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Abstract
Convolutional neural networks (CNNs) have improved the

field of computer vision in the past years and allow groundbreak-
ing new and fast automatic results in various scenarios. How-
ever, the training effect of CNNs when only scarce data are avail-
able is not yet examined in detail. Transfer learning is a tech-
nique that helps overcoming training data shortage by adapting
trained models to a different but related target task. We investi-
gate the transfer learning performance of pre-trained CNN mod-
els on variably sized training datasets for binary classification
problems, which resemble the discrimination between relevant
and irrelevant content within a restricted context. This often plays
a role in data triage applications such as screening seized storage
devices for means of evidence. The evaluation of our work shows
that even with a small number of training examples, the models
can achieve promising performances of up to 96% accuracy. We
apply those transferred models to data triage by using the softmax
outputs of the models to rank unseen images according to their
assigned probability of relevance. This provides a tremendous
advantage in many application scenarios where large unordered
datasets have to be screened for certain content.

Introduction
With the increasing amount of produced data, the search

for relevant information amongst vast and unordered datasets be-
comes more important than ever before. In the context of digital
images this means that, depending on the application scenario,
images with a certain content have to be extracted from large
collections of potentially irrelevant images. For example, find-
ing supernovae within images of distant galaxies [1] as well as
medical [2], [3] and military applications [4]. In such scenarios
the datasets are commonly restricted to a certain context (e.g. im-
ages of star clusters, x-ray images of human body parts or satellite
images), and exhibit a large amount of irrelevant content. Thus,
when searching for content of interest, the problem of finding the
needle in a haystack occurs.

Two possible retrieval scenarios can be derived from that
situation: data triage and content-based image retrieval (CBIR).
In the triage scenario, a binary classifier which discriminates be-
tween relevant and irrelevant content can be used to sort the im-
ages according to relevance. Triage is helpful whenever large
datasets have to be screened for certain content, e.g. when seized
storage devices have to be screened for child pornographic im-
agery [5] or violent content [6] has to be removed from social me-
dia profiles. As false positive or false negative decisions can have
fatal consequences in some scenarios, the final decision about the
relevance of an image is often left to human inspectors. How-
ever, an algorithm which automatically ranks the the images in
a dataset according to some probability of relevance, can support
the screening process by allowing a faster detection of the relevant
images.

In the CBIR scenario, on the other hand, the relevant im-
ages in the dataset might be similar to few images that are already
known. Using those known images as queries would allow an au-
tomatic ranking of the images in the dataset based on similarity
to the query. One possible application scenario is the detection
of contrabandism at border control. Once a suspicious good of
a certain kind (e.g. antiques) is discovered among a traveller’s
luggage, the customs official in duty could query a snapshot of
the unkown object against an image collection of similar objects
which are tagged with their import restriction status. In both sce-
narios, ranking the images according to their relevance reduces
the cost for retrieving the content of interest from the dataset. In
the following we focus on the triage application scenario.

The automatic detection of image content is realized with
computer vision algorithms. Since 2012, when AlexNet [7] won
the ILSVRC challenge, convolutional neural networks (CNNs)
have become very popular in the field of computer vision. To-
day, CNNs represent the state of the art in most computer vision
tasks such as image classification and object recognition.

Training a generalizable CNN model, usually requires large
and diverse datasets. In some cases, however, for example where
expert knowledge is required to tag the images, the collection
of such large training (and evaluation) datasets is expensive and
often not practicable. Scenarios like counterterrorism, medical
emergencies or police investigative work are often time-critical
which makes a profound data collection and tagging impossible.
In such cases, transfer learning (TL), i.e. adapting a pre-trained
model to a small target dataset, can help overcoming the problem
of scarce training data and allow building classification models
within a short time. To achieve a model adaption by TL, a cer-
tain fraction of the hidden layers of the CNN is frozen, which
means that their weights do not receive any further updates dur-
ing TL. Only the layers behind those frozen layers are updated in
order to adapt the model to the new dataset. As Girshick et al. [8]
pointed out, TL helps increasing the classification accuracy for
tasks in which training data is scarce. Furthermore, TL is helpful
when training has to be executed quickly, since the training time
increases linearly with the amount of training examples.

