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Abstract
We propose a novel architecture based on the strucuture of

AutoEncoders. The paper introduces CrossEncoders - an Au-
toEncoder architecture which uses cross-connections to connect
layers (both adjacent and non-adjacent) in the encoder and de-
coder side of the network respectively. The network incorpo-
rates both global and local information in the lower dimension
code. We aim for an image compression algorithm that has re-
duced training time and better generalization property. The use
of cross-connections makes the training of our network signifi-
cantly faster. The performance of the proposed framework has
been evaluated using real-world data from highly competitive
datasets like MNIST and CIFAR-10. Furthermore, we show that
the proposed architecture provides high compression ratio and
is robust as compared to previously proposed architectures and
PCA. The results were validated using metrics, such as PSNR-
HVS and PSNR-HVS-M respectively.

Introduction
Image compression plays an important role in the fields

of telecommunication, and multimedia services. Traditionally,
data compression has involved transformation and quantization.
The pipeline of image compression specifically consists of three
stages: pixel transformation, quantization, and entropy coding
[1]. Image compression uses the fact that image data has more
data redundancy as compared to other forms of data. This fact is
exploited by most image codecs to achieve efficient image com-
pression. Intuitively, one would expect these compressed repre-
sentations to embody the global aspects of an image. In the study
of data compression, there are mainly two types of compression,
namely, lossy and lossless compression. Lossless compression
includes the field of study in which the recovered data is exactly
the same as the original input data. In this paper, we mainly fo-
cus on lossy compression where the reproduced image is not an
exact replica of the original image. Some information is lost in
the coding process. Evidently, a trade-off has to be maintained
between the degree of compression and the degradation in image
quality. Furthermore, compression of thumbnails, small scale im-
ages, is important both in terms of storage capacity and internet
bandwidth. Hence, any improvement to small scale image com-
pression will significantly improve the user experience, accessing
content over low-bandwidth connections [2].

In recent years, neural networks have become useful to
perform tasks that were accomplished by adhoc algorithms and
heuristics [2]. With the current surge in the field of neural net-
works, we see them achieving state-of-the-art results in tasks

such as image classification, object detection, and natural lan-
guage processing. In the image compression task, we get a lower
dimensional image representation by training a neural network
with the image and then using the learned weights and coeffi-
cients from the hidden layer to recreate the image. We propose
an architecture that is able to transform an image into a lower
dimensional representation comprising of global conceptual as-
pects along with lower level details. The proposed framework is
an encoder-decoder end-to-end architecture trained using back-
propagation for image compression.

Related Work

Neural networks seems to be an ideal solution for the task
of image compression due to their noise suppression and feature
learning capabilities. Previously, various methods have been pro-
posed for image compression using neural networks. Watanabe
et al. [4] developed an algorithm on the basis of modular struc-
tured neural networks which consists of multiple neural networks
with different block sizes. Abdel-Wahhab et al.[5] extended the
two-layer network to multilayer networks. We can convert high-
dimensional data to low-dimensional codes by training autoen-
coders, a special kind of feed-forward neural networks with a
bottle-neck hidden layer [3]. Autoencoders used a hidden bottle-
neck layer to achieve better dimensionality reduction than prin-
cipal component analysis (PCA). The training of these networks
is typically performed using a greedy layer-wise pre-training, like
Restricted Boltzmann machines (RBM), that is followed by a fine-
tuning stage based on backpropagation.

Long short-term memory (LSTM) networks are a type of
recurrent neural networks. Various extensions to the standard
LSTM like incorporating spatial information have been proposed.
This leads to convolutional LSTMs which were used by [2] for the
task of image compression. Gregor et al. [6] implemented vari-
ational (recurrent) autoencoders for the problem of compression.
Most of the work done in the field of image compression using
neural networks used the traditional sequential feed-forward ap-
proach. We extend work on CrossNets [7] to the problem of image
compression. CrossNets, built on the generalization of sequen-
tial feed-forward models like ResNets, uses cross-connections to
connect both adjacent and non-adjacent layers. This results in
a version of autoencoders which uses cross-connections, defined
as CrossEncoders. Cross-connections in the network enable effi-
cient reuse of features throughout the network, and thus helping to
retain more information in the lower dimensional representation
of the input data. Building on the success of CrossNets on the im-
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Figure 1. Proposed Neural Network architecture. An arrow connecting two layers mean that every neuron in those layers are fully connected with one another.

This architecture enables neurons in a layer j to connect with neurons in layers j′, where j′ = j + 1, . . . ,J, and J is the total number of Hidden Layers in the

network on the encoder and decoder side respectively.

age classification task, we apply it to the MNIST and CIFAR-10
datasets for image compression problem. We compare our results
using two commonly used metrics, PSNR-HVS [8] and PSNR-
HVS-M[9].

The rest of the paper is organized as follows. CrossEncoder
section gives an overview of the architecture concerning image
compression. Experiment section illustrates the evaluation re-
sults. Finally, we discuss our contributions and findings and draw
conclusion and future work in the last section.

