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Abstract
The analysis of complex structured data like video has been

a long-standing challenge for computer vision algorithms. In-
novative deep learning architectures like Convolutional Neural
Networks (CNNs), however are demonstrating remarkable per-
formance in challenging image and video understanding tasks. In
this work we propose a architecture for the automated detection of
scored points during tennis matches. We explore two approaches
based on CNNs for the analysis of video streams of broadcasted
tennis games. We first explore the two-stream approach, which
involves extracting features related to either pixel intensity values
via the analysis of grayscale frames or the encoding of motion re-
lated information via optical flow. However, we explore the case
of using higher order 3D CNN for simultaneously encoding both
spatial and temporal correlations. Furthermore, we explore the
late fusion of the individual stream in order to extract and encode
both structural and motion spatio-temporal dynamics. We vali-
date the merits of the proposed scheme using a novel manually
annotated dataset created from publically available videos.

Introduction
Analysis and understanding of video sequences of complex

actions and events has been a long standing challenge for com-

puter vision algorithms. This challenge can be mainly attributed

to two aspects of this problem, namely the visual diversity of con-

textually similar actions and events and the scale and complexity

associated with massive video datasets. In this work, we consider

the problem of automated detection of winning shots in tennis

matches from broadcasted videos.

The primary challenge in this setting is the recognition of

complex contextual events from raw pixel values. More specif-

ically, a winning shot in tennis is a shot which leads to (i) a

return shot on the net, (ii) a return shot where the ball touches

the ground outsize the playing region and (iii) the altogether non-

contact of the ball with the opponents’ racket, a “winner”. Fur-

thermore, broadcasted videos of tennis games are also charac-

terized by varying viewing conditions including overview shots

from one side of the court, panoramic shots, zooming to a specific

player, replays and others directive choices. Due to these reasons,

the automated understanding the contextual information related to

a winning shot is a very challenge task.

Despite these challenges, innovative architectures like deep

learning, are displaying remarkable performance [1]. Convolu-

tional Neural Networks (CNNs) [2], a particular deep learning

architecture, have shown great promise in static image analysis

task like object recognition and classification [3, 4] while more

recently, they have been introduced in remote sensing [5, 6, 7]

and other applications.

Compared to static image understanding, significantly less

effort have been given to the analysis of video sequences. Ana-

lyzing unstructured video streams is a challenging task for a num-

ber of reasons. First, real world dynamics that are manifested in

the corresponding video streams, such as changes in viewpoint,

illumination and zoom. In addition, while many annotated im-

age datasets are publicly available, a smaller number of labeled

datasets is available for videos. Furthermore, analyzing massive,

high dimensional video streams is extremely computational de-

manding, requiring significant resources [8]. Extensions of CNN

representations to action recognition in video have been proposed

in several recent works [9, 10, 12, 8, 13, 14, 6].

In this work, we consider the problem of detecting winning

shots in broadcasted tennis game videos. They key challenges lies

in the ability to understand when specific spatio-temporal pattern

are associated with contextual events, like a wining ball. We for-

mulate the problem as a binary classification of short video se-

quences which are encoded though a spatio-temporal deep learn-

ing features. The key novelties of this work include:

• Develop a novel dataset for event detection in sports video

and more specifically, for winning shots detection in tennis

games;

• Investigate 3D Convolution Neural Networks for extracting

spatio-temporal features in video sequences;

• Explore the use and fusion of both pixel intensities and mo-

tion related optical flow are input data;

• Produce a novel manually annotated dataset for winning

shot detection in broadcasted tennis games;

• Demonstrate that accurate detection can be achieved from a

limited number of labeled examples.

Related Work
The case of video understanding has been gaining attention

while large scale datasets are becoming publically available [8].

We can identify two major approaches, single-stream frame-based

methods and two-stream motion-based methods. In the former

case either extract spatial features from individual frames which

are concatenated for capturing temporal dependencies [15], or

they encode spatio-temporal infomration [13, 11]. In the two-

stream approaches, both single frame spatial information as well

as inter-frame motion descriptions like optical flow are jointly

modeled [19, 12]. Encoding temporal information can also be

achieved through the use of Long-Short Term Memory (LSTM)
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Figure 1. Block diagram of the proposed architecture. A sequence of frames is introduced as pixel values (top) and optical flow (bottom) to a multi-layer

Convolutional Neural Network. The CNN is composed of 2 or 3 concatenated groups of 3D convolution, followed by ReLU activation and max pooling layers

while the last layers are fully connected layers. The extracted feature from each 3D CNN are fused together in order to extract structural and motion related

features which are mapped to the output layer.

networks [16], while another concept involves the generation of

dynamic images through the collapse of multiple video frames

and the use of 2D deep feature exaction on such representations

[17]. Unlike approaches which consider a single or multiple-

frames, two-stream networks consider two source of information,

raw frames and optical flow, which are independently encoded by

a CNN and jointly classified using methods like Support Vector

Machines [6]. Another line of research explore the use of 3D

spatio-temporal cubes for encoding actions. An extensive evalu-

ation of 3D CNNs for video classification was recently presented

[11].

