
Texture Segmentation Based Video Compression

Using Convolutional Neural Networks

Chichen Fu⋆, Di Chen⋆, Edward Delp⋆, Zoe Liu†, Fengqing Zhu⋆

⋆Purdue University
†Google, Inc. (United States)

Abstract
There has been a growing interest in using different ap-

proaches to improve the coding efficiency of modern video codec

in recent years as demand for web-based video consumption in-

creases. In this paper, we propose a model-based approach that

uses texture analysis/synthesis to reconstruct blocks in texture re-

gions of a video to achieve potential coding gains using the AV1

codec developed by the Alliance for Open Media (AOM). The

proposed method uses convolutional neural networks to extract

texture regions in a frame, which are then reconstructed using a

global motion model. Our preliminary results show an increase

in coding efficiency while maintaining satisfactory visual quality.

Introduction
With the increasing amount of videos being created and con-

sumed, better video compression tools are needed to provide

fast transmission and high visual quality. Modern video coding

standards utilize spatial and temporal redundancy in the videos

to achieve high coding efficiency and high visual quality with

motion compensation techniques and 2-D orthogonal transforms.

However, efficient exploitation of statistical dependencies mea-

sured by a mean squared error (MSE) does not always produce

the best psychovisual result, and may require higher data rate to

preserve detail information in the video.

Recent advancement in GPU computing has enabled the

analysis of large scale data using deep learning method. Deep

learning techniques have shown promising performance in many

applications such as object detection, natural language process,

and synthetic images generation [1, 2, 3, 4]. Several methods

have been developed for video applications to improve coding ef-

ficiency using deep learning. In [5], sample adaptive offset (SAO)

is replaced by a CNN-based in-loop filter (IFCNN) to improve

the coding efficiency in HEVC. By learning the predicted residue

between the quantized reconstructed frames obtained after de-

blocking filter (DF) and the original frames, IFCNN is able to re-

construct video frames with higher quality without requiring any

bit transmission during coding process. Similar to [5], [6] pro-

poses a Variable-filter-size Residue-learning CNN (VRCNN) to

improving coding efficiency by replacing DF and SAO in HEVC.

VRCNN is based on the concept of ARCNN [7] which is origi-

nally designed for JPEG applications. Instead of only using spa-

tial information to train a CNN to reduce the coding artifacts in

HEVC, [8] proposed a spatial temporal residue network (STRes-

Net) as an additional in-loop filter after SAO. A rate-distortion

optimization strategy is used to control the on/off switch of the

This work was sponsored by a grant from Google.

proposed in-loop filter. There are also some works that have been

done in the decoder of HEVC to improve the coding efficiency.

In [9], a deep CNN-based auto decoder (DCAD) is implemented

in the decoder of HEVC to improve the video quality of decoded

video. DCAD is trained to learn the predict residue between de-

coded video frames and original video frames. By adding the pre-

dicted residual generated from DCAD to the compressed video

frames, this method enhances the compressed video frames to

higher quality.

In summary, the above methods improve the coding effi-

ciency by enhancing the quality of reconstructed video frames.

However, they require different trained models for video recon-

struction at different quantization levels.

We are interested in developing deep learning approaches to

only encode visually relevant information and use a different cod-

ing method for “perceptually insignificant” regions in a frame,

which can lead to substantial data rate reductions while maintain-

ing visual quality. In particular, we have developed a model based

approach that can be used to improve the coding efficiency by

identifying texture areas in a video frame that contain detail ir-

relevant information, which the viewer does not perceive specific

details and can be skipped or encoded at a much lower data rate.

The task is then to divide a frame into “perceptually insignificant”

texture region and then use a texture model for the pixels in that

region.

