable to distinguish background and foreground in depth im-
ages. Besides, different parts in hand will have different features.
Also due to its mini cost in calculating, depth difference features
are commonly used in hand pose estimation from depth images
with random forests. We use such features in both cascaded hier-
archical regression and neighbor pixels voting.

uj=u+0u;,i=1,2; depthdifference :=1(uy)—1I(uz) (3)

Where u is the reference pixel, while specifically in our neighbor
pixels voting, it is the foreground pixel which will vote for a join-
t's location. Su;,i = 1,2 are random offsets within a predefined
range. I(u;),i = 1,2 are depths in pixel position u;, which can be
read from depth images directly.

3.2.2 Training

Our training algorithm is shown in Table.2.

Training samples collecting Each foreground pixel
pixel; j in depth image I; is extracted as a training sample
{I;, pixel; j}. There are usually thousands of foreground pixels
in one depth image, so we will extract thousands of training sam-
ples in each depth image. Considering the huge memory resume,
we randomly select N depth images in training set, ie. not all im-
ages are used in training procedure. N has to be large enough, so
selected depth images can roughly cover the distribution of hand
poses in original training set.
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Table.2. Training procedure of neighbor pixels voting

Algorithm 2 Training algorithm for Neighbor Pixels Voting

1. input: depth image [;, and ground truth pose 6; for ran-

domly N samples in training set

2. training samples: {I;, pixel; ;}, for i =1,2,--- N, pixel; ; is

a foreground pixel in J;

3. k* = argminy || pixel; ; — joint; |2, find the nearest joint

(joint; g+ ) of pixel; ; in 6;
4. OX = joint; - — pixel;
learn random forest R to approximate 6x
6. output: R

o

All training samples collected in this way are fed into a ran-
dom forest for training. We use depth difference feature (See E-
g-(3) in Section.3.2.1) for split of tree nodes.

Prediction of leaf nodes For each training sample
{I;, pixel; j}, we first find the nearest joint of pixel; ; in 6; (E-
q.(4)). The label of {I;, pixel; ;} is the coordinate difference be-
tween pixel; j and joint; i+ (Eq.(5)). Then the prediction of a leaf
node is set to be the average of all labels of training samples reach-
ing it.

K= argmkin | pixel; j — joint; |2 “)

Ox = joint; g~ — pixel; 5)

Where joint; is the position of the k" joint in depth image I;,
and joint; i+ is the position of the nearest joint of pixel; ; in depth
image ;.

3.2.3 Testing

After the detection of stretching-out fingers in Section.3.1,
we refine predictions of only those joints in stretching-out fingers.
Locations of other joints remain as predictions of our baseline in
Section.2. Our testing procedure is shown in Table.3.

Table.3. Testing procedure of neighbor pixels voting

Algorithm 3 Testing algorithm for Neighbor Pixels Voting

1. input: depth image I; and hand pose 67 after interpolation

for all samples i in testing set, random forest R

2. dist = miny || pixel; j — joint; |2, pixel; ; is a foreground

pixel in I;

3. testing samples: {I;, pixel; ;}, if dist < thresg;s, for all i,

thresg; is a distance threshold

4. k* = argminy || pixel; ; — joint; |2, find the nearest joint

(joint; ;) of pixel; ; in 67, for each testing sample

5. pred,'czf;vv = R(I;, pixel} ;), pixel} ; is the v-th foreground

pixel voting for joint &*
6. for each updating joint £*, update its location:
joint!pY = %Z“}/:l (pixel; ; +predict;(j’v)
7 elreﬂne ’ ’

i = {jomti,k}noz updated joints in 61.0 U{joim‘i‘k* }updated Jjointss

update hanq pose after refinement
8. output: 6//™ for all testing images
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The construction of testing sample set is similar as that in
training. One difference is that not all foreground pixels are fed
into random forest while testing. We first find the nearest joint
of a certain foreground pixel pixel; ; in 91»0, and calculate corre-
sponding minimum distance. 91»0 is the hand pose after interpola-
tion in Section.3.1, locations of joints in stretching-out fingers are
constrained within the detected finger contour. If the minimum
distance is smaller than a predefined threshold, the foreground
pixel is treated as a testing sample and fed into random forest for
testing.

Each foreground pixel satisfied the mentioned distance
threshold condition votes for the location of its nearest join-
t through random forest. In each tested depth image, a to-be-
updated joint will obtain several votes from different pixels. We
set the average of all votes got by a to-be-updated joint as its new
location after refinement.

4. Experiments And Discussions

In this section, we first introduce the evaluated datasets and
metrics in our experiments. Then we compare results of our re-
finement and the baseline. Finally, we focus on the performance
of proposed IHPE on interactive hand joint estimation, especially
stretching-out finger tips.

4.1 Experiment setup
We show the parameters we used in neighbor pixels voting
in Table.4.

Table.4. Parameters we used in Neighbor Pixels Voting

parameter value
number of trees 8
maximum depth of trees 20
number of features for node split 200
number of thresholds for feature division 50
minimum information gain for node split 1e-6
minimum samples contained in a node 5
number of depth images for training 10000
distance threshold in testing (mm) 10

4.1.1 Datasets

Just like [3], we conducted our experiments on two publicly
RGB-D datasets: ICVL hand pose dataset [2] and MSRA hand
pose dataset [3].

MSRA dataset  The MSRA dataset contains 9 subjects with
17 gestures for each subject. 76.5K depth images with 21 anno-
tated joints are collected with Intel’s Creative Interactive Camera.
Each subject is used for testing in turn while the remain eight sub-
jects for training data. Totally 9 experiments are repeated, and the
average result is reported.