The idea of our approach is to adapt pre-trained CNN models
to binary classification tasks via TL, which resemble the separa-
tion of relevant and irrelevant content in a dataset restricted to a
certain context, such as satellite or x-ray images. Once the net-
works have learned to discriminate between (ir)relevant content
within that context, their softmax outputs can be used to rank the
images in the dataset according to probability of relevance. Since
the result of a learning process depends on the dataset as well as
on the the chosen model, we want to figure out differences and
commonalities among different CNN architectures and datasets
that allow some insights about the training effect of data scarcity.
Furthermore, we investigate the dependance of the performance
of a triage application on the training dataset size. To this end, we
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evaluate our approach on a varying number of training examples.
The remainder of this paper is structured as follows: In the

Related Work section we provide an overview of related work;
section Datasets and Models briefly introduces the datasets and
CNN models that we used in our approach. Section Transfer
Learning describes the transfer learning (TL) experiments con-
ducted to obtain information about suitable parameter settings
when training data is scarce. The triage approach and its evalua-
tion is described in section Triage Experiments, which is followed
by the Conclusion section.

Related Work
When it comes to the choice of the dataset on which to pre-

train a model prior to TL, the well-known ImageNet1 dataset with
1.2 million images distributed over one thousand object classes
is commonly used in TL. As Huh et al. [9] pointed out, thus far,
no other approach could outperform pre-training on ImageNet for
learning general-purpose deep features. The authors state that the
dataset size of ImageNet itself might not be as important as is of-
ten assumed. But even with a reduced set of 500 images per class,
pre-training on ImageNet did not lead to much worse TL per-
formance. The authors also found out that reducing the number
of classes could increase TL performance, at least for some tar-
get datasets. Additionally, they showed that learning fine-grained
features during pre-training is not necessary for a good TL per-
formance. However, as only a single CNN architecture (AlexNet
[7]) was examined, it is not clear, whether their observations are
in fact architecture-dependent or not.

Surprisingly, Agrawal et al. showed that regularization
mechanisms such as early stopping, which aim to prevent a model
from overfitting, are counterproductive for TL, when applied dur-
ing the pre-training phase of a transfer learning task [10]. Sim-
ply increasing the number of training examples of the pre-training
dataset does not lead to better TL performance, as highlighted by
Joulin et al. [11], where the YFCC100m [12] dataset of 100 mil-
lion Flickr images was used for pre-training. However, the TL ac-
curacy did not improve substantially in comparison to pre-training
on ImageNet.

A study about the optimization of TL parameters was con-
ducted by Azizpour et al. in [13]. However, in contrast to our
work, they focused on different parameters. They used the Im-
ageNet dataset to pre-train the AlexNet and OverFeat [14] CNN
architectures. For TL different datasets were used, which were
divided into five distinct target recognition tasks (ordered by dis-
tance to the source task, i.e. ImageNet classification): image clas-
sification, attribute detection, fine-grained recognition, composi-
tional semantic recognition and instance retrieval. Instead of re-
using the complete CNN architecture, Azizpour et al. extracted
features from intermediate layers and performed the TL step by
using a linear Support Vector Machine (SVM) for classification
tasks, and the Euclidean distance function for retrieval tasks, on
those features. By making the distinction between the five dif-
ferent recognition tasks, they observed that the evaluated TL pa-
rameters depend on the distance between source and target task.
By varying the number of parameters per layer Azizpour et al.
constructed architectures of different complexity. Comparing TL
performance on those different architectures revealed that for tar-

1http://www.image-net.org

get tasks similar to the source task, complex architectures with
hundreds of millions of parameters achieve the highest TL perfor-
mance. On the contrary, for more distant target tasks (e.g. instance
retrieval) medium-sized architectures (about 60 million parame-
ters) achieved the best results. Increasing the network depth did
not lead to any substanial performance decrease. Additionally,
the higher the distance between target task and source task was,
the more effective were the lower layers as feature sources for TL
[13]. However, Azizpour et al. state that a good trade-off for any
target task is using the features of the first fully-connected layer.
They also state that in order to preserve the features learned dur-
ing pre-training, the learning rate in the TL step should be lower
than in the pre-training step.

