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Abstract
The observation of the direct vehicle surroundings is a crit-

ical task to both (semi-)autonomous vehicles and human drivers.

A surround view from a virtual bird’s view camera perspective

helps to enhance operational safety in both cases. Yet, state-of-

the-art methods for the computation of these views rely on planar

ground plane assumptions which lead to systematic errors and

highly distorted views especially on uneven ground or in off-road

applications. We address this issue and propose an approach for

the computation of dense perspectively correct surround views us-

ing stereo vision, a closed-surface heightmap and partial homo-

graphies. Using temporal integration of the stereo images, a high

image quality is achieved.

Introduction
The observation of the direct vehicle surroundings is a safety

critical task to both human drivers and (semi-)autonomous vehi-

cles. Different types of driver assistance systems have been estab-

lished to accomplish this task. Their intention is to automatically

observe the vehicle surroundings or to assist the driver in navigat-

ing the vehicle and to improve operational safety.

Among different sensor modalities, such as radar, LIDAR or

cameras have become of common use nowadays. The larger the

vehicle gets, the more challenging the observation task gets. Es-

pecially in trucks and commercial vehicles designed for a specific

task such as at construction sites, the geometry of the vehicle gets

more complex.

Cameras are widely used for optical assistance systems. Ap-

plications range from simple rear driving cameras to extended en-

vironment perception using stereo vision. In case of driver as-

sistance systems for surround views, multiple cameras are used

to show the driver the direct surroundings of the vehicle. Yet,

currently available systems are only suitable for urban applica-

tions when moving on a flat surface. These systems show heavy

distortions as soon as the incorporated flat ground assumption is

violated.

Not only obstacles such as other cars or pedestrians cause

unnatural warping. When moving on uneven ground, such as in

off-road or construction site environments for example, the prob-

lem raises even for non-obstacles. With a perspectively wrong

view transformation, the driver may be misled by the surround

views. This yields potentially dangerous situations which may

affect operational safety.

Up to the best of the authors’ knowledge no (published) com-

mercial application has overcome with the issues concerning sur-

round view assistance systems so far. In this publication, we

present an approach towards the perspectively correct and dense

computation of surround views. After the accumulation of envi-

ronmental information in a heightmap, a closed surface is com-

Figure 1: Dense surround view computed using the proposed

method with the KITTI odometry dataset #16 [7]. The image

shows the orthographic ground projection. A perspective projec-

tion of the scene, reconstructed geometry and the vehicle’s posi-

tion is shown on the top left. The red squares/red solids mark grid

cells classified as non-ground objects.

puted and used as a ground-model for the vehicle’s surroundings.

Related Work

Different research topics must be taken into account in or-

der to compute dense surround views. The following paragraphs

summarize the most vital aspects.

Camera Geometry

When utilizing cameras as measurement instruments, the

precise knowledge about the geometric property of the underlying

imaging process is vital. Calibration techniques are mandatory to

correctly interpret 3-D geometry.

Tsai and Lenz [16] and Tsai [36] have published fundamen-

tal work on calibration models especially for the pinhole camera

model. They introduce methods for robust camera parameter esti-

mation using planar shapes with known geometry as reference ob-

jects. Based upon their work, Zhang [39] has proposed a refined

method which is widely used. Different camera models, such

as wide-angle, fisheye and catadioptric cameras need specialized

calibration models. For example, Geyer and Daniilidis [8] pro-

pose an algorithm tailored towards catadioptric cameras. Scara-

muzza [28] introduces an algorithm for both catadioptric and fish-

eye cameras which is suitable for wide-angle lenses as well. His

method is used in many vehicular applications.
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Surround Views and Virtual Cameras
Vehicular setups imply transformation and stitching of the

original camera views as geometric limitations do not allow to

capture the desired view directly. The goal is to compute a virtual

camera’s view. Perspective geometry and perspective transforma-

tions are a reasonable approach towards virtual camera views. An

idea for the transformation between the views of the two cameras

C1 and C2 is given by Hartley and Zisserman [10] and Vincent and

Laganiere [37]: The view captured by C1 shall be transformed to

the view described by C2.

