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Abstract – Driven by the mandated adoption of advanced safety
features enforced by governments around the global as well as
strong demands for upgraded safety and convenience experience
from the consumer side, the automotive industry is going through
an intensified arms race of equipping vehicles with more sensors
and boosted computation capacity. Among various sensors,
camera and radar stand out as a popular combination offering
complementary capabilities. As a result, camera radar fusion (or
CRF in short) has been regarded as one of the key technology
trends for future advanced driving assistant system (ADAS). This
paper reports a camera radar fusion system developed at TI,
which is powered by a broad set of TI silicon products, including
CMOS radar, TDA SoC processor, FPD-Link II/III SerDes,
PMIC, and so forth. The system is developed to not only showcase
algorithmic benefits of fusion, but also the competitiveness of TI
solutions as a whole in terms of coverage of capabilities, balance
between performance and energy efficiency, and rich supports
from the associated HW and SW ecosystem.
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I. INTRODUCTION

Advanced driving assistant system (ADAS) and autonomous
driving have been buzz words in recent years because of strong
driven forces from the policy makers [1, 2, 3] as well as
booming consumer demands for safer and smarter vehicles. In
many applications (e.g., collision warning and avoidance,
adaptive cruise control, lane keeping, autonomous parking,
etc.), accurately perceiving (including sensing, understanding,
and modeling) the surrounding world in a real-time manner
serves as the precondition for follow-up decision making and
actuation. However, such a task remains largely open and
challenging due to its extreme complexity in highly dynamic
environments, but very limited resources (for sensing and
processing) on-board each individual vehicle.

Motivated by the need of high reliability, multisensorial data
fusion has been considered as one of the pivotal means towards
real life safety assurance, because no single technology is able
to cover all requirements [4, 5]. In fact, a recent study reports
that only systems applying sensor fusion achieved 100% best
Euro NCAP Rating for safety [6]. In this paper, we report
recent progress made and initial results obtained at TI on the
topic of camera radar fusion (CRF in short), and demonstrate a
prototype system built with a portfolio of TI chips centered
with TDA SoC processor and CMOS radar.

II. FUSION OVERVIEW

Radar and camera feature complimentary characteristics that
naturally lead to the desire for sensor fusion. As illustrated in
Figure 1, the fusion of camera and radar can address many
inherent limitations of each sensor if used alone. Benefits of
integration come from the fact that data from separate sensors
that excel on different tasks can be matched, verified, and
fused to achieve greatly improved accuracy and reliability.

Figure 1: Advantage of Fusion in Different Tasks

II. PROTOTYPE FUSION SYSTEM

Before unfolding the algorithm details, this section provides
an overview about the fusion system established at TI in order
to cover necessary backgrounds on this project

The first prototype system was built to evaluate object-level
fusion for key ADAS functions including object detection,
recognition, and tracking. The hardware platform established
was named “xCAM” that is equipped with a TDA2x SoC, a
COMS radar module (using TC2, a test chip containing the full
signal chain from RF to ADC), and a third-party camera sensor.
On the software side, device drivers and signal processing
algorithms were implemented on Vision SDK v.02.06.

Figure 2 provides an overview of system by annotating on a
snapshot of its real-time HDMI output. On the left side, radar
and camera results obtained from radar processing pipeline and
computer vision pipeline are given. Specifically, the top two
views are radar detection points and tracking results; and the
bottom two views are vision outputs including sparse optical
flow and a neural network for vision-based object detection.

In the right part of Figure 2, fusion results obtained by
integrating outputs from all left views are presented. Fusion
offers a rich list of information regarding sensed objects,
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Figure 2: Camera Radar Fusion Concept and Prototype System Outputs

including its type, distance, velocity, angle, and angular
velocity. Fusion results feature improved robustness since it
tolerates miss detection of any one sensor to a certain degree.

