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Abstract 

We present a visual SLAM pipeline that is efficient, robust 
and accurate. It is applied to the trained parking use case. In this 
case the SLAM algorithm builds a “trained” map on the first pass, 
typically driven by the driver. In subsequent passes the algorithm 
localizes to the trajectory, thus allowing the vehicle to 
autonomously follow the trained path. 

A visual SLAM system for autonomous vehicles is an 
attractive option as it utilizes relatively cheap sensors that are 
typically already mounted on the vehicle for other tasks. However 
using a visual SLAM approach has challenges, in this paper we 
specifically look at the localization task in difficult cases.  

The system is designed to operate in an uncontrolled 
environment. Between map generation and localization there may 
be significant changes, different dynamic objects, missing 
structure, moved structure or the scene may be visually different 
due to illumination changes or changing weather conditions. These 
are the so called hard cases. 

We present an approach, which runs in real-time, designed to 
tackle the hard cases. The approach has been evaluated both at the 
bench and in-car.  

Introduction 
SLAM (Simultaneous Localisation and Mapping) algorithms 

have been the subject of extensive research since the foundations 
were laid by Smith and Cheeseman in 1986 in their work on the 
representation and estimation of spatial uncertainty [1]. SLAM 
itself was first conceived in the early ‘90s by Hugh Durrant-Whyte 
and Leonard [2] but it took another decade before camera based 
SLAM algorithms were investigated. Initial approaches used stereo 
cameras, monocular camera systems came a bit later and many of 
the techniques used came from parallel research in the vision 
community on the Structure for Motion task.  

Now there are a variety of Visual SLAM approaches to 
choose from i.e. feature-based (e.g. ORB-SLAM [3]), direct 
methods which can be either dense (e.g. DTAM [4]) or semi-dense 
(e.g. LSD-SLAM [5]). CNNs are now being applied to the problem 
with CNN-SLAM [6] a notable example. Object-based or semantic 
SLAM is also an active area of research. 

Despite the extensive research real world outdoor applications 
are still scarce. Outdoor scenes present particular challenges for 
visual SLAM algorithms – they are uncontrolled environments 
with significant variations in illumination, weather and scene 
structure. 

As noted by Fuentes-Pacheco et al. [7] many visual SLAM 
approaches fail under the following conditions:  
 in external environments,  
 in dynamic environments, 
 in environments with too many or very few salient features, 
 in large scale environments 
 during erratic movements of the camera 

 when partial or total occlusions of the sensor occur. 
 
The key to a successful visual SLAM system that can be 

deployed in an autonomous vehicle is the ability to operate 
correctly despite these difficulties. 

 
In this paper we look at the specific use case of Visual 

SLAM, that of trained parking in automotive vehicles. In this use 
case the SLAM algorithm builds a “trained” map on the first pass, 
typically driven by the driver. In subsequent passes the algorithm 
localizes to the path, thus allowing the vehicle to autonomously 
follow the trained path. 

The approach is chosen to specifically deal with the 
uncontrolled outdoor environment. Between map generation and 
localization there can be significant changes. Dynamic objects like 
pedestrians or other vehicles can be present during training but 
absent in replay. Different dynamic objects may be present in the 
scene during the localization phase.  Static structure in the scene 
may have moved or be different e.g. in a typical home scenario 
refuse bins may be in a different location on different days. 
Illumination changes and weather variation by far present the 
greatest challenge for a vision based SLAM system operating in 
the outdoors with day to night a particular challenge. 

 

System Requirements 
 

For many SLAM algorithms the focus is on creating an 
accurate representation/model of the scene. In the trained parking 
use case the focus is slightly different; here the most important 
function of the algorithm is that it can accurately localize to the 
trained scene. 

Four fish-eye cameras provide an omni-directional surround 
view, as shown in Figure 1, this is the perception input.  

 
Figure 1: Vehicle equipped with Valeo SVS cameras 

 
The algorithm is required to run in real-time while the vehicle 

is traveling at a velocity of 10kph. The memory required for the 
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trained map must be minimal (of the order of few Mb per camera 
for a ~20m trajectory). Although the tests included in this paper are 
undertaken on a single core on a PC, the system is designed to be 
deployed on an embedded platform. 

 
 

Robust Re-localisation Methodology 
 

As re-localisation success and accuracy are the key 
performance indicators for the use case in question a feature-based 
Visual SLAM approach was chosen. The proposed solution has 2 
main modes of operation – Training and Replay. 
 

Training Mode 
The aim of the training phase is to create a sparse consistent 

map of trained trajectory points and trained features. Trained 
trajectory points are key locations that together identify the path 
followed by the vehicle in training. 