Let all objects visible in C1 be located on the same 3-D plane.

The plane can be described with at least four points on the image

plane of C1: QC1
=
{

qi ∈ IR2
∣

∣ i ∈ IN+
}

, |QC1
| ≥ 4

The image plane of C1 (respectively C2) is interpreted as

a projective plane. Given corresponding image points QC2
=

{

qi ∈ IR2
∣

∣ i ∈ IN+
}

with |QC2
| = |QC1

| in image coordinates of

C2, a transformation from camera C1 to camera C2 can be for-

mulated using a homography matrix HC1→C2
∈ IP2×2. Matrix

HC1→C2
is considered constant, assuming the cameras to have

fixed lenses and a rigid affine transformation between their poses.

Homographies are a good starting point for surround view

computations. They are commonly used for the warping process.

They include a a flat world assumption, which seems reasonable

on a first look for vehicles, as the street can be assumed to be a

plane.

Liu, Kin and Chen [19] use cameras positioned around the

vehicle and utilize homography matrices to transform the images

and finally stitch the images to a surround view. They warp the

resulting images to a fisheye view to create a more natural look of

the results. An integration of a homography based approach with

a hardware setup is proposed by Luo et al. [21]. Thomas et al. [35]

focus on cost-efficient hardware and stitch top view images on it.

Sato et al. [27] utilize fish-eye cameras together with homogra-

phies on spatio-temporal data, whereas Li and Hai [18] focus on

the calibration of a multi-view bird’s eye view.

However, these methods show heavy artifacts for objects vi-

olating the assumptions (of the homography). When the vehicles

encounter objects, which do not fulfill the planar constraint, arte-

facts show a vanishing-point-like behavior. Yet, they are used in

bird’s view systems nowadays. The overall homography shadow-

ing effect is described by Fuchs and Paulus [4, 5]. The authors

propose a first approach towards perspectively correct virtual

bird’s views. They use stereo cameras in combination with dis-

parity matching to compute point-based 3-D geometry and project

the resulting point cloud perspectively correct to the ground plane.

However, the approach shows sparse data in areas with overlap-

ping geometry. This publication is intended to overcome with this

issue.

Stereo Vision, Datasets and Visual Odometry
Multiple view geometry is the key to extract 3-D information

from camera images. The use of multiple camera setups can be

used to compute depth information from multiple images. Hartley

and Zisserman [10] have published fundamental work on the topic

and summarize the principle behind this approach.

Known camera intrinsics and relative positions and orienta-

tions between the cameras are a prerequisite for depth estimation

and can be determined using calibration techniques. Given syn-

chronously grabbed camera frames, the correspondence problem

has to be solved in order to compute disparities.

Existing correspondence matching approaches classify into

two main types: On the one hand, keypoint-based approaches use

image feature algorithms like [17], [20] or [26]. Using adequate

distance measurements, features are matched in between the syn-

chronous frames for correspondence assignment. For example,

Grimson [9] uses image features in order to find stereo correspon-

dences. Horaud and Skordas [13] group features first in order

to extract correspondences. Results of keypoint- and/or image

feature-based algorithms usually show sparse 3-D data with high

accuracy.

On the other hand, block-matching can be utilized for corre-

spondence matching. Various algorithms and improvements have

been developed and published so far. Hirschmüller et al. [12] use

mutual information and pixel-wise matching in their semiglobal

matching (SGM). The algorithm has become popular and has al-

ready been adapted to particular scenarios, for example for in-

vehicle applications [31, 11]. Einecke and Eggert [3] utilize a lo-

cal correspondence approach and significantly reduce the SGMs

execution while maintaining correspondence quality. Results of

block-matching algorithms tend to show dens disparity data with

slightly minor depth quality in comparison to keypoint-based ap-

proaches. Many publications and algorithms for stereo dispar-

ity estimation have already been presented. This work does

not focus on this issue. We use the algorithm proposed by

Hirschmüller et al. [12].

