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Abstract
In autonomous vehicle systems, sensing the surrounding en-

vironment is important to an intelligent vehicle’s making the right
decision about the action. Understanding the neighboring envi-
ronment from sensing data can enable the vehicle to be aware
of other moving objects nearby (e.g., vehicles or pedestrians)
and therefore avoid collisions. This local situational awareness
mostly depends on extracting information from a variety of sen-
sors (e.g. camera, LIDAR, RADAR) each of which has its own
operating conditions (e.g., lighting, range, power). One of the
open issues in the reconstruction and understanding of the envi-
ronment of autonomous vehicle is how to fuse locally sensed data
to support a specific decision task such as vehicle detection. In
this paper, we study the problem of fusing data from camera and
LIDAR sensors and propose a novel 6D (RGB+XYZ) data repre-
sentation to support visual inference. This work extends previ-
ous Position and Intensity-included Histogram of Oriented Gra-
dient (PIHOG or πHOG) from color space to the proposed 6D
space, which targets at achieving more reliable vehicle detection
than single-sensor approach. Our experimental result have val-
idated the effectiveness of the proposed multi-sensor data fusion
approach - i.e., it achieves the detection accuracy of 73% on the
challenging KITTI dataset.

Introduction
Each year tens of thousands of drivers and passengers lose

their lives in the United States due to car accidents. For many
years, researchers have been trying to develop a fully automated
transportation system for the purpose of reducing on-road fatali-
ties and saving lives. An autonomous vehicle system (AVS) is a
combination of several automated systems where perception, de-
cision making, and operation of the automobile are performed by
electronics and machinery instead of human drivers. This sys-
tem includes the control of vehicle movements, destination, path
planning, awareness of vehicle environment, inter-vehicle com-
munication, emergency awareness and so on. Successful recon-
struction and understanding of the surrounding environment are
important to the awareness and safety of AVS; since most fatal
crashes involve more than one vehicle, detecting vehicles is one of
the most critical issues to the development of AVS. Accordingly,
several sensor technologies have been developed to facilitate the
task of vehicle detection. In this paper, we focus on a multi-sensor
fusion study of improving the performance of vehicle detection by
AVS.

For the purpose of vehicle environment reconstruction, auto-
mated vehicles use a variety of sensing modalities such as radar,

LIDAR, and camera. As the imaging technology has rapidly pro-
gressed in recent years, cameras are widely used in AVS due to
their small size, low price, and wide availability. By contrast,
LIDAR or point cloud data are relatively newer but a valuable
addition to the AVS especially in adversary environments (e.g.,
nighttime or bad weather). The working principle of LIDAR is
to illuminate a target with a pulsed laser light, and then mea-
sure the reflected pulses with the LIDAR sensor (e.g. Velodyne
HDL) that gives the measurement of the distance from the sensor
to the target. Differences in laser return times are used to make
digital 3D-representations of the target, which contains XYZ in-
formation of the points on that target. Analysis of LIDAR data
in AVS has just gained popularity because LIDAR admits com-
putationally more efficient processing and enjoys less vulnerabil-
ity to adversary weather and lighting conditions comparing with
conventional image data. Many researchers have used the data
from these two sensors both separately [1][2][3][4][5][6][10] and
jointly [7][8][9] in different AVS applications. In this work, we
will present an approach of vehicle environment reconstruction
based on the fusion of camera and LIDAR data to support the task
of vehicle detection from multi-sensor data.