CrossEncoder
The proposed architecture (illustrated in Figure 1) is a com-

bination of the traditional sequential feed-forward network along
with higher order cross-layer connections among the neurons in
different layers. This enables the local features learned in the
early layers to be preserved in the later layers along with the
global features. Figure 1 gives a general overview of the pro-
posed architecture. It follows a normal autoencoder structure,
with the addition of the cross-connections. Hence the name
CrossEncoders. Given some input data, the network will try to
reconstruct it as best as it can on the output. In such problems the
input and the output layers have the same size. The input to the
network is a N element vector, and then the subsequent hidden
layers break down the input data to lower dimension, and finally
we get the lower dimensional input code. Clearly given any input
data, the compression ratio is controlled by the number of neu-
rons in the code layer. In order to implement cross-connections,
we simply concatenate the outputs of all previous layers before
inputting them to a new layer. After getting the coded input data,
we simply form a symmetrical network in the decoder stage start-

ing with the input as the coded data. The whole network supports
an end-to-end training using backpropagation. Common improve-
ments like momentum and early termination to speed up training
can be easily added to the network. More architectural details,
and results are provided in the following section.

Cross Connections
For any multiple layer perceptron network with layers

0, ...,L, we consider the input layer as layer 0 with I input neurons
as ξ1, . . . ,ξI . For each layer i from 1 through L−1, we define vl,m

(i, j)
as the weight between neuron l in layer i and neuron m in layer
j, where i < j. Let v(i, j) denote the matrix of weights from layer
i to j. The activation function used is defined by the function g.
The explicit output values of any neuron i in layer j, H i

j, and final
output HL = y, are defined recursively as

H0 = ξ , H1 = g
(

H0v(0,1)
)
, (1)

H j = g

(
∑
i< j

Hiv(i, j)

)
, y = g

(
∑
i<L

Hiv(i,L)

)
. (2)

From equation (2) it is observed that each neuron in any hid-
den layer j(> 1) is recursively computed using the activated out-
puts from previous hidden layer neurons plus the usual weighted
sum of the input from the input layer neurons. The weights in the
weight matrix v(i, j) are updated using the backpropagation algo-
rithm. In addition to the backpropagated error through the output-
hidden neurons, we have a weight update through the cross-layer
weights (weights connecting neurons in layer j with the neurons
in layers j′, where ( j′ > j+1)) as well. The cross layer weights
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(a) Original MNIST images

(b) Reconstructed MNIST images using CrossEncoders

(c) Reconstructed MNIST images using AutoEncoders

(d) Reconstructed MNIST images using PCA with 32 components

Figure 2. Reconstruction of a set of 10 random images using CrossEncoders, AutoEncoders, and Principal Component Analysis (PCA)

(a) Noisy MNIST images

(b) DeNoised images using CrossEncoders

(c) DeNoised images using AutoEncoders

(d) DeNoised images using PCA

Figure 3. Reconstruction of a set of 10 random noisy images using CrossEncoders, AutoEncoders, and Principal Component Analysis (PCA). The noise

introduced to the MNIST testing images was a standard gaussian distribution noise with zero mean and unit standard deviation.

determine the effect of neurons in one layer on all its non-adjacent
layers.

Experimental Results
We evaluate the effectiveness of our proposed architecture

by implementing the cross-layer connections on an autoencoder
neural network framework. Using the results from our experi-
ments, we show the superior performance of CrossEncoders as
compared to its traditional counterpart. We compare the results
both on their visual appearance and evaluation metrics, such as
PSNR-HVS, and PSNR-HVS-M.

MNIST

MNIST [10] consists of hand-written digit images. Each
sample is a 28× 28 binary pixel image. The train and test
sets contains 60,000 and 10,000 images respectively. Each im-
age in the dataset was converted into a (1× 784) element vec-
tor by lexicogrpahically vectorizing the two-dimensional image.
The CrossEncoder architecture used for MNIST experiments was

based on the classical multiple layer perceoptron network. The
corresponding network configuration we used for MNIST was -
784− 128− 64− 32− 64− 128− 784. Observing the encoder
and decoder stage separately, we see the symmetrical nature of the
network. The encoder reduces the (1× 784) vector to a (1× 32)
vector, thus reducing the input dimension by a factor of ≈ 24.
The compression is controlled mainly by the middle layer con-
taining 32 neurons, in this case. The decoder stage then converts
the (1×32) compressed data to the original (1×784) input data.
We compared the reconstructed input data results for CrossEn-
coders, with those of a sequential AutoEncoder network without
any cross-connections and PCA. ReLU activations were used for
all the layers except the output layer, which uses sigmoid activa-
tion. The whole network was trained for 100 epochs. AdaDelta
optimizer was used for training the network with MNIST.

