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Abstract 
Autonomous driving is an active area of research in the 

automotive market. The development of automated functions such 

as highway driving, autonomous parking etc. requires a robust 

platform for development and safety qualification of the system. In 

this context, virtual simulation platforms are key enablers for 

development of algorithms, software and hardware components. In 

this paper, we discuss multiple virtual simulation platforms such 

as open source car simulators, commercial automotive vendors 

and gaming platforms that are available in the market. We discuss 

the key factors that make the virtual platform suitable for 

automated driving function development. Based on the analysis of 

various simulation platforms, we end the paper with a proposal of 

two stage approach for the automated driving functionality 

development. 

Introduction 
Virtual simulation platforms have been used for many years 

in the driver assistance market. Various functionalities such as auto 

emergency braking, cruise control etc. are typically tested using 

the virtual simulation platforms. With the race to deploy fully 

autonomous cars, virtual simulation platforms are gaining 

popularity now, more than ever. Most car manufacturers have 

disclosed the usage of virtual platforms for modelling the 

environment and testing their systems. Their systems are made 

more robust by varying the simulation dynamics such as weather, 

lighting, object behavior etc. 

The block diagram for autonomous driving is as shown in 

Figure 1. On the left of the block diagram, there are various sensor 

modalities such as cameras, RADAR, LIDAR which are input to 

the system. On the right side of the block diagram, we have the 

actuator signals such as steering, throttle and brake which are the 

output of the system.  

The autonomous driving system consists of three main blocks: 

Sense, Plan and Act [12][13]. Sense block pertains to the 

perception of the environment around the ego-vehicle. The sense 

block also uses inputs such as GPS, maps and Inertial Navigation 

Systems (INS) which allow for precise localization of the ego-

vehicle. The sense block provides an environment model around 

the ego-vehicle. Plan block pertains to the navigation planning of 

the ego-vehicle. It involves finding a suitable path which is safe, 

secure and in the direction of the destination. Act block generates 

the necessary actuator signals needed to navigate the ego-vehicle 

as desired by the planning block. The sense block is also referred 

to as perception task. The plan and act blocks are referred to as the 

navigation task. The perception and navigation tasks are inter-

related. Based on the navigation commands, the perception of the 

world changes and based on the perception of the world, 

navigation commands are issued. Hence, it is important to test both 

these tasks together which can be achieved using virtual simulation 

platform, with no safety liability. 

Virtual simulation platforms have several advantages 

compared to real world data. Few of them are as listed below: 

 Data generation: Virtual simulation platform allows us to 

obtain huge amount of data along with the ground truth/ 

labelled semantics. With the advent of machine learning/deep 

learning based algorithms for tasks such as object detection, 
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semantic segmentation etc., input data with ground truth label 

is critical for training the networks [1] [2]. 

 Scenario creation: Virtual simulation platform provides 

flexibility to generate specific scenarios and corner cases, 

which would otherwise take decades to obtain in real world. 

These corner cases are more interesting for algorithm 

development and testing. The virtual simulation also allows 

obtaining variety of data across different weather conditions, 

lighting conditions, and road conditions etc., which are 

critical for automotive safety validation of systems. 

 Time to prototype: Virtual simulation platform allows quick 

prototyping from concept to product. In a real world, one has 

to first mount the sensors at the appropriate locations on the 

car, calibrate these sensors, tap into the drive-by-wire to 

obtain the actuator signals from the car and decode the CAN 

messages, which is a very laborious and iterative activity. 

Also, once real car is involved, appropriate license needs to be 

obtained from the governing bodies. 

 Inexpensive compared to real car: Virtual simulation 

platform is inexpensive compared to a real car which has 

various sensors mounted on it, and the infrastructure to tap 

into the relevant data from the car. 

 Reinforcement Learning based policy learning: 

Reinforcement learning based driving policy is becoming an 

important step of autonomous driving. In the past, state 

machine based approach was used to derive the driving policy 

that the car has to follow. However, with the growing traffic 

complexity, reinforcement learning based mechanisms are 

being pursued for learning a suitable driving policy in 

complex traffic. Virtual simulators are a great platform for 

reinforcement learning based algorithms with no safety 

liability [3] [4] [5] [6] [7]. 

 

However, virtual platforms can only help in achieving certain 

level accuracy, which can never be 100%. In order to obtain 100%, 

real world data is necessary, unless the simulation data is very 

close to real data in itself. 

In this paper, we discuss the key factors that make virtual 

platforms suitable for automated driving development. We also 

provide analysis on some available virtual platforms. Based on this 

study, we propose a two stage approach for the automated driving 

functionality development. 

The rest of the paper is organized as follows: Section Virtual 

Simulation Environment provides the key care-about of simulation 

platforms and analysis, Section Proposed Solution provides insight 

into our two stage approach of validating automated driving 

functionality and Section Conclusion provides conclusion. 

Virtual Simulation Environment 
Virtual Simulation platforms have been used by car 

manufacturers for decades now. Car manufacturers use virtual 

simulation to run simulations of their algorithms such as Auto 

Emergency Braking (AEB), Automatic Cruise Control (ACC) etc. 

and compute estimated time to collision and tune their algorithms 

accordingly, to make it robust, efficient and safe. 

Figure 2 shows the various blocks involved in the virtual 

simulation platform for testing autonomous vehicles. Virtual 

simulation involves modelling of various components that make 

the platform as realistic as possible. The various blocks involved in 

modelling virtual platform are as follows: 

 World: Modelling the world involves modelling various 

stationary components of the world such as trees, buildings, 

traffic lights, traffic signs, detailed road layout such as 

intersections, lane markings etc., rules specific to various 

countries such as left/right hand drive etc., weather conditions 

and lighting conditions and how the environment would 

change based on it. 

