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Abstract
Hyperspectral imaging increases the amount of information in-

corporated per pixel in comparison to normal color cameras.

Conventional hyperspectral sensors as used in satellite imaging

utilize spatial or spectral scanning during acquisition which is

only suitable for static scenes. In dynamic scenarios, such as in

autonomous driving applications, the acquisition of the entire hy-

perspectral cube at the same time is mandatory. In this work, we

investigate the eligibility of novel snapshot hyperspectral cameras

in dynamic scenarios such as in autonomous driving applications.

These new sensors capture a hyperspectral cube containing 16

or 25 spectra without requiring moving parts or line-scanning.

These sensors were mounted on land vehicles and used in several

driving scenarios in rough terrain and dynamic scenes. We cap-

tured several hundred gigabytes of hyperspectral data which were

used for terrain classification. We propose a random-forest clas-

sifier based on hyperspectral and spatial features combined with

fully connected conditional random fields ensuring local consis-

tency and context aware semantic scene segmentation. The clas-

sification is evaluated against a novel hyperspectral ground truth

dataset specifically created for this purpose.

Introduction
Environment perception and analysis is crucial for autonomous

driving, especially in off-road scenarios. Given sensor data, the

correct semantic interpretation of a scene is a key factor for suc-

cessful autonomous navigation. The use of hyperspectral sensors

brings an advantage, as it allows a more detailed view of the com-

position and surface of materials, plants and floor coverings than

conventional cameras, like shown in figures below. Researchers

use so called hyperspectral line-scanning sensors mounted on

satellites or planes (AVIRIS) for acquiring spectral data which

provides static information of the Earths surface and allows only

offline analysis. The drawback of established sensors are the

scanning requirements for constructing a hyperspectral-cube (hy-

percube) of a scene like displayed in figure 1b. This leads to

slow acquisition and motion artifacts when observing dynamic

scenes like driving scenarios. This drawback can be overcome

with novel, snapshot-mosaic (SSM) imaging sensors, which cap-

ture a whole spectrum in one shot. With these sensors it’s pos-

sible to mount hyperspectral cameras on unmanned land vehicles

and utilize them for hyperspectral scene analysis and autonomous

navigation. This is an exciting and promising new application

scenario, which has not been explored before.

In this work we investigate the use of novel sensors on unmanned

land vehicles for drivability and scene analysis. Therefore, we

utilize machine learning techniques to classify the captured spec-

tral reflectances and make use of and combine established super-

vised classifiers to recognize different classes, which can be seen

as environmental perception. Therefore we propose a classifica-

tion pipeline which uses both spectral and neighborhood charac-

(a) Raw image taken by the VIS camera.

(b) A schematic representation of a hypercube and an interpolated

plot of a single data point (hyperpixel).

Figure 1: Raw image VIS camera with visible mosaic pattern.

And a schematic representation of a hypercube used in this work.

teristics to achieve a consistent segmentation result. We utilize a

Random Forest classifier to get an initial per-pixel classification

which serves as input for an adapted fully connected conditional

random field that establishes pairwise potentials on all pairs of

pixels and enhances segmentation results.

By using this pipeline we examine the use of hyperspectral data

for dynamic scene understanding especially in autonomous driv-

ing scenarios, as hyperspectral data allows a more detailed view

of the composition of materials, plants and floor coverings.

The remainder of this paper is organized as follows. In the follow-

ing section an overview of common algorithms for feature extrac-

tion and spectral classification is given. Then our general setup is

presented in the Sensors section. Our feature extraction and clas-

sification approach is described in detail in the Scene Analysis

section. And in the Experiments section we present our results on

our new hand-labeled dataset. Finally a conclusion of our work is

given in the last section.

Related Work

The standard procedure for image-based scene-segmentation is

defined by capturing regular RGB images and trying to identify

different classes, like Chetan et al. [Chetan et al., 2010] and oth-

ers did. They used color information and some features like local
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binary patterns (LBP) and trained different supervised classifiers.

Shotton et al. [Shotton et al., 2009] introduced in 2009 a novel

method for efficient recognition and semantic scene understand-

ing from image data. They proposed new features which capture

layout, texture and context information. The pipeline is also cou-

pled with a conditional random field, which enhances classifica-

tion accuracy. A patch-wise scene classification for urban street

scenes is proposed by Ess et al. [Ess et al., 2009] utilizing a su-

perpixel representation. Fulkerson et al. [Fulkerson et al., 2009]

proposed a method to identify and localize objects in images.