Proposed model
In this work we explore state-of-the-art CNN based archi-

tectures for the analysis of video streams of broadcasted tennis

games. The initial point of this work is largely based on the use

of 3D CNN for the analysis and classification of video sequences

[11]. We extend this mode base considering the three-dimensional

extension of the two-stream approach which involves simultane-

ously extracting features related to both grayscale pixel values and

optical flow based data. A key novelty of this work is that the

proposed model can encode the dynamics of both structural infor-

mation in the pixel value domain and motion in the optical flow

based domain.

The first type of input data we consider is pixel intensity val-

ues were each color frame is first converted to grayscale such

that sequences of frames correspond to a given example form a

3D spatio-temporal cube which is introduced to the proposed ar-

chitecture. Due to computational limitations, the images are re-

sized to 140× 78 pixels and we consider temporal sequences of

30 frames corresponding to 1 seconds of video. Figure 1 presents

an illustration of the key components of the proposed architecture

applied to pixel intensity and optical flow values. To introduce

the temporal aspects, we employ the Lukas-Kanade optical flow

estimation

In terms of the learning architecture, a CNN is a form of

Deep Neural Network, which comprises of convolutional layers

alternating with activation and subsampling (pooling) layers, re-

sulting in a hierarchy of increasingly abstract features. At the final

layers, fully connected layers are introduced for mapping the fea-

tures to the specific classes.

Convolutional layer: In typical image recognition tasks 2D

convolutions are employed in order to capture shift-invariance in

the spatial domain. Extension of the operation to 3D where two

encode spatial information and one temporal temporal in simi-

larly introduced for video analysis in order to simultaneously cap-

ture spatial and temporal domain invariances Formally, given a X
spatio-temporal cube of dimensions and a filter kernel w of size

(m×m×m), the output of the convolutional layer hk at spatial

location (i, j) and time instance (u) is given by:

hk
i ju = (Wk ∗x)i ju +bk (1)

where bk is the additive bias term. The key parameters of the

convolutional layer is related to the size and number of filters that

are learned at each layer. In this work, we follow the approach in

[11] and select 32,64 and 128 filter of size 3×3×3.

Non-linear activation: A significant component of a CNN is

the non-linear activation associated with the outputs of the convo-

lution. Historically, the two most prominent non-linear function

have been the sigmoid and the tanh. However, in recent year, a

much simpler function have been introduced. The Rectified Linar

Unit (ReLU) preserves the non-negative components while the

negative values are set of zero according to: x̂ = max{0,x}.

Pooling: The activations of the convolutions are intoduced

206-2
IS&T International Symposium on Electronic Imaging 2018

Visual Information Processing and Communication IX



Figure 2. Exemplary frames of a winning shot in grayscale pixel intensity values (top row) and the associated optical flow values (bottom row).

Figure 3. Exemplary frames of a no-winning shot in grayscale pixel intensity values (top row) and the associated optical flow values (bottom row).

to a pooling layer that produces downsampled versions of the in-

put maps. In our work, we consider max pooling althrough other

methors like average pooling have also been explored.

Fully connected The objective of the fully connected layers

layers is to map the features to the specific class. The number

of fully connected layers and the candinality of each are crou-

sial parameter both due to the impact the performance and the

dramatic increase in computational resources needed. While for

datasets like the UCF101 [18], the network much predict hun-

dreds of classes, in our case only two are need. As such, we se-

lected on fully connected layer with 16 neuron. The optimization

of the weights and filters took place using the Stochastic Gradient

Descent approach with learning rate 10−3 with decay 10−2.

Pretrained features
In addition to the features learned during training, we also

explored the case of using pre-trained pixel based features ex-

tracted from each frame and then introducing 1D convolution for

capturing the temporal dependencies. For the 2D feature extrac-

tion networks, we consider the VGG-16 CNN architecture, which

is composed of 13 convolutional layers, with five of them be-

ing followed by a max-pooling layer, leading to three fully con-

nected layers [3]. We employed a pretrained model where the

weights were estimated through training on thousands of Ima-

geNet database images. For each frame of each sequence, a 4096

dimensional vector is extracted (’fc7’)

Dataset
To evaluate the performance of the proposed method, a new

dataset was created containing short duration video sequence of

winning and non-winning shots. To produce the training and

testing example, we considered the final of the 2017 Wimbledon

grand slam tournament between Roger Federer and Marin CiliC.

The game was broadcasted by BBC and the video is available on-

line on YouTube 1. Exemplary frames and associated optical flow

images from “winner” and “no-winner” sequences are shown in

Figures 2 and 3 respectively. One can easily notice that a sig-

nificant benefit of broadcasted tennis games in contrast to other

broadcasted sports is the relatively fixed and static viewpoint, typ-

ically from a camera mounted behind on the opponents. For each

class, “winners” and “no-winners” sets of 100 example sequence

were acquired and we report the performance in terms of classi-

fication error. The code utilizes the Keras library with Tensor-

flow backend for implementing the architectures while the train-

ing process was carried on an NVidia K2200 GPU equipped with

640 cores and 4 GBytes of memory 2.