Several researchers have been worked on vehicle detection
from image and 3D point cloud data [11]. Kim et al. [12] pro-
posed a Position and Intensity- included Histogram of Oriented
Gradients (PIHOG) based vehicle detection approach from color
images; Erbs et al. [13] analyzed stixel dynamics to detect mov-
ing vehicles from color images. Since achieving scale invariant
has been a challenging issue in vehicle detection from color im-
ages, some researchers have explored the approach of using 3D
point cloud data for resolving this issue. Li et al. [14] used fully
convolutional network to detect vehicle from 3D data; Eum et al.
[15] presented a novel method for vehicle detection from airborne
LIDAR point clouds based on a decision tree algorithm with hor-
izontal and vertical features of the segment. Still, depending on
point cloud only (without any color information) is challenging
mainly due to the limited resolution and noise interference with
point cloud data. In the open literature, the idea of jointly using
information from both camera and LIDAR data for detecting ve-
hicle has been scarce (with the exception of [9]). In this paper,
we propose to create a novel 6D feature representation of vehicle
environment from LIDAR data and RGB image and demonstrate
its capability for enhancing the performance of vehicle detection.
More specifically, a PIHOG based approach has been applied to
the constrcuted 6D map and a support vector machine (SVM) [18]
is used to train the extracted PIHOG features for detecting vehi-
cles on the road. Data sets from the KITTI database [16] have
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been used in our experiments and encouraging preliminary results
are presented in experimental results section.

Proposed Method
The proposed method of vehicle detection can be described

in two steps: 1) Reconstruction of the vehicle environment us-
ing LIDAR point cloud data and RGB images from camera; 2)
Exploit a PIHOG based approach to detect vehicle from the re-
constructed environment.

Analysis of Multi-Sensor Data
Different local sensors (e.g. camera, RADAR, LIDAR etc.)

mounted on autonomous vehicles, gather information that can be
helpful to understand the surrounding environment of the vehicle.
In our proposed method, data from camera and LIDAR are used
to reconstruct this so-called vehicle environment. Color images
of the roads and other objects are captured using vehicle cam-
era; LIDAR sensor continuously collects a collection of point
cloud data surrounding (360 degree) the host vehicle. Each of
these point cloud data carries partial information about the en-
vironment. Hence, it is desirable to develop a method that can
collectively combine multiple point clouds into a whole set. An
EM-ICP based multiple point cloud mosaicing technique has been
proposed in [10] where a map of the environment is generated
from point cloud data containing only the XYZ positions of an
object (refer to Figure 1). To obtain a more comprehensive en-
vironment representation, we need the color(RGB) image of that
object (refer to Figure 2). Therefore, a technique capable of com-
bining point cloud data with color images can provide a better
representation of the neighboring environment of the host vehicle.
In this work, we propose to fuse the data from these two sensors
to generate a six-dimensional representation of the environment
that can provide both the XYZ position and RGB color values of
any point on the object of interest.

Figure 1: 3D point cloud representation of a scenario

Figure 2: RGB image of the scenario shown in Figure 1

Fusion of Multi-sensor Data
How to fuse the LIDAR data and color image automatically?

The key challenge lies in the registration or calibration of these

two types of data (acquired by two sensors with varying physical
locations). This problem has been studied in the literature (e.g.,
[19] where a planar surface of various poses is required). For
KITTI data used in our experiment, we have adopted the calibra-
tion procedure as described in [16]. A 3D point x in the velodyne
coordinates can be projected to a point y in the imaging plane of
the ith camera using the following equation

y = Pi
rectR

i
rectT

cam
velo x;Pi

rect ∈ R3×4,Ri
rect ∈ R3×3 (1)

where, Ri
rect and Pi

rect are the rectifying rotation matrix of the
ith camera and projection matrix after rectification respectively.
Here, i ∈ {0,1,2,3} is the camera index: 0 is for left grayscale,
1 for the right grayscale, 2 the left color, and 3 the right color.
Note that only the left color image i = 2 has been used in our ex-
periment. T cam

velo is the velodyne to camera transformation matrix
which is calculated using the following equation

T cam
velo =

[
Ri

rect tcam
velo

0 1

]
(2)

• Rcam
velo ∈ R3×3 is the rotation matrix: velodyne⇒ camera

• tcam
velo ∈ R1×3 is the translation vector: velodyne⇒ camera

These two matrices are provided with the KITTI dataset. Us-
ing the transformation matrix in Eq. (2), velodyne coordinates are
calibrated with the reference camera. In this dataset, images have
been captured only in the forward direction. So, only LIDAR data
points with positive x values are projected to the RGB color im-
age. The fusion of the data from these two sensors (velodyne and
camera) gives us a more detailed representation of the vehicle en-
vironment that can better support visual reasoning tasks at higher
levels (e.g., detection and recognition). Figure 3 shows the result
of fusing the point cloud shown in Figure 1 with the RGB image
of the same scenario shown in Figure 2.