Trained features represent a set of unique 3D positions in the 
world associated to single/multiple 2D visual feature(s). A visual 
feature is made of 2D coordinates and a visual descriptor. The 
descriptors are such that they uniquely define a feature and they 
can be associated with the features extracted in a subsequent 
replay. The system is designed to work with any feature descriptor 
but a sufficiently robust descriptor is recommended. The feature 
descriptor storage during training and matching during replay is 
the key enabler for the vehicle to localise itself during replay 
against the training data.  

The concept of “key frames” and “normal frames” is 
important for this solution. During training both frame types are 
processed but only the trained trajectory points and trained features 
associated with key frames are saved in the trained map and used 
for replay. 

Frames are bundled into windows with a key frame at the start 
followed by normal frames. Key frames are dynamically selected 
based on a combination of distance travelled and the number of 
features matched to previous key frame. 

 
 

 
Figure 2: Main steps in training mode 

 
In the training phase, a set of visual features are extracted 

from each live camera frame, a visual descriptor is stored for each 
feature. The number of features extracted is limited to a fixed 
number to ensure an efficient run-time is achieved. 

Visual features are matched according to their descriptor to 
subsequent frames. Using these matches a 3D reconstruction is 
performed to estimate a triangulation for each feature, in a 3D 
world coordinate system. The 3D reconstruction also provides an 
estimate of the vehicle motion, via the estimation of the 
essential/fundamental matrix. 

Each window consisting of a key frame and subsequent 
normal frames is bundle adjusted to give the optimal trajectory 

positions and 3D feature positions. The bundle adjustment step 
involves a non-linear optimisation where the reprojection error of 
the 3D features is minimised.  Namely the trained trajectory ൛݌෤௝ൟ 
and trained features ሼ̃ݐ௜ሽ are obtained via the following 
minimization: 

൛݌෤௝ൟ, ሼ̃ݐ௜ሽ ൌ argmin
൛௣ೕൟ,ሼ௧೔ሽ

෍ ߪ ቌ෍ ௜௝ߜ ቛෑ൫݌௝ , ௜൯ݐ െ ௜௝ቛ݋
ଶ

௠

௝ୀଵ

ቍ

௡
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Where ݋௜௝ is the 2D observation of a trained feature i on the 

trajectory point j. The quantity  ݌௝ (resp. ݐ௜) represents the 
estimated camera position (resp. triangulated position of the 
landmark i) obtained after 3D reconstruction. The operator 
∏൫݌௝ ,  ௜൯ stands for the projection function of the 3D estimate onݐ
the j-th image plane. ߜ௜௝ is a convenient term for the formula (it is 
implicit in the implementation) that ensures the landmark i was 
observed on at least two  frames among which frame j. Finally ߪ 
refers to a loss function allowing this equation to gain robustness 
towards outliers. 

Replay Mode 
In the replay phase, a new set of live visual features are 

extracted from each processed frame, as during training. As shown 
in Figure 3 there are two main steps in replay; topological re-
localisation and metric re-localisation. They can be pictured as a 
cascaded re-localisation process where the position of the vehicle 
is sequentially refined. 

 

 
Figure 3: Replay pipeline 

 
For the initial topological localisation (i.e. lost robot problem) 

a subset of the new features is selected and the complete trained 
cloud is searched to find matching descriptors. The key frame with 
the most matches is selected as the “closest key frame” and then an 
attempt is made to match the complete set of new features to the 
features in the “closest key frame”. This technique is accurate and 
works well when the replay scene is similar to the trained 
trajectory. However when the replay scene is significantly different 
due to illumination/scene changes the response rate of this method 
falls to 0. To overcome this issue another algorithm takes place in 
case of failure of the first one. Namely the closest key frame is 
selected based on a frame signature which similar concept to the 
holistic feature vector used by Lategahn et al. [8] for loop closure 
detection.  Each frame is divided into a 4x4 grid and the summary 
descriptions of each cell are combined to provide the signature. 
This method always returns a proposal for the closest key-frame, a 
subsequent check is thus included to validate the returned key 
frame. 

 Once the closest key frame is determined, the metric 
localisation can be attempted. Live visual features (݋௜) from the 
live frame are matched to a subset of trained visual features as 
including those observed in the closest key frame and its 
neighbours during training. If a sufficient number are matched the 
current vehicle position (݌෤) relative to the trained trajectory is 
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determined using a least squares optimisation. The live visual 
features matched with trained visual features are associated to the 
trained features ̃ݐ௜. The latter are re-projected into the current live 
frame and the re-projection error is calculated as the difference 
between the re-projected (by means of ∏ሺ݌,  ௜ሻ) position and theݐ
observed position (݋௜) in the current frame. This error is minimised 
by optimising the vehicle position (݌) relative to the trained 
trajectory.  Strict filtering of outliers with a loss function ሺߪ as for 
train) ensures a reliable position ݌෤ as: 

෤݌ ൌ argmin
௣

෍ ߪ ൬ߜ௜ ቛෑሺ݌, ௜ሻݐ̃ െ ௜ቛ݋
ଶ

൰

௡

௜ୀଵ

 

 
On subsequent frames the search is restricted to the “closest 

key frame” and its neighbours. If however a sufficient number of 
matches are not made within this set the complete trajectory is 
once again searched.  