IV. ALGORITHMS

This section details design of camera radar fusion system.
Figure 3 (on next page) illustrates the data flow and algorithms
developed to achieve the goal of object-level fusion, where
main processing blocks include:

 “Radar Signal Processing” block, which works on radar
data and outputs clustered points and target ROIs (i.e.,
region of interest) with associated information such as
radial distance, angle, radial velocity, and so forth;

 “Vision Motion Estimation” block, which outputs sparse
optical flow vectors indicating motion on the image plane;

 “Vision Recognition” (Image Processing + Recognition),
which conducts object classification with reasoning trees
and outputs typed (e.g., person) bounding boxes;

 “CRF Fusion” block, which performs velocity synthesis
and target tracking both in the 3D physical space and on the
2D image plane (more details are provided later).

In the following, key algorithms of each building block are
explained with an emphasis on radar and fusion blocks.

Radar Signal Processing

Figure 4 provides a more detailed list on algorithms and
methods used in radar signal process. For each frame of radar
ADC data, it is processed in four steps sequentially.
 “Chirp Processing” carries out necessary pre-processing on

the ADC data (e.g., zero padding and bit extension) and
then range FFT with transposed result write back.

 “Frame & Cross-Antenna Processing” performs two asks: (i)
Doppler FFT and peak detection on the range-Doppler
plane using CFAR (i.e., constant false alarm rate) [7], and

then (ii) angle estimation (i.e., DOA in Figure 4 and 5) for
selected peaks using the direct beam forming method.
Besides, range-gating was applied as “Filter A” to remove
noisy range bins closer than 50 cm.

 “Clustering and ROI Generation” clusters the detection
point cloud into a dynamic number of ROIs. The algorithm
“NCIMD” was developed based on normalized cut theory
[8] and served as the initial clustering method.

 Finally, “ROI-based Object Tracking & Classification”
applies temporal and spatial filters on accumulated ROI
records to reduce noise (due to both false alarm and miss
detection) and alleviate “multi-path ghosts”.

Figure 4: Radar Processing Stages and Algorithms

Vision Motion Estimation

Compared with radar, vision (or camera) in general features
much higher resolution and better accuracy on lateral motion
sensing for objects located in near to middle range, given
sufficient lighting and surface texture. Thus, sparse optical
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Figure 3: Data Flow and Algorithm Map (notice that blocks are color coded according to their running cores)

flow was implemented and partially optimized on C66 DSP to
fulfill the task of vision motion estimation on the image plane.
As depicted in Figure 3, a classical processing chain, which is
composed of Gaussian image pyramid generation (i.e., GPYD),
Harris corner feature extraction, non-maximum suppression
(i.e., POI selection), and Lucas-Kanade motion estimation
(translation-only model) was deployed. Notice that vision
motion estimation is computationally heavy and could be the
bottleneck of the system. For example, a 30-FPS motion
estimation engine outputting around 500 flow vectors would
consume more than 50% cycles of a 500MHz C66 DSP.

Vision Recognition

Another clear advantage of vision compared with radar is its
much richer information embedded in the data, which is widely
considered more suitable for the task of object classification.

In the reported fusion system, a classical vision recognition
pipeline, which applies the method of patch scanning with
manually designed features and cascaded reasoning trees, was
adopted for an initial evaluation. It was implemented as two
processing blocks as show in Figure 3.
 “Image Processing” handles pixel-level noise filtering,
image resizing (to construct a 17-layer image pyramid),
and oriented gradient feature extraction similar to HoG [9].
Its output is a 10-channel descriptor composed of Y, Cb,
Cr, gradient magnitude, as well as six oriented gradient
magnitudes at 0, 30, 60, 90, 120, and 150 degrees.

 “Recognition” performs classification by feeding features
to a reasoning forest made of 1280 decision trees, and
evaluates if the accumulated response is greater than a
threshold. In addition, Kalman tracking is carried out on
recognized objects across consecutive frames.

Further details on vision recognition are omitted here due to
the space constraint as well as our decision of completely
moving to CNN-based solutions in future systems.

