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Abstract 
Automated Driving requires fusing information from 

multitude of sensors such as cameras, radars, lidars mounted 

around car to handle various driving scenarios e.g. highway, 

parking, urban driving and traffic jam.  Fusion also enables better 

functional safety by handling challenging scenarios such as 

weather conditions, time of day, occlusion etc. The paper gives an 

overview of the popular fusion techniques namely Kalman filters 

and its variation e.g. Extended Kalman filters and Unscented 

Kalman filters.  The paper proposes choice of fusing techniques for 

given sensor configuration and its model parameters.  The second 

part of paper focuses on efficient solution for series production 

using embedded platform using Texas Instrument’s TDAx 

Automotive SoC. The performance is benchmarked separately for 

“predict” and “update” phases on for different sensor modalities. 

For typical L3/L4 automated driving consisting of multiple 

cameras, radars and lidars, fusion can supported in real time by 

single DSP using proposed techniques enabling cost optimized 

solution. 

Introduction  
In order to let a car run autonomously, first it has to sense the 

external environment/surroundings; process the data and act by 

making meaningful decisions. In this sense, process and act chain, 

the sensing part of the external environment is taken care by 

sensors like camera, radar, LIDAR and referred as surround 

sensors in rest of the paper. Apart from surround sensors, other 

sensors like vehicle odometry sensors and actuators are also 

important to feed the information to decision-making block. For 

example, the steering wheel angle and wheel speed is important 

data for a car to make the right decision along with surrounding 

information. So broadly we would divide sensors in be below three 

categories,  

 

 Surround sensors: These are mounted on the external/internal 

surface of the car and useful to provide surrounding 

information. Example: Camera, radar, Lidar, ultrasonic, 

infrared camera, IMU, GPS and digital map etc. 

 Vehicle odometry sensors: These sensors capture the 

information about vehicle motion. Example: wheel speed, 

acceleration, yaw rate, steering wheel angle etc. 

 Actuators: These are the sensors which translate the 

human/machine actions. Example: Break Torque, Engine 

Torque, restraint actuators, wheel spring etc.  

 

Car makers have been using different sensors mainly lidar, 

radar, camera and ultrasonic for safety features like ACC 

(Automatic Cruise Control), LKA (Lane Keep Assist), blind spot 

detections, forward collision warning, and very recently for active 

safety features like AEB (Auto-Emergency Brake) as well. In 

recent past, industry has seen the usage of more sensor/information 

like satellite information, vehicle and infrastructure (V2V and 

V2x) and Lidar to improve the robustness of these safety features. 

There is significant overlap of the information provided by these 

sensors. At the same time, their degree of reliability varies. For 

example, radar and camera both can identify the distance of an 

object but the reliability of information from a radar sensor is 

higher as compared to a camera. Autonomous driving systems 

need to provide the highest degree of reliability and would require 

a good overlap of information from different sensors to make a 

confident decision using fusion process as shown in Figure 1. 

 

 
 
Figure 1. Basics of fusion process 

The first urban autonomous vehicle demonstration in DARPA 

2007 had 18 sensors (9 Lidar, 5 Radar, 2 vision and 2 GPS/IMU) 

having redundant information for vehicle path planning. With 

redundant information measurement precision can be enhanced 

and in addition, the fault tolerance of the overall system increases, 

as the failure of one sensor does not necessarily result in the failure 

of the system as a whole [1][6]. Figure 2, provides a pictorial view 

of how multiple sensors can help to cover different fields of view 

and basic functions for autonomous driving [2]. 

 
 
Figure 2. Surround sensors coverage area and applications 
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Texas Instruments (TI) TDA3 platform is designed to cater to 

multiple computer vision markets [4][5]. The TDA3x SoC is a 

heterogeneous and scalable architecture that includes dual core of 

ARM® Cortex®-M4, dual core of C66x DSPs and single core of 

Embedded Vision Engine (EVE) for vector processing as shown in 

Figure 3. It integrates hardware for camera capture, Image Signal 

Processor (ISP) and Display Sub System (DSS) resulting in better 

image quality at lower power. It also contains large on-chip RAM, 

rich set of input/output (I/O) peripherals for connectivity, and 

safety mechanism for automotive market resulting in lower system 

cost. 