Of course, a lot of approaches towards stereo processing in

vehicular environments (e. g. [24], [1], [14] and many more) have

been published. Yet, no publication addresses perspectively sur-

round views so far.

Fuchs and Paulus [4] use stereo vision and transform be-

tween camera views to create a perspectively correct surround

view. The approach shows sparse result images while the perspec-

tive correctness is maintained. Several stereo datasets recorded

for vehicular applications in particular have been published [25,

29, 30]. Geiger, Lenz and Uratsum [7] present the KITTI Stereo

Benchmark, which has become popular in recent works. It con-

tains datasets for different purposes. The odometry benchmark

datasets from their collection are used in our work.

The precise knowledge about the movement between to

frames is vital for temporal integration of point clouds. When

(stereo) cameras are used as sensors, visual odometry can be uti-

lized for movement and relative position and orientation estima-

tion. Cvišić and Petrović [2] propose a stereo visual odometry

system which is currently amongst the best-ranking algorithms

on the KITTI odometry benchmark [7]. We follow the algorithm

by Cvišić and Petrović [2] in this publication.

Image-based Rendering
Methods of image-based rendering can be used to create vir-

tual views, too. An overview of different algorithms is given

by Shum and Kang [32]. They group existing approaches by

the geometric modelling strategy used. Surround view computa-

tion is targeted towards real-time processing so that complex pre-

computed or pre-modeled knowledge cannot be utilized. Only

implicit geometry methods are reasonable in this context. Laveau

and Faugeras [15] predict views using the fundamental matrix

and two images. Zinger, Do and De With [42] discuss a free-

viewpoint depth based rendering for 3-D-TV applications. Their
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method relies on disparity maps. Vogt et al. [38] use light-fields

to improve the quality in image sequences.

However, these publications discuss the computation of vir-

tual camera views with camera poses close to the original cam-

era’s views, e. g. light positions shift and/or light rotation. In case

of vehicular surround views, extensive shifts and rotations be-

come necessary. Yet, the publications contain fundamental work

on the issue, but do not present proper solutions for surround

views.

Heightmaps and Heightmap Texturing
Two commonly used data structures for the representation of

closed surface are of common use: Heightmaps and variants of

the voxel-based truncated signed-distance function (TSDF) [6].

Especially in the context of SLAM, heightmaps are used

widely. Heightmaps are optimization simultaneously to the

position and orientation of the camera: Various authors use

heightmaps as their map data structure in a SLAM context [7,

3, 8]. They simultaneously optimize the geometry of the recon-

structed heightmap and the position and orientation of the camera.

Sugimoto, Kotooka and Okutomi [33] use homographic

mapping between subsequent stereo frames and formulate a cost

function on the heightmap geometry. Yet, they do not explicitly

texture the surface. Zienkiewicz, Davison and Leutenegger [40]

and Zienkiewicz et al. [41] obtain their cost function by quanti-

fying the difference between the reprojection of the heightmap’s

depth and the output of a motion stereo algorithm. They focus

on online optimization rather than high-resolution texturing. The

authors mainly use color information for visualization purposes.

Motooka et al. [22] optimize the texture of the heightmap

across a large number of camera images photometrically. While

the results show impressive quality, the authors note that their op-

timization method is currently not fast enough for online opera-

tion. Tanner et al. [34] use TSDFs to map large areas and show a

relatively detailed and colored mesh as result of their reconstruc-

tion. However, they focus on the ability to map large areas rather

than texture details: Colorization only occurs on a per-vertex ba-

sis, which limits the texture resolution to their voxel size of 10cm.

A 3-D reconstruction approach is presented by Gallup,

Frahm and Pollefeys [6]. They cluster depth images into vox-

els and fit them into a heightmap while focusing on a continuous

surface at the cost of texturing quality.