CRF Fusion

Object-level fusion expects to deliver improved position and
velocity estimations on in-field targets by integrating outputs
from radar and vision (motion and recognition independently).
The major difficulty comes from the fact that sensing results
obtained from radar and camera lie in different spaces: radar
ROIs are defined in 3D physical space while both motion
vectors and object bounding boxes live on 2D image plane. To
accommodate such a practical constraint, we proposed a fusion
framework that tracks sensed objects simultaneously in the 3D
space and on the 2D image plane as illustrated by Figure 5.

Figure 5 Proposed Object-level Fusion Framework

For each object, it is modeled in the 3D space using the
classical six-parameter kinetic model (i.e., 3D position and
velocity) and on the 2D image plane as a bounding box with
2D velocities. The fusion framework makes sure that these two
models corresponding to each individual target match each
other all the time. This is achieved by coupled model updating.
For example, the coming of new radar ROIs (depicted as the
green arrow in Figure 5) triggers updating on object models in
the 3D space; while 2D models of these objects get updated
immediately according to their latest states in the 3D space
based on a geometric mapping table calibrated beforehand.
Similar procedures are carried out upon inputs from the vision
side as illustrated by directional red arrows in Figure 5.
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For model propagation and updating, an uncertainty-driven
mechanism similar to Kalman filter was applied to make a
balanced use of sensing results obtained with diverse qualities.
Furthermore, a carefully designed model aging scheme as well
as time-stamped source data ensure that expired sensing results
or out-of-order messages arriving at the fusion block would not
lead to erroneous model propagation. Despite their importance,
details are omitted here due to space constraint.

3D Velocity Synthesis

A major challenge for the reported system is to recover the
true 3D velocity associated with each target in the field. It is
difficult because each sensor alone only provides partial
information and thus fusion becomes a must. Figure 6 below is
used to model the problem, where P(t) = [X, Y, Z] and V(t) =
[Vx, Vy, Vz] are 3D position and velocity vectors to estimate.

Figure 6 Velocity Synthesis with Camera Radar Fusion

Camera outputs p(t) and v(t) in the form of
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where f is the focal length and [vx, vy] is the flow vector. On the
other hand, basic geometric rule tells that
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where x, y, f, vx, vy are known from camera and Z is estimated
from radar outputs as shown in the right of Figure 6. Finally,
by applying radar sensed velocity with equations below
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V(t) = [Vx, Vy, Vz] can be solved to give 3D velocity estimation.

V. COMPUTATION PROFILE

Figure 7 shows typical loads on different cores of a TDA2x
SoC running the reported fusion system. Please be advised that
code optimization was limited due to time constraints. On the
SoC, IPU1 (ARM Cortex-M4) handles drivers, IPC among
cores, and visualization. Radar algorithms were implemented

on DSP1. TC2 ran at 6 FPS, a low frame rate due to hardware
constraints of the test chip. At this rate, it consumed about 10%
of DSP1 (500 MHz C66). For vision, 30-FPS object detection
used EVE1 (500 MHz) for feature extraction and DSP2 (500
MHz C66) for recognition. 30-FPS optical flow was calculated
by DSP1 (45~50% DSP load); fusion algorithms were also
deployed on DSP1 and consumed about 5% DSP load.

Figure 7 Real-time Loads of Cores on TI TDA SoCs

Figure 8 Long-Term Fusion Goals

VI. LIMITATIONS AND FUTUREWORK

As our first attempt on sensor fusion for ADAS, the reported
design exposed a number of limitations, among which the most
important is the lack of data-driven quantitative evaluation.
We are currently working towards the solving of this problem
by establishing a many-sensor data acquisition system.
Moving forward, we expect more capable fusion algorithms

as well as integrating more sensors of different types. Figure 8
shows potential direction of future work, in which fusion gets
pushed from the object-level on the top (i.e., Stage I) to domain
algorithms with raw data fusion (i.e., Stage II), and finally
throughout the stack (i.e., Stage III) with optimized sensor
operation. An example can be that radar and camera operation
profiles vary dynamically according to real-time needs (e.g.,
see further) and constraints (e.g., low light).
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