They trained a classifier on histograms of local features which

where computed from superpixels. The classifier is then regular-

ized by aggregating histograms from the neighbors of each su-

perpixel. Finally the segmentation result is further enhanced by

operating a conditional random field on the superpixel graph. An

approach using local descriptors like SIFT [Lowe, 2004], Local

Binary Patterns [He and Wang, 1990, Ojala et al., 1996] and en-

riching them with additional image information was presented by

Carreira et al. [Carreira et al., 2012]. The enriched features were

coupled with second-order pooling over free-form regions for se-

mantic scene segmentation which produced good results on Pascal

VOC 2011 dataset. In addition Wojek et al. [Wojek et al., 2013]

performs 3D scene understanding from urban traffic scenes by

utilizing a probabilistic scene model and a monocular camera.

Scharwaechter et al. [Scharwächter et al., 2013] combine Stixels

and a multi-cue bag-of-features classification scheme for seman-

tic segmentation on grayscale and depth data. Recently Chen

et al. [Chen et al., 2016] proposed Deeplab, a system which uses

trained networks on image classification for semantic scene seg-

mentation. They combined convolutional neural networks and

fully-connected conditional random fields for detailed segmenta-

tions. Nearly all algorithms for semantic scene analysis use RGB

data for classification. But, in recent years, hyperspectral imaging

and classification has gained additional interest. Hyperspectral

data allows for a more detailed insight into the composition and

nature of objects and materials like plants and soil than standard

RGB data. Given hyperspectral data, the goal of classification

is to assign a unique label to each reflectance-vector so that it

is well-defined by a given class. Unfortunately most supervised

classifiers suffer from the Hughes effect [Hughes, 1968], espe-

cially when dealing with high-dimensional hyperspectral data. To

deal with this issue, Melgani et al. [Melgani and Bruzzone, 2004]

and Camps-Valls et al. [Camps-Valls and Bruzzone, 2005] intro-

duced support vector machines with adequate kernels for hyper-

spectral classifications. But there are other algorithms which are

suitable for hyperspectral data processing and analysis. Cavigelli

et al. [Cavigelli et al., 2016] analyzed the potential of multispec-

tral sensors in combination with deep neural-nets for semantic

classification. The combination of RGB and multispectral data,

using the same hyperspectral snapshot cameras, was evaluated by

Cavigelli et al. [Cavigelli et al., 2016] on data with static back-

ground and a very small dataset utilizing deep neural networks.

Furthermore there were some research on hyperspectral terrain-

classification using random-forests [Winkens et al., 2017c].

Sensors

The sensors used in this work utilize a specific filter mosaic

structure, which has a per pixel design developed by IMEC

[Geelen et al., 2014]. The filters are arranged in a rectangular

mosaic pattern of n rows and m columns, which is repeated w

times over the width and h times over the height of the sensor We

used two different camera models, the MQ022HG-IM-SM4X4-

VIS (VIS) which captures the visible spectrum 470–630 nm and

the MQ022HG-IM-SM5X5-NIR (nir) which is designed for the

near-infrared range 600-975 nm. The VIS camera has a 4 × 4

mosaic pattern and the NIR 5× 5 which results in a spatial res-

olution of approx. 512× 272 pixels (4× 4) and 409× 217 pix-

els (5 × 5). The cameras provide images in a lossless format

with 8 bits per sample. There- fore the raw data captured by

the camera needs a special preprocessing to construct a hyper-

cube with spectral reflectances from the raw data like seen in fig-

ure 1. Preprocessing consists of cropping the raw-image to the

valid sensor area, removing the vignette and converting to a three

dimensional image, which we call a hypercube, like describe in

[Winkens et al., 2017c].

Scene Analysis
We have chosen to utilize a Random Forest (RF) as a supervised

classifier, because it’s fast to train and delivers remarkable results

even in spectral classification [Winkens et al., 2017c]. Supervised

learning techniques like Random Forest make use of training sets,

which consist of a set of sample feature vectors coupled with a

corresponding labeling. The labels c ∈ C are user-defined classes

which are normally represented by integer numbers.

Given a set of N corresponding training pairs the aim is to find a

function γ which generalizes well enough to new data, so accurate

predictions for previously unseen data can be computed.