ICVL dataset  The training set of ICVL dataset contains
10 subjects with 26 gestures. About 22K depth images with 16
annotated joints are captured by Intel RealSense with the range of
view about 120 degrees. The testing set contains 1.6K images.

4.1.2 Evaluation metrics
We employ several evaluation metrics following the litera-
tures [2, 12]. For both MSRA dataset and ICVL dataset, the
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performance is evaluated by three metrics: (1) average 3D dis-
tance error is calculated as the average Euclidean distance be-
tween ground truth and prediction for each joint (in millimeters).
(2) all fingers error is computed as the average Euclidean distance
for joints in each finger (in millimeters). (3) all finger tips error
is defined as the average Euclidean distance for finger tip in each
finger. For MSRA dataset, in which the depth images of 17 ges-
tures are separated into different directories, we can evaluate the
performance of our IHPE by two extra metrics: (4) stretching-out
fingers error is computed as the average Euclidean distance for
joints in each finger (in millimeters), only those fingers stretching
out are taken into account. (5) stretching-out finger tips error is
defined as the average Euclidean distance for finger tip in each
finger, considering only those stretching-out fingers.

4.2 Comparison with previous work

We compare the experiment result after Stretching-out Fin-
ger Joint Refinement in Section.3 with the baseline in Section.2.
Note that our baseline is achieved by re-implementing the cas-
caded framework and hierarchical regression in [3], except that
we use the traditional depth difference feature but not 3d pose
indexed feature in [3].

The average 3D distance error on MSRA and ICVL datasets
are shown in Fig.2. Mean error of all joints on MSRA is 18.65m-
m for baseline, and 17.11mm for refinement. Results on ICVL
dataset are 15.07mm and 12.98mm respectively. The increasing
error of the middle joint in thumb on ICVL is probably caused by
the definition of this joint, which is almost dropped in the palm
area. We can see significant improvements on the predictions of
finger tip locations on both datasets.

Our refinement of stretching-out fingers achieves pleasing
performance. This is beneficial from the the pulling force of
stretching-out fingers detection and neighbor pixels voting, which
drags those joints with large error in the baseline towards more
precise areas inside fingers.

4.3 Improvements in interactive joint estimation

We show the mean of five fingers (or five finger tips) of all
fingers error and all finger tips error of MSRA dataset and ICVL
dataset in Table.5.

No matter all fingers error or all finger tips error, there is
significant improvement on both datasets. We emphasize two con-
clusions here: (1)All finger tips error reduces 5.14mm on MSRA
dataset (relatively 20.3%) and 4.85mm on ICVL dataset (relative-
ly 25.3%). (2)The average error gap after refinement between fin-
gers and fingertips is smaller than the baseline. This means that
the conflict between HMI demand and model performance is alle-
viated. Locations of fingertips can be predicted as precise as other
finger joints.

The results of all fingers error and all finger tips error of
MSRA dataset are shown in Fig.3.

Table.5. Average of all fingers error and all finger tips error

dataset MSRA ICVL
method baseline | refine | baseline | refine
all fingers (mm) 20.18 18.02 17.00 13.65
all fingertips (mm) 25.26 20.12 19.15 14.30
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Stretching-out fingers error and stretching-out fingertips er-
ror on MSRA are shown in Fig.4. The average result of five fin-
gers is listed in Table.6. Compared with the baseline, the average
stretching-out fingers error reduces 4.54mm (relatively 22.9%) af-
ter refinement. More significant improvement can be seen in the
average stretching-out fingertips error, which reduces 10.51mm
(relatively 41.4%). In the reality of HMI, the most important
joints are those tips of stretching-out fingers. Our IHPE system
achieves more satisfying performance on hand pose estimation.

Table.6.Average of stretching-out fingers error and stretching-
out finger tips error on MSRA[3] dataset

method baseline | refine
stretching-out fingers (mm) 19.81 15.27
stretching-out fingertips (mm) 25.39 14.88

Fig.5 and Fig.6 show some examples of predictions of the
baseline and corresponding one after refinement. The predictions
of stretching-out finger joint locations are far more accurate after
refinement.

VEW ¥ Y
el ¥V

Figure 5. Example results of Figure 6. Example results of
MSRA[3]: baseline (top), refinement ICVL[2]: baseline (top), refinemen-
(bottom). Note that after refinement, t (bottom). Note that after refinement,
the wrist and finger roots remain the ~Palm center and finger roots remain

same as the baseline. the same as the baseline.

Run Time We run the testing procedure of the w-
hole THPE system in a single thread at Intel® Core™ i7 —
7700K CP @ 4.20GHz x 8. The overall speed achieves 18 fps,
almost meeting real-time requirements.

5. Conclusion

We present a novel scheme named Interactive Hand Pose Es-
timation (IHPE) to address the conflicts between HMI demand-
s and large error of fingertip locations in hand pose estimation.
After obtaining rough locations of hand joints, we detect which
fingers are stretching out based on the rough locations and depth
images. For each joint in each stretching-out finger, its neigh-
bor foreground pixels vote for its new location through random
forests, and its final location is set to the average of voting re-
sults. As shown in our experiments, after the refinement stage of
stretching-out finger joints, the errors of stretching-out finger joint
locations are significantly reduced, especially the fingertips. The
performance on ICVL dataset is good enough to perform rough
Human Machine Interaction, although it needs to be better for
more delicate operations, maybe smaller than 10mm for the error
of localizing fingertips. Our future researches focus on further im-
proving the accuracy, include raising the accuracy of detection of
stretching-out fingers, and improving the performance of neigh-
bor pixels voting by introducing weighted voting mechanism.
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Figure 3. Improvements in finger joint estimation on MSRA[3] dataset: all fingers error (left) and all finger tips error (right).
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