In 1959, Schreiber and colleagues proposed a coding method

that divides an image into textures and edges and used it in image

coding [10]. This work was later extended by using the human vi-

sual system and statistical model to determine the texture region

[11, 12, 13]. More recently, several groups have focused on adapt-

ing perceptual based approaches to the video coding framework

[14]. In our previous work [15], we introduced a texture ana-

lyzer before encoding the input sequences to identify detail irrele-

vant regions in the frame which are classified into different texture

classes. At the encoder, no inter-frame prediction is performed for

these regions. Instead, displacement of the entire texture region is

modeled by just one set of motion parameters. Therefore, only the

model parameters are transmitted to the decoder for reconstruct-

ing the texture regions using a texture synthesizer. Non-texture

regions in the frame are coded conventionally. Since this method

uses feature extraction based on texture segmentation technique,

a proper set of parameters are required to achieve accurate tex-

ture segmentation for different videos. Deep learning methods

usually do not require such parameter tuning for inference. As a

result, deep learning techniques can be developed to perform tex-

ture segmentation and classification for the proposed model-based

video coding. A Fisher vector convolution neural networks (FV-

IS&T International Symposium on Electronic Imaging 2018
Visual Information Processing and Communication IX 155-1

https://doi.org/10.2352/ISSN.2470-1173.2018.2.VIPC-155
© 2018, Society for Imaging Science and Technology



CNN) that can produce segmentation labels for different texture

classes was proposed in [16]. One of the advantage of FV-CNN

is that the image input size is flexible and is not limited by the

network architecture. Instead of doing pixel-wise classification

on texture regions, a texture classification CNN network was de-

scribed in [17]. To reduce computational expenses, [17] uses a

small classification network to classify image patches with size of

227 × 227. A smaller network is needed to classify smaller im-

age patches in our case. In this paper, we propose a block-based

texture segmentation method to extract texture region in a video

frame using convolutional neural networks. The block-based seg-

mentation network classifies each 16 × 16 block in a frame as

texture or non-texture. The identified texture region is then syn-

thesized using the temporal correlations among the frames. Our

method was implemented using the AOM/AV1 codec. Prelimi-

nary results show significant bitrate savings while maintaining a

satisfactory visual quality.

Method

Figure 1. Block Diagram of Proposed Method

Figure 1 shows a block diagram of the proposed system. The

original frames are first analyzed by texture detector to generate

texture segmentation masks. Then, AOM/AV1 global motion tool

is used to warping the identified texture region in a reference

frame to synthesize the identified texture region in the current

frame. The texture synthesis for each frame uses provided seg-

mentation masks without sending residues for identified texture

region.

Texture Analysis
To provide texture information for the AOM/AV1 encoder,

we use a block-based deep learning texture detector to analyze

video frames and produce segmentation masks. Our deep learning

detector obtains texture segmentation masks by classifying each

16 × 16 block in a frame.

CNN Architecture
The CNN architecture of our method is shown in Figure 2.

Our CNN network is inspired by the VGG network architecture

[18]. The input of our architecture is a 16 × 16 color image block.

The architecture consists of convolutional layers followed by a

batch normalization rectified linear unit (ReLU) and a max pool-

ing operation. Three fully connected layers with dropout opera-

tions and a softmax layer produces class probabilities. The output

of our network is the probability that a 16 × 16 block is labeled as

texture or non-texture, which indicates reliably of the texture/non-

texture block label produced by the network. The kernel size of

the convolutional layer is 3 × 3 and is padded by 1. The max pool-

ing layer down samples the image by 2 and doubles the number

of feature maps.

Figure 2. CNN Architecture for Texture Block Classification

Figure 3. CNN Training Data Preparation Procedure

Training

The Salzburg Texture Image Database (STex) and the

Places365 [19] were used for training the CNN. Images in the

STex dataset are ”pure” texture images. Images in the Place365

dataset are of general scenes. The texture class samples were cre-

ated by cropping 512 × 512 STex images into 256 × 256 and

128 × 128 image patches and resizing them to 16 × 16 patches.

ThePlace365 images were resized into 16 × 16 image patches.

Since the texture content in the Places365 images were lost dur-

ing resizing operation, we can use resized Places365 images as

non-texture class samples. In total, 1740 texture class images and

36148 non-texture class images were generated. The CNN train-

ing data preparation procedure is shown in Figure 2.

The proposed CNN architecture was implemented in Torch

[20]. Mini-batch gradient descent is used with a fixed learning

rate of 0.01, a momentum of 0.9 and a weight decay of 0.0005.

The batch size of 512 image patches was trained in each iteration.

For each epoch, 74 iterations were performed to cover the en-

tire training set. The training set was shuffled before each epoch.