Yosinsky et al. discovered in [15] that TL performance de-
creases when the pre-training and target datasets are dissimilar.
They also mentioned that the layer index where to split the pre-
trained model into frozen and non-frozen layers should be chosen
carefully, since the transferability of the model can decrease when
that split is set between co-adapted layers.

Regarding the mini-batch size, which is a frequently dis-
cussed hyperparameter in deep learning, Keskar et al. [16] rec-
ommend small mini-batches. Although large mini-batches require
less training time due to a better parallelizability, they also yield a
worse generalization (generalization gap) and tend to overfitting.

Datasets and Models
We used three distinct image datasets of different domains to

evaluate TL and triage. The datasets comprised different numbers
of images belonging to two classes, respectively. As mentioned
in the introduction, this work is focused on triage applications
with restricted context. The datasets used are described in the
following:

• ”Knives Images Database”2, which consists of images taken
at various indoor scenes including or excluding knives. We
refer to this dataset by knives.

• ”Ships in Satellite Imagery”3, provided by Kaggle, which
consists of satellite images of waters surfaces including or
excluding ships. We refer to this dataset by ships.

• A self-compiled balanced dataset consisting of two thousand
selfies and similar images showing adult people from Red-
dit.com including or excluding raw nudity, which we col-
lected for a previous paper [5]. Due to the nature of the
content of this dataset we did not relase it. We refer to this
dataset by nsfw.

All images in the respective datasets either contained an ob-
ject of interest (e.g. a knife, ship or nsfw content) or not. Thus, we
considered the class containing the objects of interest as positive
(P) and the other class as negative (N). For knives all images con-
taining a knife are labeled as P, for ships the images containing
a ship are labeled as P, and for nsfw the images containing raw
nudity are labeled as P.

All images of the three datasets were rescaled to a fixed size
200 by 200 pixels in order to provide constant input sizes to the
evaluated networks. As we conducted two successive experiments
with the datasets, TL and retrieval, we first split the datasets into

2http://sit4.me/knivesdatabase
3http://sit4.me/kaggleships
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Table 1. Dataset splits for TL and data triage. P denotes the positive class, whereas N denotes the negative class for each split.

Dataset name Original Transfer Learning Triage
Train Validation

P N P N P N P N
knives 3,559 9,340 200 200 200 200 3,159 8,940
ships 700 2,100 200 200 200 200 300 1,700
nsfw 1,000 1,000 200 200 200 200 600 600

disjunct subsets for the two tasks. The subset for retrieval did not
have to be split into train and test sets, as this part does not require
any further training of the models. Table 1 provides a complete
overview of the datset split for each task. The subsets for TL were
further divided into balanced subsets for training and validation,
which are listed in Table 2.

For the evaluation of our approach we compared three dis-
tinct popular CNN architectures: InceptionV3 [17], ResNet50
[18] and VGG16 [19]. Regarding the number of weight param-
eters, VGG16 is the most complex architecture ( 138 million pa-
rameters), followed by ResNet50 ( 25 million parameters) and
InceptionV3 ( 23 million parameters).

Transfer Learning
Like performed in other works before [9], [20], we decided

to use ImageNet for pre-training the three CNN models for our TL
experiments, as ImageNet was shown to be a good pre-training
dataset for many TL application scenarios [9] and yields diverse
classification models due to its large number of distinct classes.
With our TL experiments we aimed for answering the following
questions:

• How many training examples are necessary in order to
achieve a satisfying classification performance? Usually,
deep CNN architectures require a large amount of training
data, as they incorporate vast amounts of parameters to tune.
Nevertheless, in some scenarios, when the generation of
enough training data is too expensive or simply impossible,
it would be beneficial, knowing some minimally necessary
amount of training data in order to achieve a reliable predic-
tion model.

• Is any of the pre-trained CNN models more suitable for
adaption to a binary classification problem with scarce
training data than the others? Due to their different ar-
chitectures and complexity, it is interesting to investigate,
whether there is one model that outperforms the others on
all datasets or whether different datasets are best handled by
distinct models.