Figure 3: 6D model of the scenario shown in Figure 1

Vehicle Detection using PIHOG
The fusion of 3D point cloud data and RGB color image pro-

vides a six-dimensional map of the vehicle environment that is
more versatile than individual representation. This 6D map can be
utilized to support high-level visual inference (e.g., to understand
the environment). As a part of understanding, the autonomous
vehicle needs to detect both moving (e.g. other vehicles, motor-
cycles and pedestrians) and still (e.g. lane markers, traffic lights
and signs etc.) objects on the road. In this work, we opt to fo-
cus on the detection of moving vehicles from the reconstructed
map of the environment. For extracting features, position and
intensity-included histogram of oriented gradient (PIHOG) [12]
technique has been used, which is an extended version of regular
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HOG [17] (a popular technique widely used in pedestrian detec-
tion algorithms). Because of the large and flat shape of the vehi-
cle, some limitations of regular HOG feature desriptor may gen-
erate erroneous results. Two major drawbacks are summarized in
[12] as follows

1. HOG is basically a histogram-based feature descriptor; no
information about the location of the gradients is stored.
Consequently, two completely different cells may have the
same histogram as shown in Figure 4. Here, both cells have
16 pixels, and the gradient vector of each pixel has been il-
lustrated using the red arrow. For simplicity, all gradients
are assumed to have same magnitudes. Although, the two
cells have different gradients, they have the same histogram
of oriented gradients because both cells have the same num-
ber of 45◦ and 135◦ components.

2. Only edge information of an image is included in typi-
cal HOG features; intensity information is not preserved
in HOG. Only edge-based features may not be sufficient
enough to detect a vehicle.

Based on the above observations, one can observe that there
remains opportunity for further improving the performance of
HOG in vehicle detection technique by including image intensity
and location of the gradients. Along this line of reasoning, Posi-
tion and Intensity - included HOG (PIHOG or πHOG) has been
introduced in [12] to detect vehicles in color/RGB images. In this
paper, PIHOG has been exploited for vehicle detection from the
6D representation (XYZ+RGB) of the vehicle environment.

Figure 4: Two different cells with same histogram of gradients
[12]

To facilitate the visual illustration of PIHOG’s advantage,
we project an example of the 6D map onto a 2D image. In this
experiment, only the front view of the map has been used. This
view can be generated by mapping the YZ plane to a 2D image,
and using the RGB values from the 6D map (refer to Figure 5). It
can be seen that the vehicles of interest are well distinguishable
in this figure, which supports the goal of detecting the vehicles
from this image (e.g., via SVM or deep learning techniques). The
main advantage of this fused data over RGB image is to resolve
the issue of scale invariance. In a regular RGB image, all the
objects face the scaling effect - i.e. objects closer to the camera
appear in larger shape; while the appearance of an object gets
smaller as the camera distance increases. By contrast, as the 6D
map gets the height information from the z-values of the point

cloud, objects from different distances appear to have the same
heights in the projected images. In a nutshell, PIHOG is able to
overcome the drawbacks of HOG-based approaches by including
position and intensity features and achieving the desirable scale
invariance. These two extra features will be elaborated in the next
two subsections.