Since our training set is unbalanced for the texture class images

and non-texture class images, the class weight of each class was

set proportion to the inverse of class frequency. The error of train-

ing was calculated using cross entropy criterion and was con-

155-2
IS&T International Symposium on Electronic Imaging 2018

Visual Information Processing and Communication IX



verted to probability score using softmax regression. A total of

100 epochs were trained using one NVIDIA GTX Titan GPU.

Inference
After training the CNN, texture segmentation is performed

using test video frames. Each frame is divided into 16 × 16 ad-

jacent non-overlapping blocks. Each block in the video frames is

classified as either texture or non-texture block. The segmentation

mask for each frame is formed by grouping the classified blocks

in the frame.

Texture-Based Video Coding
We use AOM/AV1 codec [21] to implement and test the pro-

posed method. In our implementation, a video sequence is first di-

vided into group of frames (GF group). In each GF group, texture

synthesis method is disabled for the first frame and enabled for the

rest of the frames. When a frame contains identified synthesizable

texture regions, the texture region is synthesized by warping the

corresponding region from the reference frames. This is imple-

mented by using the global motion mode [22] in AOM/AV1. The

texture analyzer is integrated into the encoder as follows and is

illustrated in Figure 4:

Figure 4. Encoding Operation Flow

1. Load and store texture mask for the current frame and all its

reference frames;

2. Estimate texture motion parameters for all the reference

frames and replace at least one set of the codec’s global mo-

tion parameters with the texture motion parameters;

3. Check if a block is a texture block;

4. Stop further block splitting for texture blocks;

5. Choose global motion mode for texture blocks;

6. Set the residual of texture block to be zero.

Texture Motion Parameters
In order to get more accurate motion estimation of texture

region, instead of using global motion parameters from the codec

which are estimated based on the reference frame and the entire

current frame, we obtained the texture motion parameters for each

frame based on the reference frame and the texture region in the

current frame. This indeed reduces the artifacts on the block edges

of the texture blocks and non-texture blocks in the reconstructed

video. The texture motion parameters are sent to the decoder in

the uncompressed header of inter predicted frames.

Texture Block Decision

If a block is entirely inside the texture region of the current

frame and the warped area in the reference frame is also inside the

texture region of the reference frame, then this block is considered

a texture block. If the block is a texture block, we do not further

split it into smaller sub-blocks. If the block contains no texture

region, RD optimization is performed for block partitioning and

mode decision.

Texture Synthesis

The global motion tool of AOM/AV1 codec was used to syn-

thesize texture blocks by warping the reference frame. On the

encoder side, the texture blocks select global motion mode and

only use the reference frames that have texture motion parame-

ters. To avoid artifacts on the block edges of the texture blocks,

all texture blocks within one frame use the same reference frame.

The residual of the texture blocks is set to zero.

Experimental Result
To evaluate our method, four pairs of data rates and PSNRs

are calculated for each test sequences using the baseline codec.

The baseline codec and our proposed method both use a single-

layer coding structure. There are 4-16 frames in each GF group.

Our proposed method enables texture mode for all the frames ex-

cept the GOLDEN and ALTREF frames in AV1, which means

that there is at least one frame in each GF group that does not use

texture mode. Bjontegaard metric [23] is used to evaluate the per-

formance of our method. Bjontegaard metric are BD-RATE and

BD-PSNR which measure average data rate change and PSNRs

change respectively. The data rate is computed by dividing the

WebM file size by the number of frames. The WebM file is the

output of the encoder. PSNR is calculated based only on non-

texture regions of the frame for the decoded video. We obtain four

different pairs of data rates and PSNRs for each test sequence.

The BD-RATE and BD-PSNR were calculated using these four

pairs of data rate and PSNR points.

Table 1. BD-RATE and BD-PSNR

Sequence BD-RATE (%) BD-PSNR (dB)

Flower garden -16.49 1.25

Football -5.68 0.42

Figure 5 shows the reconstructed sample video frames. The

quantitative evaluation results are shown in Table 1, 2, 3. The

evaluation results show large data rate saving for our sample de-

coded videos while the reconstructed video frames showing no

significant visual artifacts. For sequence with fast motion, mo-

tion artifacts are observed between the edge of texture regions and

non-texture regions illustrated in Figure 6. In our current imple-

mentation, texture synthesis is performed using the codec’s built-

in global motion function. Inaccurate motion parameters can lead

to motion artifacts in some sequences. A potential approach to

fix the artifacts is to use different motion models when estimating

the motion parameters. By addressing what types of motion may

cause such visual artifacts, the most suitable motion model can

IS&T International Symposium on Electronic Imaging 2018
Visual Information Processing and Communication IX 155-3