Figure 4 illustrates the training difference between the two archi-
tectures in terms of cross entropy loss with the increase in the
number of epochs. We see better and faster training in the case of
CrossEncoders. Additionally, in Figure 2, 3 we can observe the
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PSNR-HVS and PSNR-HVS-M metric values between the reconstructed and the original images for the respective datasets. For the
case of MNIST it is the mean value of all the testing images, whereas, for CIFAR-10 they are mentioned individually for each class
because the contextual information in CIFAR-10 is very complex as compared to MNIST.

CrossEncoder AutoEncoder

Dataset PSNR-HVS PSNR-HVS-M PSNR-HVS PSNR-HVS-M

MNIST 68.1779 74.0189 63.5185 66.8311
CIFAR Airplane 69.4176 71.6445 66.7032 68.3178
CIFAR Automobile 71.9259 75.3031 69.1339 71.7502
CIFAR Bird 72.4740 75.2403 70.4905 72.7060
CIFAR Cat 70.8002 73.5446 69.9665 72.3577
CIFAR Deer 70.5044 72.9241 69.9925 72.1435
CIFAR Dog 68.5469 70.9579 68.0573 70.2097
CIFAR Frog 68.6494 71.0496 67.8620 69.9140
CIFAR Horse 67.3306 69.7039 66.1475 68.0416
CIFAR Ship 68.1964 70.2893 66.6365 68.2483
CIFAR Truck 65.9498 68.1995 64.6065 66.3831

reconstructed MNIST outputs of CrossEncoders, AutoEncoders,
and PCA using a 32-element representation of the original in-
put image. Qualitatively, we see better reconstructed results for
CrossEncoders. The superior output is a result of better train-
ing using cross-connections. Furthermore, we experimented with
noisy input images and performed reconstruction of compressed
inputs with the same training model and no prior information of
the noise. We introduced a gaussian noise N(0,1) with noise fac-
tor of 0.2 to the testing images, and compressed them using the
network trained on the 60,000 training images. On reconstructing
the input images using the compressed code, we see CrossEn-
coders performing better denoising. It is to be noted that AutoEn-
coders lead to false positives, reconstructing digits to a different
class, something which is not seen in the case of CrossEncoders.
The images denoised by CrossEncoders not only has less noise as
compared to PCA and AutoEncoders, but also show superior digit
representations. Quantitatively, we compare the performances of
CrossEncoders and AutoEncoders in Table 1 using metrics such
as PSNR-HVS and PSNR-HVS-M.

CIFAR-10

The CIFAR-10 dataset [11] consists of 32× 32 color im-
ages drawn from 10 different categories. The whole dataset is
divided into 50,000 training, and 10,000 testing images. We con-
verted the color images into grayscale for our experiments. No
further pre-processing was done on the dataset. The CrossEn-
coder architecture used for CIFAR-10 experiments was based on
the multiple layer perceptron network with a configuration of
1024− 512− 128− 32− 128− 512− 1024. Each CIFAR image
was reshaped into a 1×1024 vector and was provided as an input
to the network. We follow a similar training procedure as done for
the MNIST experiments. Again, each 32×32 image was encoded
into a 1×32 code vector, which was used to reconstruct the orig-
inal input. For the CIFAR dataset, we reduced the input dimen-
sion by a factor of 32. Notably, the only difference between the
MNIST and CIFAR-10 experiments is the architectural configu-
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Figure 4. Plot of cross entropy loss with increase in the number of epochs.

ration. MNIST is comparatively an easier task as it consists of bi-
nary images, whereas CIFAR-10 contains more variation. Hence,
the need for a bigger network for CIFAR. A quantitative compar-
ison is performed on the basis of PSNR-HVS and PSNR-HVS-M
as detailed in Table 1. We see CrossEncoders perform no worse,
and often better than AutoEncoders. The results in some of the
classes are way superior when compared to other classes. We
believe using a deeper network or a CrossEncoder based on con-
volutional neural network for encoding and decoding will result
in better performance both qualitatively and quantitatively.

Discussion
Using our proposed network, we aimed to increase the

performance of traditional sequential feed-forward networks by
adding cross-connections. As seen in the previous sections,
CrossEncoders increase the performance of AutoEncoders by in-
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troducing cross-connections in their framework. More experi-
ments using bigger networks and diverse data sets would shed
more light on the performance of our proposed architecture. This
has excellent potential as a future project.

Some contributions of the paper can be listed as follows:

• CrossEncoders have better learning capabilities. They lead
to improved reconstruction of images from both normal,
and noisy images. They train better and faster.

• CrossEncoders helps in preserving input information effi-
ciently. The PSNR-HVS and PSNR-HVS-M metric values
from Table 1 substantiates this point.

Conclusion
In this paper, we introduced an architecture which introduces

cross-layer connections. The network was trained using the tra-
ditional back-propagation algorithm. As seen in the experimen-
tal evaluations, the cross-layer connections enable the neurons to
learn efficiently. This was validated in the performance results for
both the MNSIT and CIFAR datasets. Building on the results of
this paper we aim to experiment CrossEncoders on convolution
neural network style architectures.
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