γ(x) = c (1)

In this process a classifier might generate a model which is a rep-

resentation of the given problem from which a classification can

be deduced. An accurate model yields better results for unseen

data but highly depends on the training data.

Random Forests belong to the group of ensemble classifiers and

utilize a set of Decision Tree classifiers to learn a robust model.

Each classifier is trained on its own subset of training data which

is generated by bagging. Bagging is a common approach where

samples are randomly drawn with replacement from the original

dataset to generate a new distribution of the data. This prevents

overfitting and yields different patterns in the input data. The de-

cision trees are unbalanced binary trees. A single decision tree is

composed of several nodes, an unique root node, a set of inter-

nal nodes and a set of leaves. They form an decision space with

the leafs representing a class assignment.s Furthermore these de-

cision trees only use a random subset of the features for every

decision node to further increase their diversity. These decision

trees, form a Random Forest, which are used to classify the gen-

erated subsets. The result of the classification is obtained by ma-

jority voting. In order to semantic scene analysis, a suitable model

must be trained using a Random Forest classifier. Since two cam-

eras with different wavelength sensitivities were used here, two

separate models need to be trained. As already mentioned in

section , a pre-processed image forms a hypercube with a spec-

trum of 16 or 25 spectral reflectances for each pixel defined as

χ. For training, the annotated hypercubes are first dissected and

filtered. We use the normalized spectrum as a feature, which re-

duces the influence of scene illumination and other irregularities
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[Winkens et al., 2017a]. The normalization is computed by the

sum of the spectrum’s n values:

χS(x,y) =
n

∑
i=1

Bi(x,y) (2)

Hence the normalized spectrum at image position (x,y) is com-

puted as

B ′
k(x,y) =

Bk(x,y)

χS(x,y)
(3)

for each spectral band k. As input data, a Random Forest now

receives an annotated spectrum χ with |Lλ| normalized spectral

bands as a feature vector which corresponds to a per pixel clas-

sification of an image. Since the data is only classified pixel by

pixel by the Random Forest, results are subject to a certain amount

of noise because no neighborhood information is used. Therefore,

the classification results provided by the Random Forest are used

as input for a fully-connected CRF in a second classification step.

A Conditional Random Field (CRF) [Lafferty et al., 2001] defines

smoothness terms that require the equality of labels of neighbor-

ing pixels, which can also model contextual relations between ob-

jects. CRF models consist of unary potentials defined on single

pixels or image patches and pairwise potentials defined on adja-

cent pixels or patches. This results in a neighborhood structure

encoded in a CRF. However, this structure is very limited in its

ability to model far-reaching connections and relationships. As

a result, object edges are usually subject to excessive smooth-

ing. In order to improve segmentation, Koltun et al. [Koltun, ]

extended the basic CRF-framework to include hierarchical con-

nectivity, which is visualized in figure 2.

In a refinement step we use a fully connected conditional

random field implementation as proposed by Krähenbühl et al.

[Krähenbühl and Koltun, 2011, Krähenbühl and Koltun, 2013]

which delivers a highly efficient approximate inference algorithm

for fully connected CRF models.

Fully Connected CRF A fully connected CRF is defined over

a set X = {X1, . . . ,Xn} of variables whose domain is defined by

a set of labels L = {l1, . . . , lk} conditioned on the image I . The

Gibbs energy of a labeling ρ ∈ L
N is defined as

E(ρ|I) = ∑
i

ψu(ρi)+∑
i< j

ψp(ρi,ρ j)

with i and j ranging from 1 to N . Here ψu(ρi) = − logP(ρi)
defines the unary potential where P(ρi) is the label assignment

probability at pixel i which is normally computed and provided

by a classifier. In our work we used the Random Forest classifier

to get per pixel label assignment probabilities as described above.

The pairwise potentials ∑
i< j

ψp(ρi,ρ j) are modeled as mixtures of

kernels in feature space

ψp(ρi,ρ j) = µ(ρi,ρ j)
K

∑
m=1

w(m)k(m)( f i, f j)

where k(m) defines a gauss kernel and the vectors f i and f j are

feature vectors in a w(m) feature space. For multi-class problems,

(a) Standard CRF with a unary potential.

(b) Dense-CRF with unary and pairwise potential.

