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Abstract 

 

Images captured from vehicle mounted cameras endure 

various uncontrollable adverse conditions such as rain, dust, 

smudges etc. These result in artifacts which corrupt the captured 

scene globally or locally. Raindrop is a commonly observed 

occlusion in images captured from behind a windshield on a rainy 

day. While reconstruction is a challenging task, detection of these 

artefacts is also a non-trivial task as there is no well-defined 

singular model of raindrop or artifact created by it; neither there is 

a fixed shape, blur and glare level. In this work we address the 

detection of artefacts caused by raindrops.  

We employ a structural verification approach to identify the 

regions and exploit the uniformity that can be observed in the 

occlusion region caused due to collection of light rays in the drop 

by using maximally stable extremal regions (MSER) on the frame to 

get initial estimate of the regions. False positives are discarded by 

filtering the estimates based on area, orientation, eccentricity, 

roundness and convexity. From our results and observation we can 

conclude that raindrops indeed form extremal regions, however, 

detection accuracy using MSER is highly susceptible to false 

positives. Accuracy can be greatly improved using the proposed 

techniques on the regions based on our observations. A precision-

recall analysis is performed to assess the performance of the 

method. 

Keywords Raindrop, Extremal region, ADAS (Advanced 

Driver Assistance System), Surface tension 

Background  
 

Natural scene capture through a transparent medium is undertaken 

in a number of situations and in some occasions for prolonged 

periods of time. In fact, light accumulation at the camera sensor is 

implicitly through such a transparent medium viz. the lens. 

However, most camera systems make a basic assumption that the 

scene is contaminant free; that the environment of the scene does 

not affect the capture drastically and the light rays from the scene 

are unobstructed. This assumption is violated often, particularly in 

the case of applications such as ADAS and surveillance, where the 

scene is captured for long duration of time under all kinds of 

environments. Some examples of such environmental factors are 

rain, dust, snow, haze, fog etc. Other sources of corruption could be 

dust/dirt adherent to lens, or water drops or smudges on the lens. 

Restoring images captured under the influence of such contaminants 

is a challenging problem and has been studied to some extent in 

recent years [1] [2] [3] [4] [5]. However, the problem is still open 

and a general solution is still elusive. Two strategies can be seen in 

these works, either the artifact is detected first and then restored or 

a global reconstruction is attempted. Global reconstruction 

techniques either identify image properties (statistical, frequency or 

phase related) and then remove effects of drop by filtering 

techniques or consider water drops as high resolution structured 

noise and apply denoising techniques using inversion or use 

convolutional neural networks. Studying water drop properties is 

challenging as it is highly environment dependent, and learning 

methods require very large datasets for training (which can include 

all forms of drops), which is an arduous process. In this work we are 

interested in the former, two stage process, and specifically we focus 

on the initial detection stage. Specifically, we focus on a particular 

form of distortion caused by water drops stuck to the wind shields 

of a vehicle. We consider such water blobs as extremal regions and 

hence employ Maximally Stable Extremal Regions (MSER) for 

identifying potential rain drop candidates followed by several 

filtering strategies to find water drops in the image. 

 

Environmental factors have impacted capture systems since its 

inception. Some of these factors have been studied extensively, for 

example haze, fog etc. Popular dehazing/defogging works are [1] 

[6] and [7] where focus is to identify the best dark channel, color 

disparity and maximum contrast. More recently, convolutional 

neural networks have been applied for dehazing by estimating the 

atmospheric light in the scene [8]. Another artifact that has been well 

researched is rain/snow streaks, seminal work in this area was done 

by Garg and Nayar [2] and [9]. They proposed models for 

representing streaks and also ways to avoid capture rain itself. 

Another seminal work by Barnum et.al. analyzed the characteristics 

of streaks in the frequency domain and used for detection and 

replacement [10]. Rain streaks have been studies in several other 

works such as [3] [11] [12] [13]. While these works focus on the 

handling distortion in scene itself, they cannot address situations 

where cause of distortion is present on a transparent medium 

between camera sensor and scene.   

 

A relatively less researched area is of artifacts that are adherent to 

the lens, such as water drops, dirt and lens dust. Gu et.al. in [14] 

propose image formation models depicting the optical phenomenon 

to define the effect of small occlusion on the scene. These image 

formation models are used to design an inverse problem to 

reconstruct the scene. However, describing an alpha layer cannot 

explain the refraction and reflection effects that occur in case of rain 

drops. You et.al.[4] use a two-step detection and removal process 

for rain drops using long term transition of scene with a static drop. 