Figure 5. Sample Reconstructed Video Frames

Figure 6. Sample Reconstructed Video Frame with Motion Artifacts Between the Edge of Texture Regions and Non-Texture Regions

be selected to fit the scheme in different videos. The complex-

ity of the motion models used for each identified texture regions

can be adjusted depending on the texture content. In addition, we

would like to categorize different types of motion present in the

video and assess how well our texture based method performs for

different types of motion. This can then be used as feedback to

automatically determine which mode is best suited for encoding

the frame/block using machine learning methods.

Figure 7 shows the texture segmentation results. Our CNN

detector is more likely to find texture blocks that only contain one

single type of texture within a 16 × 16 block. If a block contains

different types of texture content, it may not be detected as a tex-

ture block. Using more training samples that contains different

types of textures could improve the performance of our CNN de-

tector. Additional post-processing techniques such as connected

components can be used to remove small texture regions.

Conclusion
In this paper, we proposed a texture segmentation based

video coding method for AOM/AV1 codec. A deep learning based

texture segmentation method was developed to detect texture re-

gions in a frame that is “perceptually insignificant.” The proposed

method is implemented in the AOM/AV1 codec by enabling the

global motion mode to ensure temporal consistency. Preliminary

results showed a large data rate saving without noticeable visual

artifacts.

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-

cation with deep convolutional neural networks,” Proceedings of the

Neural Information Processing Systems, pp. 1097–1105, December

2012, Lake Tahoe, NV.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 3431–3440, June

2015, Boston, MA.

[3] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural networks, vol. 61, pp. 85–117, 2015.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,

vol. 86, no. 11, pp. 2278–2324, November 1998.

[5] W. Park and M. Kim, “Cnn-based in-loop filtering for coding effi-

155-4
IS&T International Symposium on Electronic Imaging 2018

Visual Information Processing and Communication IX



Table 2. Data Rate Savings Obtained for Flower Garden Sequence

Quantization Level Data Rate - AOM/AV1 (bits/frames) Data Rate - Our Method (bits/frames) Data Rate Savings (%)

16 115330 136080 15.24

24 81558 94695 13.87

28 63621 73768 13.76

32 51326 59326 13.48

Table 3. Data Rate Savings Obtained for Football Sequence

Quantization Level Data Rate - AOM/AV1 (bits/frames) Data Rate - Our Method (bits/frames) Data Rate Savings (%)

16 112720 122110 7.69

24 79621 83874 5.71

28 62905 65811 4.42

32 49600 51705 4.71

Figure 7. Sample Texture Segmenatation Results

ciency improvement,” Image, Video, and Multidimensional Signal

Processing Workshop, pp. 1–5, 2016.

[6] Y. Dai, D. Liu, and F. Wu, “A convolutional neural network approach

for post-processing in hevc intra coding,” International Conference

on Multimedia Modeling, pp. 28–39, 2017.

[7] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Compression arti-

facts reduction by a deep convolutional network,” Proceedings of

the IEEE International Conference on Computer Vision, pp. 576–

584, 2015.

[8] C. Jia, S. Wang, X. Zhang, S. Wang, and S. Ma, “Spatial-

temporal residue network based in-loop filter for video coding,”

arXiv preprint, p. arXiv:1709.08462, 2017.

[9] T. Wang, M. Chen, and H. Chao, “A novel deep learning-based

method of improving coding efficiency from the decoder-end for

hevc,” Data Compression Conference, pp. 410–419, 2017.

[10] W. F. Schreiber, C. F. Knapp, and N. D. Kay, “Synthetic highs, an

experimental tv bandwidth reduction system,” J. Soc. Motion Pic-

ture Televis. Eng., vol. 68, pp. 525–537, 1959.

[11] H. Peterson, “Image segmentation using human visual system prop-

erties with applications in image compression,” Ph.D. dissertation,

Purdue Univ, May 1990, West Lafayette, IN.

[12] M. Kunt, A. Ikonomopoulos, and M. Kocher, “Second-generation

image-coding techniques,” Proc. IEEE, vol. 73, no. 4, pp. 549–574,

April 1985.