Shifting Grid Map
To model the vehicle’s environment, we use a 2-D grid map

as the basic geometric environment representation. The grid map

is oriented on the ground plane below the vehicle. Its cells are

equidistant and its bases are orthogonal. The reference coordinate

system is the world coordinate system.

Figure 2 shows the grid map in relation to the vehicle and

the world coordinate system: The origin of the world coordinate

system 0w defines the origin of the grid map.

The grid map G is aligned to the world coordinate system’s

xy-plane (ground plane) and has equidistant cells with orthonor-

mal axes. Parameter g ∈ IR defines the side length of a single

grid cell. The positions of the cells are and remain constant to the

initially defined world coordinate systems. The hereby achieved

discrete sampling of the ground plane enables an indexed access

to the grid cells. Each cell can be addressed using 2-D-coordinate

Figure 2: Grid map under a moving vehicle

(

cx,cy

)

∈ ZZ2. The bounds of the grid are assumed to be infinite

for modelling purposes.

Position and orientation of vehicles and reference systems

are relevant for any investigation regarding surround views. To

create an easier readability, both components can be combined

to a so called pose. As a first component, a pose contains the

position in form of a translation vector. As a second component,

the rotation of the object is expressed as a unit quaternion in the

space of a unit-3-sphere in 4-D Euclidean space. The space S
3 is

a subspace of the Hamilton space for unit quaternions in general

(S3 ⊂ H). Special operations can be used for the combination

of poses. For the following, the operator ⊕ describes a forward

composition of two poses.

The position and orientation of the vehicle in the world co-

ordinate system is described by pose v∈ IR3×S
3 with v= 〈q,φ〉.

At this point, only the position component of pose v is relevant.

As the vehicle is moving on the ground it can be projected to the

grid map. With q ∈ IR3 the vehicle’s position in the world coor-

dinate system, the 2-D position on the grid map is described by

function ρG : IR3→ IR2:

ρG(q) = ρG

(

(

qx,qy,qz

)T
)

=
(

qx,qy

)T

This projected 2-D position is associated with a correspond-

ing grid cell. Function γ : IR2→ ZZ2 maps the 2-D vehicle posi-

tion to the rasterized ground grid. This yields for the mapping of

a vehicle position to a grid cell:

cp = γ (ρG (q))

As the goal is to model and visualize the surroundings of the

vehicle, we of course do not use an infinite grid map. Instead,

we use as local grid map which is centered around the vehicle.

The map however remains in the grid layout with world refer-

ence. While the vehicle moves (relatively to the world coordinate

system), the center cell has to be chosen adequately and the map

has to adapt to it.

The local grid map around the vehicle is aligned to the cen-

ter cell and its extensions are defined by parameter e ∈ IN which

defines the number of cells in each direction. The local grid con-

tains (2 · e+ 1)2 cells, with local cell indexations in the range

of ([−e;e], [−e;e]) ∈ ZZ2. This yields a quadratic excerpt of the

world grid which is a adequate choice for surround view applica-

tions. Depending on the application, a different geometric posi-

tioning of the center cell and the extents may be a proper choice.

Let tτ ∈ IR2 be the 2-D grid reference position of vτ at time

step τ and tτ+1 ∈ IR2 the position at time step τ +1. An update of

the shifting grid’s bounds regarding the world grid is necessary,

if γ(tτ ) 6= γ(tτ+1). The principle behind a grid shift is shown in

Figure 3.
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Figure 3: Principle of grid shifting. As long as the vehicle’s 2-D

ground position remains in the center cell, the grid is not shifted.

As soon as the vehicle moves to another grid cell (a), the center

cell is moved to the cell the vehicle moved to (b). At the same

time, the candidates for the grit shift are selected (b). The grid’s

borders are then resized so that the center constraint holds for the

center cell (c). Grid contents remain during the resizing.

The grid map is used to store environmental information.

Therefore, the cells are a discretization of the surroundings with

a fixed relation to the world reference. This enables accumulative

data collection while the vehicle is moving.