 

 
 
Figure 3. Block Diagram of TDA3x SoC 

Fusion System 
The fusion system are classified in 3 categories as shown in  

Figure 4 namely high level fusion, mid-level fusion and low level 

fusion. 

 

 
 
Figure 4. Classification of fusion systems 

 The High level fusion system typically fuses object level data 

(e.g. type, distance, velocity etc.) across modalities (e.g. radar, 

camera and radar) to give more realizable picture above object 

level data.  The low level fusion happens across raw data across 

sensors e.g. merging point cloud across radar & lidar, finding 

depth using stereo cameras, viewing 3600 around cars using 

surround view cameras etc.  The mid- level fusion is merging 

features across sensors (e.g. features from camera and radar is used 

to gather to detect object).  The paper is going to focus mainly on 

high level fusion systems. 

 

High level fusion techniques 
In high level sensor fusion data from each sensor is 

independently processed to detect objects at the node, followed by 

object tracking using Kalman filters. Several techniques are 

available to detect objects using camera, lidar and radar data. It is 

assumed that object detection is already applied on each sensor 

data and best estimates on object position and velocity is readily 

available for sensor fusion. Kalman filters are a popular choice for 

performing high level sensor fusion because of its robustness to 

noise [10]. A state is defined which models object motion in terms 

of 2D or 3D position and 2D velocity. The state of each object 

being tracked is predicted and updated when data from different 

sensors arrive at different time instant. Basic flow of high level 

fusion is shown in Figure 5.  

 

 
 
Figure 5. High level object data from camera, lidar and radar is fused using 
Kalman filter predict and update stages at different time instant k.  

Kalman Filters 
 Kalman filters belong to the family of Bayesian filters which 

comprise of two steps, predict and update [3]. The state vector 

models the object parameters such as 2D position information px, 

py and 2D velocity information vx, vy depending on the choice of 

object model such as constant velocity, acceleration, turn rate etc. 

Given a prior object state x at time k we can predict the state x’ at 

time k+1 using state transition function F as shown in Eq. (1). 

While the state represents the mean position estimate, object 

covariance P Eq. (2) represents the uncertainty. Kalman filters also 

model noise such as state transition noise u, process noise 

covariance Q, measurement noise covariance R all of which 

affects the state and process covariance. When a measurement 

arrives from a sensor, the measurement function H maps the state 

to the actual measurement value of the sensor (3). By computing 

the difference in actual measured value z and predicted state, the 

Kalman gain K Eq. (5) is computed which is used to refine the 

state Eq. (6) and process covariance Eq. (7) once again. This cycle 

repeats till the Kalman filter is able to track the object precisely 

with less uncertainty [7].  

 

Kalman Filter Predict Equations 

uFxx '  
(1) 

QFPFP  ''
 

(2) 

 

Kalman Filter Update Equations 

'Hxzy   (3) 
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While the prediction step remains largely the same, the update 

step varies depending on the type of sensor, camera, lidar or radar. 

Camera and lidar provides data in Cartesian coordinate system so 

the measurement function H a linear function as shown in Figure 

6. But radar provides data in polar coordinate system which makes 

H a non-linear function. 
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Figure 6. Measurement function h(x) for lidar 

Extended Kalman Filter 
 

The standard Kalman filter equations are derived assuming a 

Gaussian distribution of data affected by white noise. The 

measurement function H for radar data as shown in Figure 7 

converts the state in Cartesian coordinates px, py, vx, vy to polar 

coordinates ’ where  is range, is bearing and ’ is radial 

velocity.  
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Figure 7. Measurement function h(x) for converting state in Cartesian format 
to measurement in polar format for radar data 

When the measurement function H is non-linear, the resulting 

distribution is not Gaussian, so the Kalman Filter equations do not 

hold. The EKF approach tries to address this problem by doing a 

linear approximation of the non-linear function [8]. The 

approximation is derived by taking first-order approximation of 

Taylor series expansion as shown in Figure 8 where Hj is (3x4) 

Jacobian matrix. The measurement function H is replaced by the 

Jacobian Hj in the update equation. Remaining equations are the 

same as standard Kalman filter.  