Figure 2: Schematic description of different CRF.

two kernel potentials are defined which contain feature vectors Ii

and I j like pixel color and pixel positions pi and p j.

k( f i, f j)=w(1) exp

(

−
|pi − p j|

2

2σ2
α

−
|Ii − I j|

2

2σ2
β

)

+w(2) exp

(

|pi − p j|
2

2σ2
φ

)

A kernel defines the appearance probability that pixels with the

same color belong to the same class σ2
α and σ2

β control proximity

and similarity. The smoothness kernel, on the other hand, removes

small isolated regions. The pairwise potential term has a form

that allows for efficient inference while using a fully connected

graph. In our work we used a six dimensional feature space w6

consisting of pixel positions, a local binary pattern feature and 3

selected spectral bands representing RGB colors.

Experiments
As far as we know, there is no publicly available data set with

hyperspectral data recorded by MQ022HG-IM-SM4X4-VIS cam-

era and MQ022HG-IM-SM5X5-NIR camera, which use snapshot

mosaic technique to acquire hyperspectral data. So we had to

build a new dataset on our own, which has recently been published

[Winkens et al., 2017b] and is publicly available. We equipped a

standard car with the cameras manufactured by Ximea and col-

lected several hours of data driving through suburban and rural

areas, from which we selected a subset for labeling hyperspectral

data. So we published a freely available synchronized and cali-

brated autonomous driving dataset capturing different scenarios.

To the best of our knowledge its the first dataset including snap-

shot mosaic hyperspectral hyperspectral data from the visible to
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Sky Road Sidewalk

Lane

Grass

Vegetation Panels Building

Vehicle Human

(a) Annotation based on semantic classes.

Paper Chlorophyll Sky

Street

Soil Wood Metal

Plastic

(b) Annotation based on material classes.

Sky drivable

rough Obstacle

(c) Annotation based on drivability classes.

Figure 3: Introduced annotation classes

the near-infrared range. We provide semantic, material and driv-

ability labels to examine the use of hyperspectral data for semantic

scene understanding especially in autonomous driving scenarios

as shown in figure 3 and figure 4. The results of our experiments

on semantic labeled VIS data are displayed in figure 3 and figure

5 with some examples shown in figure 6. Furthermore our results

on semantic labeled NIR data are displayed in figure 7 and figure

8.

Taking the results of the CRF refinement into account, it can be

seen that the segmentation is improved by adding neighborhood

information. Many outliers have been removed from the road and

other surfaces. Looking at the results in figure 5, it can be seen

that by using a CRF the differentiation between vegetation and

grass increases. This is particularly important for autonomous

off-road driving. In addition, the classification of trafficable roads

can be carried out very reliably. Our results demonstrate that use

of fully connected CRF can increase accurate pixel-level classifi-

cation performance in hyperspectral scene segmentation.

Conclusion
We proposed a hyperspectral scene analysis pipeline which com-

bines a per-pixel classification with context aware fully connected

conditional random fields. The use of CRF allows the integra-

tion of context information in the classification process which en-

ables local consistency. The combination of hyperspectral data

and dense pixel-level connectivity leads to a more accurate pixel-

level classification performance as our experiments indicate. Ex-

periments were carried out on a novel hyperspectral ground truth

dataset which is freely available now. In order to improve the clas-

sification results further, we plan to add 3D laser data to improve

classification performance.
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(d) Classification results on semantic labels using NIR data.
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(e) Classification results on semantic labels using VIS data.

Figure 3: Classification results of our proposed classification

pipeline.
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(a) Confusion matrix of random-forest classification on semantic labels us-

ing VIS data.

(b) Confusion matrix of combined random-forest and crf classification on

semantic labels using VIS data.

Figure 5: Confusion matrices of random forest and combined classification on VIS data.

Figure 6: Comparison of classification results on VIS data with semantic labels. The rows show a RGB representation of the hyperspectral

input image, the ground truth, the rand-forest classification and the combined classification.
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(a) Confusion matrix of random-forest classification on semantic labels us-

ing NIR data.

(b) Confusion matrix of combined random-forest and crf classification on

semantic labels using VIS data.

Figure 7: Confusion matrices of random forest and combined classification on NIR data.

Figure 8: Comparison of classification results on NIR data with semantic labels. The rows show a grey value representation of the

hyperspectral input image, the ground truth, the rand-forest classification and the combined classification.
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