We use stereo cameras and/or a 3-D laser scanner for geo-

metric sampling. This means that – irrelevant of the sensor modal-

ity – point clouds are used in first stage. In case of the stereo cam-

era, disparity algorithms as explained above are used for depth

information. However, the raw output of a 3-D laser scanner can

be used directly.

For explanation, we only formulate our approach with one

sensor. Of course, multiple sensors can be equipped and used as

input for the method proposed. The sensor coordinate system s

has its origin in the sensor mounted on the vehicle. An overview

of the coordinate systems is given in Figure 4.

The set of points As
τ at timestep τ in the coordinate system

of the sensor s is defined as:

As
τ =

{

p

∣

∣

∣
∀ p ∈ IR3

}

In order to link the point set to grid map cells, their coordi-

s

v

Figure 4: Coordinate systems for world (w), vehicle (v), center

cell (c) and sensor (s). Pose v transforms from world the vehi-

cle coordinate system. The sensor pose s defines the coordinate

system of the sensor data within the vehicle.

Figure 5: Matching of point clouds to the grid structure. Each

point gets assigned to the containing cell using the 2-D projection

of each point.

nates must be transformed first. Given the 6-D pose v ∈ IR3×S
3

which defines the relative pose of the vehicle regarding the world

coordinate system. The position component q can be mapped to a

grid cell in G using function γ . Yet, the grid cell’s origin is neces-

sary for the transformation. Let c be the corresponding cell. The

origin 0c of the cell c is given by function ω : IR3→ IR3:

ω(q) =
(⌊

qx ·g
−1
⌋

·g,
⌊

qy ·g
−1
⌋

·g,0
)T

As there is no rotation in the coordinates system’s axes be-

tween the world coordinate system and a grid cell’s coordinate

system, the rotation quaternion of pose v does not imply further

transformation. The vehicle pose v in the grid cell’s coordinate

system c is:

v
c = 〈qw−ω(qw),φw〉

Pose s defines the transformation from the vehicle coordinate

system to the sensor data’s origin (in case of Figure 4 the camera

center of left camera of the stereo system). Given center cell c of

grid G, the accumulated transformation pose a to register a point

cloud As
τ is:

a= v
c⊕ s

Let function ζ : IR3×S
3→ IP3×3 represent the affine trans-

formation matrix applying the transform of a pose. The computa-

tion of Ac
τ yields:

Ac
τ = {ζ (a) · p̃ |∀p ∈ As

τ}

To cluster the points for fusion in the grid cells, a set Cτ ;u,v ⊆
Ac

τ is defined for each cell:

Cτ ;u,v =
{

p

∣

∣

∣
p ∈ Ac

τ ∧ γ(ω(p)) = (u,v)T
}

The shifting grid map G containing the accumulated 3-D

points of the environment is the basis for a closed surface model

of the terrain. We follow a heuristic approach which is close to

the one in [23] to estimate each cell’s height: Given the points in

Ac
τ and their corresponding distances to the sensor’s origin in Dτ

(with Dτ ;u,v analogue):

Dτ = {d |∀p ∈ As
τ , d = ‖p‖}
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Algorithm 1 Cell height estimation (following [23])

1: ∑h← 0 ∑w← 0 ẑ← 0

2: Γ←{(z,d) | p ∈Cu,v, d ∈ Du,v, z = pz, p and d associated}
3: n← |Γ|
4: sort tuples in Γ ascending by z

5: for i := 1 to n do

6: h← Γ[i].z ⊲ height component of point

7: w← χ(Γ[i].d) ⊲ weight factor

8: if i > 0.5 ·n and h− ĥ > k then ⊲ k a ground threshold

9: break

10: ∑h← ∑h+wi ·hi

11: ∑w← ∑w +wi

12: ẑ← ∑h ·∑w
−1

return ẑ

Using Cτ ;u,v and the corresponding distances in Dτ ;u,v, the

points are then added to the correct cells around the vehicle. The

cells are used to accumulate points over various timesteps. This

way, an update and refinement of each cell is possible:

Cu,v :=Cu,v ∪Cτ ;u,v Du,v := Du,v ∪Dτ ;u,v

The distance to the sensor is regarded a quality criterion for

the 3-D point. The closer the point to the sensor, the more reli-

able it is in terms of height estimation. The distance is therefore

transformed into a weight using function χ : IR→ IR:

χ(d) =

(

1+
d

8

)−0.5

The iterative algorithm for cell height estimation based on

the accumulated point cloud data is depicted in Algorithm 1. Cells

with a high point height variance are regarded to be non-ground

obstacle cells which would violate the closed surface approach.

Therefore, they are modelled as solids in the size of the grid cell.

Let the results of the algorithm be accessible through ξ : ZZ2→ IR

as a mapping from cell coordinates to the computed heights.

Using the heights in ξ , the closed surface is computed: We

use neighbored cells, to compute a mean height for the surface

vertex at the cell’s corners. This way, an equidistant orthonormal

set of points is created. The closed surface coordinate at the origin

of cell (u,v) is expressed by function β : ZZ2→ IR3:

β (u,v) =

(

g ·u, g · v,
1

4

0

∑
i=−1

0

∑
j=−1

ξ (u+ i,v+ j)

)T

Each (quadratic) cell (u,v) in grid map G is over-spanned

with two triangles:

△1(u,v) = {β (u,v), β (u+1,v), β (u,v+1)}

△2(u,v) = {β (u+1,v+1), β (u,v+1), β (u+1,v)}

The final closed surface heightmap consists of all triangles

which over-span the grid map. Figure 6 visualized the principle

behind the computation. The smoothing effect achieved due to

the averaging is clearly visible there.

Partial Homography Warping
One of the main problems regarding state of the art meth-

ods for surround view generation is the unnatural warping of non-

ground objects. Yet, in image regions where the ground plane

assumption is fulfilled, correct transformations to the virtual view

are shown. Using the closed surface heightmap of the environ-

ment, partially plane parts are created. The geometric structure of

the heightmap is updated continuously while the car is moving.

As a heightmap alone does not yet help to visualize a sur-

rounding view, camera images are needed in the next step. These

camera images can be taken by a stereo system which can be used

as input for the heightmap computation as well. It is also possible

to use any other and/or multiple cameras on the vehicle as an im-

age source. However, the following paragraphs focus on a single

camera as input to emphasize the methodology.

Given a camera with known intrinsic matrix K ∈ IP2×2 and

pose k ∈ IR3×S
3 in the vehicle. (Of course, lens distortions are

vital, too. For simplification issues, they are not discussed in the

following, yet have to be taken care of.) The idea is to partially

warp the camera image to the heightmap’s triangles (while main-

taining a visibility constraint).

A planar texture image T is used to accumulate each trian-

gle’s image content. The texture image’s dimensions are a multi-

ple of the cells in the grid map. This way, each cell gets assigned

a texture resolution r ∈ IN, resulting in a texture region of r by r

pixels per cell. The dimensions of the texture for the whole grid

map are r · (2 · e+1) by r · (2 · e+1) pixels.

Given the 3-D coordinates of a triangle in the closed surface

heightmap, the projection onto the image plane can be computed

with the intrinsic matrix K. At first, the points have to be trans-

formed to the camera’s coordinate system k using the accumulated

pose v
c⊕ k and the cell coordinates. Given a triangle:

△k =
{

pk
1, pk

2, pk
3

}

To formulate a point correspondence problem for homogra-

phy computation, at least four points are necessary. We achieve

this by adding a fourth virtual point on the triangle plane using a

linear combination of the triangle points:

pk
4 = pk

2 + pk
3− pk

1 �
k =△k ∪

{

pk
4

}

Figure 6: Closed surface heightmap. The cell heights are used for

generating the closed surface heightmap which is partially planar.
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Figure 7: Principle of partial heightmap texturing. The 3-D points

are projected to the image plane of the camera to get the bounds of

the corresponding image region. The image region is then warped

onto the grid map texture plane.