However, these are not suitable for application like ADAS and 

surveillance because of the static nature of significant parts of the 

scene. Eigen et.al. [5] train a CNN for restoring dust and rain drops 

in the image. The working of this approach is considered to be 

similar to denoising with neural networks but with structured noise. 

While the approach is more general, it is highly data dependent and 

is limited to the shape and size of artifacts in the training set. In this 

paper, we consider the detection stage in the  
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two step approach which itself is non-trivial and considered a 

challenge because of the variation in shape, size, color, location and 

background. In this regard, Einecke et.al. [15] propose a detection 

algorithm based on normalized cross correlation assuming that the 

non-occluded parts of the scene are more dynamic. However, this is 

not true for in-vehicle cameras and surveillance videos as we shall 

discuss later. Akkala et.al. recently [16] proposed a two-step process 

for detection where they employ kurtosis for broadly identifying 

artifact area and then use SVD for detection in road region and DWT 

for detection in sky region. Although they identify the unique nature 

of in-vehicle data and handle the road and sky sections separately, 

the approach restricts performance when detecting many small 

contaminants and in a fast varying scene.  

  

There are works which have tried to generate photometric models 

for adherent water drops such as [17]. However, the detection 

process is computationally intensive and is limited by the type of 

reference droplet shape that is used. They improved upon this 

algorithm by using Bazier curves in [18] and were able to overcome 

shape related limitations, however, the complexity stayed high. A 

detailed study of state of the art was done by Webser [19] as part of 

a master's thesis work. The study also proposed a machine learning 

approach for detecting water drops using texture, shape and context 

information as a bag of words. However, we would like to contend 

that more than the texture and context the uniformity within a rain 

drop can also be exploited to perform better detection. A detection 

method proposed in [20] exploits this regional nature of rain drop 

image by initiating the detection process using MSER features [21]. 

However, we find that their metrics for filtering and reducing false 

positives is highly limited and that the rationale provided for using 

MSER is insufficient. We discuss the properties of extremal regions 

and their applicability in next section and provide extensive steps 

for limiting false positives. Also another simple procedure is 

described for identifying small drops which are usually omitted by 

MSER and hence acts as a complementary to MSER based 

approach. In a later section we discuss the results obtained in our 

experiments and later suggest possible extensions.  

 

 

 

 

 

Proposed Method 
 

In this work we follow a structural verification approach to 

identify the regions and exploit the uniformity that can be observed 

in the occlusion region caused due to collection of light rays in the 

drop. This implies that these form extremal regions i.e. the intensity 

inside the blobs vary monotonically. The regions are first identified 

using MSER feature detector. And since MSER detection fails at 

small regions we employ an edge based detection method which 

combines edge detection with appropriate morphological operations 

to identify small contiguous regions. The regions are detected 

independently and passed through a series of tests to ascertain 

whether the regions are indeed water drops. These tests are based on 

size, orientation, eccentricity, elliptical nature, convexity and 

roundness of the region. The flow of our detection process is shown 

as a block diagram with corresponding outputs in figure 1. Note that 

we apply the detection procedure for each frame individually. We 

did so because we found that multiple frames of a video did not yield 

significant information for ADAS data. Under ADAS environment, 

the changes in intensity or motion of raindrops pixels over the 

frames is not significant. We demonstrate this in the next section. 

 
Extremal regions  
 

The idea of an extremal region was proposed by Matas et.al. in [21] 

and is defined as: for a gray level image I, a region Q, Q ⊂ D and 

such that either for all p ∈ Q,q ∈ ∂Q:  I(p) > I(q)  (maximum 

intensity region) or for all p ∈ Q,q ∈ ∂Q:  I(p) < I(q)  (minimum 

intensity region) where p, q are pixels in D set of all connected 

regions and ∂Q is the boundary of region Q. In other words, any 

region (set of pixels) in an image is an extremal region if every pixel 

intensity inside that region boundary is either greater than or lesser 

than the pixel intensity immediately outside the region. In the case 

of an adherent rain drops, it is accepted in most of the literature that 

it will act as a convex lens and focus the scene onto the sensor. 

Hence, the entire region of drop in image is expected to be more 

concentrated than the rest of the image. This clearly indicates that 

these blobs form extremal regions. Also, since we are considering 

detection at each frame, we consider only those drops which are 

static and are not in motion. Hence we can make the assumption that 

the blob will be consistent with a static drop following all physical 

properties, thus making it maximally stable. 
 

 

Figure 1. Proposed Method Block Diagram 
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Finding potential regions 

 
Our first step is to identify the potential regions in the image frame 

that could represent blobs created by water drops. As mentioned 

earlier, we first attempt to find all these regions using MSER. 