Figure 5: 2D front view of the 6D map shown in Figure 3

Position Features
Figure 4 illustrates that two cells with different gradient vec-

tors can have same histogram (i.e. same HOG features). To make
the features more distinguishable, the positions of oriented gra-
dients are taken into consideration. Let θ(x,y,c) be the orien-
tation of the gradient at (x,y) location of the c cell (given that
0 ≤ θ ≤ 2π). The orientations of the gradients are quantized in
T bins and the expression of the orientation bin B(x,y,c) is given
by,

B(x,y,c) =
⌈T θ(x,y,c)

2π

⌉
,0≤ θ ≤ 2π,B(x,y,c) ∈ {1, ...,T} (3)

Then the means of x and y positions of the dth bin has been cal-
culated using the following expressions,

Mc
x,d =

∑
cx
x=1 ∑

cy
y=1 x∏[B(x,y,c) = d]

∑
cx
x=1 ∑

cy
y=1 ∏[B(x,y,c) = d]

(4)

and

Mc
y,d =

∑
cx
x=1 ∑

cy
y=1 y∏[B(x,y,c) = d]

∑
cx
x=1 ∑

cy
y=1 ∏[B(x,y,c) = d]

(5)

where, width and height of the cth cell are represented as cx
and cy respectively, ∏(.) is an indicator function that returns 1
if the argument is true, otherwise returns 0. Using equations 4
and 5, we have obtained two new features Pc = [Mc

x ,M
c
y ] (where,

Mc
x = [Mc

x,1, · · · ,M
c
x,T ] and Mc

y = [Mc
y,1, · · · ,M

c
y,T ]) that include the

position information of the gradients.

Intensity Features
To include the intensity information, intensity invariant re-

gion (IIR) based features have been extracted using all the posi-
tive (vehicle) images. Suppose, V = {s1,s2, · · · ,snv} is the set of
all positive vehicle images and si = [si,1,si,2, · · · ,si,N ]

T is the ith

positive image; where, si, j is the intensity of the jth pixel in the
ith image. N is the total number pixels in each image, and nv is
the size of the set of positive images. In this experiment, all the
sample images (both positive and negative) are resized to 48×48
images (N = 2304). As a first step of determining the IIR across
the positive vehicle images, following equations are used to cal-
culate the mean and standard deviation of the images,

M =
1

Nv

Nv

∑
i=1

si = [m1,m2, · · · ,mN ]
T (6)
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σ =

√√√√ 1
Nv

Nv

∑
i=1

(si−M)◦ (si−M) = [σ1,σ2, · · · ,σN ]
T (7)

where, ◦ denotes the component-wise multiplication. Figure 6
shows the mean image (a), and the standard deviation image (b)
of the positive vehicle images.
The main idea of IIR is that, the regions where all the positive ve-
hicle images have similar intensity values should have low stan-
dard deviations. That means, the intensity values in these regions
are common for the vehicles regardless of their colors (these re-
gions are defined as IIR) and can be used to distinguish between
the vehicles and other objects on the roads. For the purpose of fea-
ture extraction, values of the standard deviation image are divided
into K number of intervals. If the range of the values of k− th
mask Uk is given by [εk,εk+1], then the mask can be described by
following equation,

Uk = { j|εk ≤ σ j ≤ εk+1, j = 1,2, · · · ,N} (8)

In the proposed method, 20 intervals (i.e. K = 20) have been
used. As, low standard deviation values indicate the region of
similar intensities for all the vehicles, only first five masks (n = 5)
have been considered for feature matrix generation. Now, for a
test image s, standard normal deviate image is computed as,

z = (
1
σ
)◦ (s−M) (9)

Applying the first n IIR masks (U1,U2, · · · ,Un;n = 5) on z, the
features correspond to the IIR masks can be computed by,

hk =
1
|Uk| ∑

j∈Uk

z j (10)

(a) (b)
Figure 6: (a) Mean, and (b) standard deviation of all positive ve-
hicle images

PIHOG Feature Formation and Vehicle Detection
Except the position and intensity features, PIHOG feature

extraction follows the same procedure of the conventional HOG
[17]. A sliding window (40× 40 in this experiment) is used to
divide the sample image into image blocks and all the blocks are
reshaped to size 48x48. Each block is decomposed into C num-
ber of cells (C = 4), and HOG features are extracted from each
cell. The gradients in a cell are assigned to T bins (T = 9), i.e.
dimension of extracted HOG features from each window is CT .
The position feature (Pc) size for each cell is a 2T dimensional
vector (T values in both x and y directions). Hence, a window

with C cells has position features of 2CT dimensions. The inten-
sity features extracted from a window consists of n dimensional
IIR feature vector hk (where, k = 1,2, · · · ,n). So, the total length
of the feature matrix is 3CT +n. After combining all the features,
complete feature matrix of PIHOG extracted from a window is
defined as,