  
Figure 8. Jacobian of measurement function H for radar data and constant 
velocity model 

Extended Kalman filters are mostly used in automatic cruise 

control applications with safe distance keeping where linearizing a 

non-linear function is acceptable.  Common models used in such 

applications are constant velocity or constant acceleration models 

which help define the state of the object being tracked. 

For urban scenarios where vehicles turn at intersections or 

cases where a car driving on a highway turns to take an exit, the 

constant velocity model will overshoot the actual measurements. 

This is because while turning the vehicle will slow down and the 

velocity will reduce. The Constant-Turn-Rate-Velocity or CTRV 

model is a better fit to such scenarios. 

 

Unscented Kalman Filter 
Unscented Kalman Filter uses a technique known as sigma 

points to model non-linearity [9]. As shown in Figure 9, Sigma 

points are a set of N points chosen around mean and within the 

covariance ellipse of the object state. These points are passed 

through the state transition function F and from the resulting 

response a new mean and covariance is computed, this completes 

the prediction step. The same sigma points are reused and passed 

through the measurement function H with results in a new mean 

and covariance, which completes the update step.  

 

 
Figure 9. Using sigma points, predict the state at k+1 by passing through the 
non-linear state transition function f(x) followed by measurement function h(x) 

to successfully convert from px, py to  

Optimizing on DSP 
 

The TDA3x SoC contains dual core of C66x DSP [4][5] 

clocked up-to 750 MHz for each core. The C66x DSP shown in 

Figure 10 is a floating point VLIW architecture with 8 functional 

units (two multipliers and six arithmetic units) that operate in 

parallel as shown in Figure 9. It comprises of 64 general purpose 

32-bit registers shared by all eight functional units. There are four 

arithmetic units .L1/.L2, .S1/.S2, two multiplier units for .M1/.M2 

and two data load-store units .D1/.D2. Each C66x DSP core has 

32KB of L1 data cache, 32KB of L1 instruction cache and 288KB 

of unified L2 data/instruction memory. 
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Figure 10. TI’s C66x DSP Architecture showing functional units, data path 
and memory 

With dual 64-bit data path TI’s C66x DSP can work on 4 

single precision values in parallel. The .M1/.M2 multiplier units 

can multiply 8 single precision values which accelerate the matrix 

multiply operations of Kalman filter. Special instructions such as 

reciprocal 1/x (RCPSP) and reciprocal of square root 1/x 

(RSQRSP) speed up the division and finding square root 

operations. Optionally precision can be refined using Newton-

Raphson techniques. As an example configuration, tracking of 

single-object with radar, lidar and camera data is as shown in Table 

1. The common prediction step and radar update step is done using 

UKF approach whereas lidar and camera update steps can be done 

using standard KF or EKF method. The state x is defined to be a 

4x1 vector which 2D position px, py and 2D velocity vx, vy.  

Table 1: Example configuration of radar, lidar and camera 

Stages  Sensor Method 

Predict NA UKF 

Update Radar UKF 

Update Lidar KF/EKF 

Update Camera KF/EKF 

 

The prediction stage of UKF involves steps as shown in Table 

2. Sigma point generation involves compute intensive steps of 

finding square root of covariance matrix which can be done using 

Cholesky decomposition. The generated sigma points is augmented 

from N to 2N + 1 points before passing through the state transition 

function in the prediction of sigma points stage. Passing points 

through non-linear function involves table-lookup operations, 

division and few arithmetic operations. Using the new sigma points 

a new state x and covariance P is computed which involves single 

precision multiplies and arithmetic operations.  