However, MSER at robust thresholds is unable to detect small 

regions and many such small regions could be water drops. In order 

to overcome this limitation, we devise a method to detect small 

regions based on edges.  

 

MSER based: We pre-process the image frame by adaptively 

equalizing the image and extract blob features on a gray image. We 

run maximally stable extremal regions detection on the image frame 

after adjusting the parameters according to the resolution, field of 

view and density of rain. Output obtained for couple of images using 

MSER method is shown in figure 3. Clearly the candidate regions 

include many non-water drop regions from the scene and also omit 

small drops in the scene. 

 

Edge based: Detecting small regions is important because in 

certain situations such as heavy rain, drops form and break up very 

quickly, or in a light drizzle the drops themselves are small. For this 

purpose we propose a parallel approach for detecting smaller drops. 

We observe that drop regions result in strong edges around them due 

to change in refraction, especially in small droplets. Small drops 

provide very clear and connected edge on the border of the blob. We 

exploit this by finding canny edges and retaining only small, fully 

connected edges. We apply a series of morphological operations to 

generate dense small regions that could potentially be water drops. 

We first identify connected components and eliminate large sets. 

Then perform a morphological filling operation to obtain first 

estimates of the blobs. We then apply a combination of median filter 

and image close operation multiple times to remove stray regions. 

The resulting regions are taken as potential water droplets. Output 

obtained using edge based method is shown in figure 3.  

 

As expected false positive are very high at this stage in both 

methods. In next step, we use several metrics to verify observed 

properties of water drops in the potential regions and select the most 

probable regions which could represent water drops. 

 

Limiting false positives 
 

Size Rain drops on an inclined surface can be associated with 

properties such as critical size as larger droplets tend to overcome 

surface-tension and disintegrate or flow down under gravity as 

shown in figure 2. The size varies with surface and material. 

However, a statistical upper bound can be derived empirically. 

  
 

Figure 2. Rain droplets of varying sizes 
 

If the set of regions is R = {r1,r2 … rN}, N = number of identified 

regions, then we can say that regions with Area (ri) > Areamax  i = 1 

… N shall be removed from the set. Areamax is determined 

empirically. 

 

Orientation Another observation we make is that the 

accumulation of water drops cannot happen vertically. Vertical 

collection reduces the area of contact with surface thus making the 

drop unstable under the influence of gravity. However this is not 

true for droplets accumulating horizontally. This property can be 

applied to the regions detected using MSER which also has an 

orientation associated with it as an inherent feature. We apply a 

heuristic upper bound for differentiating horizontal and vertical 

regions [Orientation (ri) < θ] and select only horizontal regions.  

 

 

 
 

 

 

 

 

                      

 

 

 

 

Figure 3. Results of raindrop detection using MSER & Edge based methods, 
where the colored regions indicate the region detected as raindrops (both true 

and false detection) 

Shape Raindrops spherical structure is due to surface tension of 

water. Surface tension is the tightness across the surface of water 

that is caused by the polar molecules pulling on each other. Surface 

tension is the "skin" of raindrop that makes the molecules stick 

together. Molecules inside a raindrop are attracted in all directions. 

Molecules at the surface of the raindrop are being pulled by the 

Input Image 1 MSER Detect A: (MSER + Filters) 

Edge Detect + 

Morphology 

B: Edge + Morph 

+ Filters 

Proposed:  

(A + B) 

Input Image 2 MSER Detect A: (MSER + Filters) 

 

Edge Detect + 

Morphology 
B: Edge + Morph 

+ Filters 

Proposed:  

(A + B) 
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molecules next to them and below them. This is depicted in figure 

4. We apply three filters to verify the shape of the region. Shape 

related filters are described below. 

 
 

Figure 4. Raindrop surface tension on windshield 

 
Eccentricity There is no restriction on what the shape could be 

as the largest ellipse that subsumes that region can indicate some 

features in relation to the region. We calculate the ratio of minor to 

major axes of such an ellipse and apply a limit to remove thin 

regions from the set.  

 

Convexity A region is called as convex region, if it contains all 

the line segments connecting any pair of its point. If the region does 

not contain all the line segments, it is called concave region. 

Illustration of convex region is shown in figure 5. This is a property 

which we consider to be natural to any water drop. The overall 

surface tension is optimal only for convex shapes and this 

assumption holds good for windshield. Ideally, to check for 

convexity one must trace the orientation of tangents around the 

curve. However we apply a simplistic measure which can indicate 

convexity. We compare the area of the smallest convex region that 

contains the detected region with the area of the region. We select 

those regions which have a measure is less than the threshold which 

is empirically derived.  