Experimental results
We compile a dataset of high quality broadcasted tennis

game. We measure the accuracy of the detection by (i) measuring

the detection true positive and false positive rate and (ii) calculat-

ing the temporal distance between the time of wining point detec-

tion and the instance were the on-screen score is updated. In this

work, we report the classification perforation reached after 100

epochs due to both limitation in computational resources but also

because no significant gains in performance are observed given

the limited training data. To introduce the motion related fea-

tures, we employ the Lukas-Kanade optical flow estimation with

threshold for noise reduction set to 0.009. To make the optical

flow compatible with the pixel values, a linear normalization to

the [1, 256] range is performed.

We first explore the impact of having deeper CNN by con-

sidering two architectures, namely architecture with [32,64] and

[32,64,128] convolutional filters followed by 16 and 32 fully con-

1https://youtu.be/N4YJ06z5nuk
2Code will become available at: https://github.com/spl-icsforth/
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nected neuron in the last layer. Figure 4 and Figure 5 present the

accuracy achieved using pixel intensity and optical flow as inputs

to the CNNs
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Figure 4. Accuracy achieved by a 2 and a 3 Convoluational plus FC layer

architecture on pixel intensity values.
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Figure 5. Accuracy achieved by a 2 and a 3 Convoluational plus FC layer

architecture on optical flow values.

Experimental results presented in Figures 4 and 5 provide

key insights into the behavior of the CNN architecture for the

task in question. First, we observe that for all cases, the accuracy

increases with more epoch since the network is becomes better

adapted to the data. However, one can also observe that limited

performance gains are observed when reaching the 100 epochs

milestone.

Comparing the achieved accuracy at 100 epochs with respect

to network depth, we observe that for both pixel intensity and op-

tical flow, the two layer architecture achieves better performance

compared to the three layer case, especially for the case of pixel

intensities. This may seem counter-intuitive since deeper net-

works typically perform better. However, in our case, the limited

number of training examples and number of classes. In practice

this means that the number of network parameters like filters and

weights is bigger compared to the amount of training data used.

As a result. shallower architectures are more capable in captur-

ing sptio-temporal dynamics. Comparing the performance with

respect to the type of input data, we observe that motion related

information encoded in optical flow offer significantly better ac-

curacy compared to pixel intensities. Furthermore, it is able to at-

tain this performance from a very small number of training epochs

compared to the pixel intensity case.

The reults in Figures 4 and 5 assume that all 200 example

sequences are available while during training a 8 : 2 split of train-

ing/validation with random shuffling per epoch is employed for

measuring performance. In Figure 6, we present the impact of the

number of training examples for the two and three convolutional

and pooling layer architectures.

2 Conv + FC 3 Conv + FC
0.8
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0.95

1
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60 examples
80 examples

Figure 6. Accuracy for a 2 Convoluational plus FC layer architecture.

Figure 6 is in accordance to the previously reported findings.

Indeed, deeper networks do not necessarily help in reaching better

accuracy. More specifically, we observe that for 60 and 80 exam-

ples, the 2 layer approach offers better performance compared to

the deeper three layer network. The phenomenon is attributed to

the fact that the limited number of examples lead to overfitting of

deeper networks. For limited number of training examples how-

ever, the three layer is able to attain a stable performance faster

compared to the two layer case since there is a sufficient number

of network parameters to capture the intrinsic characteristic of the

data.

While in Figures 4,5 and 6, the network was trained with ei-

ther pixel intensities or optical flow values, Figure 7 presents the

accuracy achieved when both structural and motion features are

fused and utilized for the final classification. The performance

reported in Figure 7 clearly demonstrate the modeling capabili-

ties achieved when both intensity and motion related features are

extracted. Even for the two convolutional layer architecture, al-
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though the performance is on par with the case of optical flow

based approach, we observe that high classification accuracy is

achieved from a small number of epochs.
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Figure 7. Accuracy for fusion architecture.

The last experimental results we report involve the use of

pre-trained networks for extracting structural information from

pixel intensities. More specifically, Figure 8 showcases the ac-

curacy achieved using a two and a three layer CNN architecture

applied of frame-level features extracted from a VGG16 network.

The results suggest that using spatial only pre-trained models can-

not lead to the performance attained when the higher order struc-

ture of the data is exploited.
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Figure 8. Accuracy for VGG16 input data introduced to 2 Convoluational

plus FC layer architecture.

Conclusions
The accurate classification of video sequences requires ad-

dressing numerous theoretical and practical issues, related to the

complexity and the size of the data. In this work, we consider

the problem of automated identification of winning shot in broad-

casted tennis games which is treated as a binary classification

problem. We investigate the use of 3D Convolutional Neural Net-

works encoding both spatial and temporal information. Further-

more, we propose the fusion of the 3D CNN outputs for encoding

both structural and motion related characteristics. Experimental

results on a new manually annotated dataset demonstrate the abil-

ity of the proposed approach to infer contextual information.
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