Table 2: Example configuration of radar, lidar and camera 

Steps Description 

Step 1 Generate sigma points 

Step 2 Predict sigma points 

Step 3 Predict mean and covariance 

 

 When a radar sample arrives, the UKF update stage is 

triggered which comprises of steps as shown in Table 3. The first 

stage involves incorporating the noisy measurement to the 

predicted state by passing through the measurement function H. It 

involves finding square-root, division, table-lookup and arithmetic 

operations. This is followed by update step where cross correlation 

function Tc is computed which is required for finding Kalman gain 

K, this involves mostly arithmetic operations and matrix multiply 

operations. Using Kalman gain, the state and covariance matrix is 

updated to new values. Steps are similar to prediction stage which 

involves arithmetic operations and matrix multiply operations.  

Table 3: Update step for radar, UKF method 

Steps Description 

Step 1 Predict state using measurement 

Step 2 Compute measurement covariance – S 

Step 3 Compute cross correlation matrix – Tc 

Step 4 Compute Kalman gain – K 

Step 5 Compute mean and process covariance (x, P) 

 

 When a lidar or camera measurement arrive the update step 

using standard KF or EKF is triggered. Operations mostly involve 

matrix multiply operation and arithmetic operations and 2x2 matrix 

inverse operation to find Kalman gain as shown in Table 4. 

Table 4: Update step for lidar and camera, standard KF method 

Steps Description 

Step 1 Predict state using measurement 

Step 2 Compute measurement covariance – S 

Step 3 Compute Kalman gain – K 

Step 4 Compute mean and process covariance (x, P) 

 

Tracking multiple objects involves maintaining separate state 

for each object. This also means separate predict and update stages. 

This poses a challenge of associating measurements for one object 

with another. Common practice is to apply Normalized Cross 

Correlation (NCC) on object features. Object feature could be 

anything which uniquely identifies and object. NCC mostly 

involves fixed point multiplication and computing the reciprocal of 

square-root for normalization.  

Results 
Core kernel benchmarks for standard KF, EKF and UKF for 

predict and update stages is provided in Table 5. C66x DSP cycles 

taken for the example configuration are shown in the Table 6. 

Assuming radar samples arrive at 60 fps, camera or lidar samples 

at 30fps and the maximum number of objects as 64 the total cycles 

taken on 750Mhz C66x DSP on TDA3x is as shown in Table 7. It 

shows that with a 35% load of a single DSP, the fusion processing 

can be completed. 

Table 5: Core kernel DSP cycles for KF, EKF and UKF 

CAMERA/LIDAR 

 KF EKF UKF 

Predict 3,620 3,620 NA 

Update 7,600 3,000 NA 

RADAR 

 KF EKF UKF 

Datapath A Datapath B

R
egister File

.L1

.S1

.M1

.D1

Program Memory Controller (PMC)

Data Memory Controller (DMC)

32KB Level 1 Program memory (L1P)

32KB Level 1 Data memory (L1D)

R
egister File

.L2

.S2

.M2

.D2
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Predict NA 3,620 20,490 

Update NA 12,300 10,650 

Table 6: Example configuration DSP cycles for tracking 1 object 

Stages Sensor Method DSP Cycles 

Predict NA UKF 20,490 

Update Radar UKF 10,650 

Update Lidar KF/EKF 3,000 

Update Camera KF/EKF 3,000 

Total 37,140 

Table 7: Performance on 750Mhz C66x DSP 

Total Kalman Filter (KF, EKF, UKF) cycles 131,097,600 

Object association cycles 88,875,600 

Control code overhead – 20% 43,991,040 

Total DSP cycles for 30fps 263, 946, 240 

Conclusion 
The paper gives overview of sensor fusion in context of 

automated driving and explains fusion techniques namely Kalman 

filters and its variation e.g. Extended Kalman filters and Unscented 

Kalman filters.  The paper proposes choice of fusing techniques for 

given sensor configuration and its model parameters.  The paper 

also devolves on optimized solution on DSP for series production 

using embedded platform using TI’s TDA series of ADAS 

processors. The proposed solution enables fusion of multiple 

cameras, radars and lidar in a single DSP for cost-effective 

solution. 
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