 
 Figure 5. Convex region versus concave region 

 

Roundness An extension of convexity is the round nature of the 

blob. Although a strict circle is not anticipated but they can be 

expected to belong to the family of ellipses. This measure indicates 

the compact nature of the region. We calculate it as  

 

Roundness(𝑟𝑖) = 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
(𝐴𝑟𝑒𝑎 × 4𝜋)⁄  

 

Where i = 1 … N 

 

A combination of these filters works well for many of the situations. 

Output obtained is captured in figure 3. More results are shown in 

the next section. 

Experimental Results 
 

This section describes the experiments conducted to measure the 

accuracy of our proposed rain drop detection method. For this 

experiment, we validated algorithms with video sequences captured 

from in-vehicle camera. These input video sequences are taken from 

public space. We evaluate precision & recall of the raindrop 

detection methods. Precision is defined as the number of correct 

detections divided by the total number of detections. Recall is 

defined as the number of correct detections divide by the number of 

detectable raindrops. 

 

We experimented with couple of conventional inter frame based 

raindrop detection methods. First method we took for analysis is 

based on Time gradient [4]; it assumes that the temporal change of 

intensity of raindrop pixels is smaller than that of non-raindrop 

pixels. Second Method we analyzed is based on SIFT flow [4] and 

it assumes the motion of raindrop pixels is slower than that of non-

raindrop pixels. We evaluated these methods with images taken 

from in-vehicle camera. During our evaluation, temporal data was 

accumulated over 100 frames. The result is shown in figure 6. We 

observed high number of missed detections and false detections. The 

assumptions “motion change and temporal intensity change” of 

raindrop pixels is slower than that of non-raindrop pixels holds well 

in constrained environment. But in real road environment the 

difference in “motion change and temporal intensity change” 

between raindrop versus non-raindrop pixels is very minimal.  

                                       

 

 
 

Figure 6. Raindrop features accumulated over 100 frames 

 

We compared our method with Ito et.al.’s method. Our Proposed 

method and Ito et.al.’s method, detects raindrops in the image/ frame 

from the single image. One more commonality is usage of MSER to 

find raindrop candidates.   Figure 7 shows results of Ito et.al.’s 

method and our proposed method for set of 5 different images.  

 

Table 1 summarizes precision and recall rates for the test images 

shown in figure 7. It’s quite evident from Table 1, the proposed 

method performs better than Ito et.al.’s implementation. The 

following procedures contributed to our method’s better 

performance: 

 

• Adaptive Threshold.  Our method adaptively tunes MSER 

detect parameters according to the image environment. It helps 

in finding more stable raindrop candidates. 

• Edge based detection. This procedure helps in detecting 

smaller rain drops. 

• Filters. Set of additional filters designed on raindrop properties. 

These additional filters reduce false detection rate. 

 

 

 

 

 

Input Image Time Gradient SIFT Flow 
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Figure 7. Raindrop detection results using Ito et.al. Approach and proposed 
approach, where the colored regions indicate the region detected as raindrops 

(both true and false detections) 

 

 

 

 

Method Precision 

(%) 

Recall (%) 

Image 1 Ito et.al.’s 

Method 63.63 51.21 

Proposed 

Method 70.58 87.80 

Image 2 Ito et.al.’s 

Method 66.66 85.71 

Proposed 

Method 76.92 95.23 

Image 3 Ito et.al.’s 

Method 96.38 74.07 

Proposed 

Method 96.07 90.74 

Image 4 Ito et.al.’s 

Method 98.59 38.88 

Proposed 

Method 98.61 78.88 

Image 5 Ito et.al.’s 

Method 57.14 26.66 

Proposed 

Method 94.73 60.0 
 

Table 1. Precision and Recall summary for the images shown in figure 7. 

 

Conclusion 
 

Raindrops adherent to a transparent medium (windshield) 

between a scene and a capture system come in all shape, size and 

saturation owing to variation in rain density, surface tension of 

windshield, the distance between windshield and camera,  the field 

of view, environmental lighting etc. However, we can conclude 

from our results that these drops concentrate rays and form extremal 

regions in the image. We used MSER to find these regions and 

applied a series of filters to reduce false positives. Our results 

showed considerable improvement compared to the nearest work by 

Ito et.al. Although, we believe a more flexible and adaptive 

threshold selection method will render the solution more robust. 

Another modification that can be tested is application of other 

modified MSER or region detection techniques which are more 

suitable for tracking in video data [23][24]. A relevant approach to 

the problem could be from a computational photography point of 

view [23] or a multi-modal approach which combines information 

from different forms of capture. One scenario that has not been 

attempted in literature extensively or by us is raindrop detection at 

night time, which bring a gamut of associated problems with it. 
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