FPIHOG = [FHOG,P1,P2, · · · ,Pc,h1, · · · ,hn] (11)

where, FHOG represents the conventional HOG features,
[P1,P2, · · · ,Pc] are the position features, and [h1,h2, · · · ,hn] are in-
tensity features. In this experiment, PIHOG features are extracted
from both positive (vehicle) and negative (background, i.e. road
surface, trees, buildings etc.) samples. In the training stage, a
linear support vector machine (SVM) has been trained using the
PIHOG feature extracted from the positive and negative samples.
This trained model is later used to detect vehicles from a 2D front
view image of the reconstructed environment.

Experimental Results
In our experiment, we first fuse the camera and LIDAR data

to create a 6D representation to support the task of vehicle detec-
tion. Then we extract position and intensity-included HOG (PI-
HOG) features from the 2D projection (front view) of 6D repre-
sentation (XYZ+RGB) of the vehicle environment. The extracted
features are then used to train a SVM with linear kernel and the
trained model is exploited to detect vehicles from the surround-
ing environment. The main advantage of this approach over using
regular RGB image (from camera) is that it can resolve the scal-
ing problem of moving objects in continuous video frames. As
mentioned before, our approach preserves the actual Z-values of
the points; therefore objects will appear of the same heights (inde-
pendent of the distances from the sensor) in the projected images.
This experiment has been conducted in five different scenarios
(raw data - city and road environments) from the KITTI dataset
[16]. For the training purpose, we have used 48× 48 images of
vehicles (positive) and background (negative) objects manually
cropped from the 2D projection (front view) of 6D environment
maps. A total of 215 images (102 positive, 113 negative) have
been used in training phase. PIHOG has been applied to these
positive and negative images for extracting features and a linear
support vector machine (SVM) has been trained using these fea-
tures. For testing purpose, a total of 125 frames are taken from
the five scenarios (25 frames from each scenario). The size of
the sliding window is 40× 40 (with 50% overlapping), and each
window is reshaped to the size of 48× 48 before extracting PI-
HOG features. Some results of this experiment have been illus-
trated in Figure 7. Detected vehicles are highlighted in red boxes.
The complete experimental results on test data are shown in Ta-
ble 1, where both overall and frame-wise vehicle detection results
are recorded. Ground truths have been set by manually label-
ing the actual location of the vehicles. The number of successful
and wrong detection has been recorded for each frame. Detection
accuracy is shown in percentage, and the wrong detection is ex-
pressed in objects per frame. Here, we can see that the overall
accuracy is around 73%. Although it can be considered as pretty
good, there is still room for further improvement. For instance,
we have only used the front view of the map in this experiment,
which can miss some vehicle because of occlusion. It is possible
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to generate projected image of the 6D map from other perspec-
tives, which can resolve the occlusion and further improve the
detection accuracy.

(a)

(b)

(c)

(d)
Figure 7: Results of PIHOG-SVM based vehicle detection

Table 1: Overall and frame-wise vehicle detection accuracy

Sequence No. of
Frames

No. of
Vehicles
(GT)

Accuracy
(%)

Wrongly
Detected
(objects/
frame)

1 25 109 66.06 0.04
2 25 26 76.92 0.04
3 25 30 83.33 0
4 25 26 80.77 0.8
5 25 60 76.67 0.4
Total 125 251 73.31 0.256

Conclusion
In this paper, a fusion technique has been proposed to detect

vehicles to support autonomous vehicle applications. The pro-
posed technique uses both camera image and LIDAR point cloud
data to reconstruct a six dimensional map of the surrounding envi-
ronment. A modified version of HOG (PIHOG) has been applied
to this reconstructed map to extract scale-invariant features and
train a linear SVM. This trained SVM model has been exploited
to detect vehicles from the neighboring environment and achieved
promising preliminary results.
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