[13] E. J. Delp, R. L. Kashyap, and O. Mitchell, “Image data compres-

sion using autoregressive time series models,” Pattern Recognit., pp.

313–323, June 1979.

[14] P. Ndjiki-Nya, D. Doshkov, H. Kaprykowsky, F. Zhang, D. Bull,

and T. Wiegand, “Perception-oriented video coding based on im-

age analysis and completion: A review,” Signal Processing: Image

Communication, vol. 27, no. 6, pp. 579–594, July 2012.

[15] M. Bosch, F. Zhu, and E. J. Delp, “Segmentation-based video com-

pression using texture and motion models,” IEEE Journal of Se-

lected Topics in Signal Processing, vol. 5, no. 7, pp. 1366–1377,

2011.

[16] M. Cimpoi, S. Maji, and A. Vedaldi, “Deep filter banks for texture

recognition and segmentation,” Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 3828 – 3836,

2015.

[17] V. Andrearczyk and P. F. Whelan, “Using filter banks in convolu-

tional neural networks for texture classification,” Pattern Recogni-

tion Letters, pp. 63–69, 2016.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional net-

works for large-scale image recognition,” arXiv preprint, p.

arXiv:1409.1556, 2014.

[19] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva,

“Places: An image database for deep scene understanding,” arXiv

preprint, p. arXiv:1610.02055, 2016.

[20] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A

matlab-like environment for machine learning,” Proceedings of the

BigLearn workshop at the Neural Information Processing Systems,

pp. 1–6, December 2011, Granada, Spain.

[21] “Alliance for open media, press release online,”

http://aomedia.org/press-release.

[22] S. Parker, Y. Chen, D. Barker, P. D. Rivaz, and D. Mukher-

jee, “Global and locally adaptive warped motion compensation in

IS&T International Symposium on Electronic Imaging 2018
Visual Information Processing and Communication IX 155-5



video compression,” Proc. IEEE Int. Conf. Image Process. (ICIP),

September 2017.

[23] G. Bjntegaard, “Calculation of average psnr differences between

rdcurves,” VCEGM33, 13th VCEG meeting, March 2001, Austin,

Texas.

Author Biography
Chichen Fu received his BS in Electrical Engineering from

Purdue University (2014) and he is pursuing his PhD in Elec-

trical and Computer Engineering from Purdue University. His

research interest include machine learning, image processing and

computer vision.

Di Chen is a PhD candidate in Video and Image Processing

Laboratory (VIPER) at Purdue University, West Lafayette. Her

research focuses on video analysis and compression. Currently,

she is working on texture segmentation based video compression

using convolutional neural networks.

Edward J. Delp was born in Cincinnati, Ohio. He is cur-

rently The Charles William Harrison Distinguished Professor of

Electrical and Computer Engineering and Professor of Biomedi-

cal Engineering at Purdue University. His research interests in-

clude image and video processing, image analysis, computer vi-

sion, image and video compression, multimedia security, medi-

cal imaging, multimedia systems, communication and informa-

tion theory. Dr. Delp is a Life Fellow of the IEEE, a Fellow of the

SPIE, a Fellow of IS&T, and a Fellow of the American Institute of

Medical and Biological Engineering.

Zoe Liu is a software engineer with Google’s WebM team

and has been a key contributor to the open source video codec

standard AOMedia Codec One (AV1). Zoe received her PhD from

Purdue University and her ME and BE from Tsinghua University,

Beijing. Either as a principal contributor or as a Technical Lead,

Zoe had previously devoted her effort to the design and develop-

ment of several video call products, including FaceTime, Tango

Video Call, and Google Glass Video Call. Her main research

interests include video compression, processing, and communica-

tions.

Fengqing Zhu is an Assistant Professor of Electrical and

Computer Engineering at Purdue University, West Lafayette, IN.

Dr. Zhu received her Ph.D. in Electrical and Computer Engi-

neering from Purdue University in 2011. Prior to joining Pur-

due in 2015, she was a Staff Researcher at Huawei Technologies

(USA), where she received a Huawei Certification of Recognition

for Core Technology Contribution in 2012. Her research inter-

ests include image processing and analysis, video compression,

computer vision and computational photography.

155-6
IS&T International Symposium on Electronic Imaging 2018

Visual Information Processing and Communication IX