 

Multi-Camera 
As shown in Figure 1 SVS cameras allow us perceive the 

environment, build our map and relocalise to the map. By using 
multiple cameras a much more robust localization can be achieved. 
Features are not matched between camera views; instead the 
optimization step considers the optimization of the vehicle pose 
based on observations from all cameras.  

 

The Hard cases 

Indoor Public Parking Lot 
Figure 4 below shows a typical indoor parking scene. The top 

frame was taken from a video captured in the morning when the 
car park was relatively empty.  By mid-afternoon the scene had 
changed significantly. Most of the cars that were present in the 
morning were gone in the afternoon. Many new cars were added to 
the scene obscuring features that could be observed in the morning.  
The roof does not change but unfortunately it is a repeated 
structure making localisation to unique position difficult. It can 
also be observed that the vehicle starting position is slightly 
different in each scene, thus features are observed from a slightly 
different rotation. 
 

 
Figure 4: Indoor parking Lot 

 
The fact that our trained map is very sparse adds to the 

challenge. Because of the requirement to be able to run in real-time 
on an embedded platform we are limited in the landmarks we can 
store. If most of the scene is obscured or changed matching 
between training and replay is difficult. 

This is a scene that highlights the main advantage of a multi-
camera system. With only one camera the algorithm fails to 
reliably localize on all frames. However the introduction of a 
second camera view results in a reliable and accurate localization 
from start to end. 

 
Figure 5: Trained trajectory overlaid on the replay scene. 

Day Night 
Figure 6 illustrates the challenge of illumination change. 

Training was carried out in on a bright day and replay at night. The 
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structure of the scene remains unchanged between training and 
replay. The same cars, trees and refuse bins can be observed 
however they appear visually different due to the change in 
lighting conditions. 
 

 
Figure 6: Illumination changes between training and replay 

 
Careful use of a robust illumination invariant feature 

detector/descriptor enables replay in most of this scene. The key 
however is a good topological re-localisation – course localization 
to the correct trained key frame is vital. 

A second challenge in this scene is the distance of the objects 
in the scene from the vehicle, the trees being the obvious example. 
Trees are particularly interesting as on windy days they are not 
stationary and, when added to the trained map, can therefore lead 
to noisy localization results. Once again this is where using 
multiple cameras improves results. The re-localisation success rate 
with front camera only is 96.38% but with front and rear camera it 
rises to 100%. What we also note is that using the same number of 
features spread over 2 cameras results in more accurate smoother 
results. 

There are however cases where VSLAM does not succeed. In 
very dark featureless environments the algorithm cannot even train 
sufficiently well as it is not possible to match enough features 
between frames. An example is shown in Figure 7 where the 
illumination in the scene was less than 10Lux. 

 
Figure 7: At very low Lux levels the algorithm fails to both train and re-localise 

 
 

Revisiting a scene after 10 months 
In this case we revisit a scene after a 10 month gap i.e., 

training was performed on a capture from December 2016 and 
replay was performed on a capture from October 2017. 

It can be noted, in Figure 8 that the lighting conditions are 
very different with low sunlight illuminating the training scene and 
replay attempted on an overcast day. Also to be noted are the 
changes in vegetation between the seasons. The replay starts 
approximately 6 metres from where the training started and there 
are both lateral and rotation offsets. 
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Figure 8: Scene revisited after 10 months 

In this scenario with 2 cameras active we re-localise 
successfully on 73.7% of the frames.  

Conclusions 
A feature-based visual SLAM based solution can effectively 

meet the challenging requirements of the trained parking use case.  
Dispersing the observed landmarks around the vehicle in a 

multi-camera solution significantly improves the algorithm, 
making it more robust to structure change, illumination change, 
glare and occlusion. Using just a wide-angle front and rear view is 
sufficient. While the addition of the wing-mirror cameras also 
increases accuracy and robustness the improvement is not enough 
to justify the extra memory and run-time. Capturing front and rear 
view has the additional advantage that localisation to the trained 
route can be done in either direction (i.e. by matching trained 
features from the front view camera to live features from the rear 
view camera and vice versa) 

The results discussed in this paper are solely from the visual 
SLAM algorithm. In the full trained parking pipeline a downstream 
Kalman filter is used to fuse the results with mechanical odometry. 
This has the effect of smoothing the replay trajectory and elegantly 
handling noise or inaccurate localisations. 

The algorithm is efficient and can run in real-time. The 
memory requirements of the trained map are kept to a minimal 
because it is a feature-based visual SLAM approach. The algorithm 
is robust to the significant scene changes that can occur over time 
in an outdoor environment. 
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