The projection onto the 2-D image plane of the camera (co-

ordinate system i) is computed by multiplying with K:

�
i = K ·�k =

{

K · pk
1,K · p

k
2,K · p

k
3

}

The 2-D point correspondences in the target texture are given

the corresponding cell’s texture coordinates in pixels as explained

above. The homography matrix H ∈ IP2×2 can be computes using

methods as explained in [10]. To apply the homography matrix,

a point is multiplied with it. To get the correct 2-D coordinate, a

perspective division is necessary. Both steps are accumulated in

function h : IR2→ IR2:

h(t) =
(

yx · yz
−1

, yy · yz
−1
)T

with y =
(

yx,yy,yz

)T
= H · t̃

Of course, the warped image can be applied only to the part

of the cell’s texture which belongs to the current triangle. As the

interpolated fourth point causes a texture excerpt for the whole

grid cell, the correct half for the triangle must be selected. At the

diagonal where the two textures need, blending is applied. The

texture image is accumulated respectively updated by the trans-

formation of all patches �k
v :

T :=
{

h
(

�
k
v

)
∣

∣

∣
∀�k

v ∈ G
}

The partial homography warping process is depicted in Figure 7.

Each triangle patch is written to a texture layer which is then

mapped to the closed surface mesh. Of course, a visibility con-

straint must be maintained so that no projections to areas behind

obstacles are computed.

As a result, both the perspectively correct surround view in

an orthographic projection (in the texture layer) as well as 3-D

perspective views of the scenery can be generated.

Test Results and Conclusion
The KITTI odometry datasets [7] is used to test the proposed

method. We choose this publicly available dataset to enable com-

parison with future methods. Although the dataset only includes

3-D Point Cloud Vehicle Pose v Image Frames

Grid Map Clustering Cell Height Estimation

Closed SurfacePlanar Cell Projection

Homography Estimation Partial Texture Warping

Perspectively Correct Dense Surround View

Figure 8: Overview of the system’s components. Red boxes are

input for the proposed method, the green box indicates the output.

camera views in driving direction (instead of cameras distributed

around the vehicle) it is well suitable for our method.

At first, a visual odometry algorithm [2] is used to com-

pute the relative poses between the frames. The algorithm by

Hirschmüller [12] is utilized for disparity estimation. The compo-

nent setup is depicted in Figure 8 and shows how the single steps

as explained above are connected.

For the results presented, the grid map was initialized with a

cell side length of g = 3.5−1 (≈ 29cm in the world). The grid’s

extents are configured to 61 by 61 cells (e = 30). Texture resolu-

tion is set to r = 16px (each pixel will represent a patch of 1.7cm

by 1.7cm in the world).

Figures 1, 9, 10 and 11 show results from different datasets.

The temporal integration of the 3-D-data allows a precise mod-

elling of the vehicle surroundings and the detection of off-ground

obstacles.

In case of Figure 9, the image quality is visible, e. g. at the

cobblestones. Off-ground obstacles such as fences and parking

cars are detected correctly. While Figure 10 shows a road passing

through an uneven grassland, the terrain surrounding the street in

Figure 11 is much steeper. Details like manholes and tar patches

on the road are clearly presented.

The approach shows good image quality while maintaining

perspective correctness. The temporal integration of image data

in the showcase of course results in “old” image data being used

for the surround view (e. g. behind the camera) and is due to the

dataset used. Yet, there is no dataset publicly available with cam-

eras distributed around the vehicle. In means of a real-world ap-

plication, live data for the direct vehicle surroundings is manda-

tory. However, the principle behind the proposed approach can be

shown with the datasets used. Using cameras distributed around

the vehicles for partial homography mapping will overcome this

problem. Additionally, visualizations marking that the image at a

specific location is from a former view could be used as well.

For future work, it is planned to enhance the obstacle detec-

tion and to subdivide grid cells in geometrically complex areas for

a better approximation of the ground.
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