As often mentioned in the literature, TL performs best when
applying smaller learning rates than those used for pre-training
[14]. However, as we discovered in preliminary experiments,
when the training data is scarce, it is beneficial to start with a
high learning rate which gradually decays to lower values. The
effect is a broader exploration of the loss function in the begin-
ning, which might reduce the risk of the learning process getting
stuck in nearby local minima. However, decaying is necessary in
order to prevent the model from bouncing back and forth on the

loss function. So, we set the initial learning rate to 0.1 and ap-
plied a linear decay to 0.001, using SGD optimization which is
a commonly used optimization technique in deep learning [16].
As we trained on datasets with different sizes, we chose a relative
mini-batch size of 10% of the training data. This way, we ensure
the same amount of iterations for a certain number of epochs for
all dataset sizes.

In order to investigate the performance on different training
dataset sizes, we performed TL for a duration of 150 epochs on
increasing balanced subsets of the training data. Table 2 shows the
numbers of examples per class that we used in our training sub-
sets. A balanced set of 400 samples was held out for validation.
Figure 1 shows the validation accuracy plots per epoch for the
datasets knives, ships and nsfw and each of the CNN architectures
InceptionV3, ResNet50 and VGG16, repsectively. Additionally,
the final validation accuracy values are given in Table 3.

Table 2. Different training data subsets for TL. The first row shows the

subset index, the second row contains the corresponding number of training

examples per class in the subset.

Subset: 1 2 3 4 5 6 7 8
ex./class: 25 50 75 100 125 150 175 200

Table 3. Validation accuracy on training subsets for InceptionV3 (I),

ResNet50 (R) and VGG16 (V). CNN architectures are indicated by the first

letter of their name (I, R, V) as subscript to the corresponding dataset. The

first row indicates the number of examples per class present in the respective

training subset.

25 50 75 100 125 150 175 200

knivesI .67 .50 .77 .70 .75 .81 .81 .79
knivesR .82 .84 .84 .86 .89 .91 .91 .90
knivesV .50 .50 .50 .87 .88 .89 .90 .89
shipI .50 .80 .50 .88 .87 .50 .87 .87
shipR .81 .85 .87 .87 .86 .87 .88 .90
shipV .50 .50 .50 .95 .94 .50 .96 .96
nsfw I .50 .74 .66 .73 .50 .75 .75 .77
nsfwR .81 .82 .81 .83 .82 .83 .84 .87
nsfwV .50 .82 .79 .50 .81 .50 .81 .82

From the graphs in Figure 1 we can infer the following con-
clusions and assumptions: While InceptionV3 and VGG16 learn
faster than ResNet50, ResNet50 and VGG16 achieve higher ac-
curacy than InceptionV3 on all datasets. Furthermore, for Incep-
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Figure 1. Validation accuracies of TL with varying training set size. Each row shows the results for knives, ships and nsfw, respectively. Each column shows

the results for InceptionV3 (I), ResNet50 (R) and VGG16 (V), respectively. Each subplot is additionally entitled with the corresponding dataset name and a

subscript indicator of the corresponding CNN architecture.

tionV3 dataset size seems to affect accuracy much more than for
ResNet50 and VGG16. VGG16 seems to combine fast learning of
InceptionV3 and dataset size independece of ResNet50, which we
assume to result from its high complexity in terms of parameters.

Regarding the different datasets, the following conclusions
can be drawn: On the ships dataset the achieved accuracy is gen-
erally slightly higher than on the knives and nsfw datasets. Satel-
lite images of waters surfaces do not contain a lot of background
noise, which makes the detection of ships (that usually have a
characteristic shape, seen from above) relatively easy.

On the knives dataset, the achieved accuracy is generally
slightly higher than on nsfw dataset. This can be explained by
the fact that ImageNet already contains a class ’letter opener, pa-
per knife, paperknife’, i.e. features describing the concept of a
knife are already known to the pre-trained models. On the con-
trary, nsfw content is not present in ImageNet. However, the nsfw
dataset requires less training data for a model to achieve high per-
formance. The reason might be that in the nsfw dataset the rele-
vant features (naked human bodies) cover a much larger part of
the individual images, than an average knife in the knives dataset
or most ships in the ships dataset, where the part of the images
covered by background is much larger, in general.

Another phenomenon that arose is that for some subsets the
models were not able to adapt to the target data. This is reflected
by 0.50 accuracy values throughout the TL process. This behav-
ior might be explainable if only the smallest subsets would be
affected. But, as in our case, the larger datasets always comprised
the smaller ones, the reason for performance drops for increasing
the dataset size is harder to explain. One assumption is, that due
to the relatively small number of training examples in general,
the addition of new examples can deteriorate the model when a
certain amount of those examples contains poor features (features

that are also present in many examples of the opposite class and
are thus not characteristic for the target class). This way, more
data can misguide the model in wrong directions.

Triage Experiments
In order to use the models which were trained in the previous

section, we used the output values of their softmax layers. The
softmax output values reflect probabilities that the model assigns
to an image for the presence of the respective classes. All softmax
output values add up to one.

For each dataset we considered the positive class P as the one
of interest, so that we only extracted the softmax value of class P
for each image. According to those values, which were assigned
to every image in the triage datasets, we created a ranked list,
sorted by that value in descending order. As highly imbalanced
datasets in favor of the negative class N are much more challeng-
ing in triage scenarios, we limited the percentage of positive ex-
amples in the respective triage datasets to 5%. We measured the
triage performance by precision-recall (PR) curves and the corre-
sponding mean average precision (MAP), as provided in Figure 2.

Table 4. Mean Average Precision (MAP) of the models trained with 200

examples per class in the TL section on each training dataset, applied to the

corresponding triage datasets.

Dataset InceptionV3 ResNet50 VGG16
knivestr .46 .63 .59
shipstr .28 .19 .81
nsfw tr .24 .59 .57

The observations made for TL, are well reflected in the eval-
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Figure 2. Precision-recall (PR) curves of InceptionV3 (I), ResNet50 (R) and VGG16 (V). The additional grayish dotted line represents the triage performance

on a randomly sorted dataset, when no ranking is applied prior to the data screening.

uation of the triage task. The higher TL performance achieved
on the ships dataset leads to better PR curves than for the other
two datasets. Also, the fact that with the ships dataset, VGG16
performed much better than the other two models in the TL task,
can be immediately seen in the PR curves. Likewise, the obser-
vation that for the two other datasets, knives and nsfw, ResNet50
and VGG16 achieved similar performance, reflects the TL results.
The affirmation of the TL results on the held out triage datasets
can be seen as a further reliability test for the learned models.
Nevertheless, an evaluation on completely different datasets with
the same context would allow much more profound assertions
about the generalizability of the models.

Considering practical application scenarios as mentioned in
the introduction of this paper (e.g. the screening of large datasets
for means of evidence), the PR curves from Figure 2 and their cor-
responding MAP values given in Table 4 indicate the efficiency of
our approach. On average, a random ordering (regarding image
content) of the dataset can be assumed. With a percentage 5% of
positive examples, this only allows a constant precision of 0.05 at
every stage in the triage process, which requires the investigator to
screen a very large amount of data if a high recall is desired. The
ranked list according to our approach, on the other hand, achieves
both, high precision and high recall at much earlier stages.

Conclusion
In this work we examined the performance of transfer learn-

ing (TL) with scarce training data and its application to triage
problems. Each of the three evaluated CNN models was able
to adapt to the new target tasks. Due to the nature of the re-
stricted context of the binary classification datasets, InceptionV3
and VGG16 adapt very quickly to the new task after just few
epochs, while the accuracy of ResNet50 starts increasing later (af-
ter epoch 50) and usually slower. Once, the accuracy curve has
saturated, ResNet50 and VGG16 exhibit less noise in validation
accuracy than InceptionV3, which might be an indicator that their
learned models are more reliable. The evaluation of the triage task
reflected the observations which were made in the TL section of
this work. This is a reliability indicator for the learned models.

In future work, a cross-dataset evaluation of the models
achieved via TL would allow a better examination of their gener-
alizability. To investigate whether the small numbers of training

examples observed in this work, which yield high performance,
are generally sufficient when adapting complex CNN models to
binary classification tasks, the conducted experiments should be
repeated on more datasets in the future. One method to further
increase the performance of the TL models might also be data
augmentation.
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