 Sensors: Various sensors such as camera, LIDAR, RADAR, 

INS, GPS, ultrasound etc. that are fitted on the ego-vehicle 

should be modelled. These sensors should be as close to the 

real sensors that are available in the market as possible. The 

sensors play a critical role in the perception block as 

Figure 2: Block Diagram of Virtual Simulation Environment 
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discussed earlier. 

 Car: Modelling the vehicles in the scene including the ego- 

vehicle is a crucial factor in analyzing a particular scenario. 

This involves modelling the vehicle dynamics such velocity, 

acceleration, trajectory, tire pressure, aeroynamics etc. 

 Humans: Humans are an integral part of the simulation 

environment. The ultimate goal behind autonomous driving is 

to save human lives and make their commute productive. 

Modelling humans involves modelling pedestrians and 

animals crossing the street etc. 

 V2X/V2I: Vehicle to vehicle infrastructure connectivity can 

simplify the problems for autonomous cars. For example, if 

the vehicle is connected to traffic light/traffic signs, then 

detecting them may not be very critical as the vehicle would 

be informed of their position and state well in advance. 

There are various virtual simulation platforms available as shown 

in Figure 2. 

Figure 3: Default Usage of Virtual Simulation Platform 

Figure 4: Algorithm Usage Model in Virtual Simulation Platform 
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 Gaming Platforms: Gaming platforms have grown in 

popularity due to recent advancements in reinforcement 

learning based autonomous driving algorithms [4] [5] [6] [7]. 

The Open Racing Car Simulator (TORCS) is an open source 

platform which is very popular in the research community and 

has been widely used for developing and testing machine 

learning and reinforcement learning based algorithms [3] [6] 

[7]. Although the graphics of the game is not very realistic, it 

has been used to train networks as it provides abundant data 

for training. Grand Theft Auto – V (GTA-V) is another 

popular platform used in the research community for 

developing machine learning and reinforcement learning 

based algorithms for autonomous driving [1]. The gaming 

community has developed various mods which allows to get 

access to various data from the game such as camera feed, 

depth buffer, object annotations, vehicle controls such as 

steering, throttle, braking etc. [8]. 

 Automotive Simulator Vendors: There are multiple 

automotive vendors who have developed simulation platforms 

with varied focus areas. IPG Automotive’s Carmaker 

platform and Carsim platform’s key focus area include 

modelling the vehicle dynamics. Vendors such as TASS 

International, Optis, Vires and dSpace platform’s key focus 

area include modelling the sensors such as cameras, radar, 

ultrasound etc. and the environment. There is a provision of 

using multiple platforms in tandem. For example, Vires 

platform can be integrated with Carsim and Carmaker to 

obtain a precise vehicle model from them and use it with 

accurate sensor model from Vires. Also, there are many 

startups who see the value in providing a good simulation 

platform such as CVEDIA’s Syncity. Recently, there have 

been open source platforms such as Carla and Airsim, which 

are getting popular in the research community. There could be 

many more simulation platforms, which are not discussed 

here, due to brevity. 

 

The default usage modality of the virtual simulation platform 

is shown in Figure 3. This stage is referred to the data collection 

phase. This stage does not involve running any external software 

or algorithm. As shown in Figure 3, there are two options of 

driving in the simulation platform. 

1. Manual model: In this mode, the user should be able to 

control the ego-vehicle in the simulation platform using a 

keyboard/joystick. This is important in collecting ground truth 

data for behavior cloning type algorithms. 

2. Auto-driving mode: In this mode, an in-built engine should be 

able to drive the ego-vehicle in the simulation platform 

automatically. This is useful in collecting ground truth data 

for reinforcement learning and other supervised learning 

based algorithms. 

 

Figure 4 shows the second phase of usage of the virtual 

simulation platform. In this phase, the algorithms/software shown 

in Figure 1 is responsible for controlling the ego-vehicle. This 

mode is critical for validation of the algorithms and software 

components. It is also referred to as Software-In-Loop (SIL) 

testing. The software and algorithms can be running on PC or an 

embedded platform and thus, same model can be used for 

Hardware-In-Loop (HIL) testing. 

 The key requirements that make a simulation platform viable 

are: 

1. Sensor support: The simulation platform should support 

various sensor types such as camera, RADAR, LIDAR, ultra-

sound, GPS, INS etc. The platform should also provide 

flexibility in tuning the parameters for these sensors such as 

placement around the ego-vehicle, the Field of View (FoV) 

etc. 

2. Photo-Realism: The camera images rendered by the 

simulation platform should be close to real world images. 

Some of the vendors support physics based camera model 

Figure 5: Proposed Two Stage Approach 
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which provides realistic simulation of camera images. The 

neural networks which are trained using the data from 

simulation platform should be generalizable to real world 

data. 

3. Scenario Generation: The simulation platform should provide 

flexibility to create various scenarios. It should also include 

certain pre-built scenarios such as highway driving, parking 

etc. in order to save time and effort to prototype algorithms. 

4. Real-time Usage: The simulation platform should be able to 

run real-time and allow for SIL and HIL testing in real-time. 

5. Ground truth generation: The simulation platform should have 

ability to generate ground truth data for object segmentation, 

depth, car control signals, maps etc. 

 

Currently all the virtual simulation platforms available in the 

market have gaps in meeting the above requirements. The 

traditional simulation platforms are good at scenario generation, 

sensor support and ground truth generation. However, the 

environment modelling is not very realistic and does not allow for 

generalization to real world data. If there is any improvement in 

the photo realism like physics based camera model integration, 

then the simulation platform can no longer meet the real-time 

constraints. The gaming platforms do not provide flexibility to 

create scenarios and does not support various sensor modalities. 

However, they provide realistic data and can be used for real-time 

demonstration. Various startups are promising simulation 

platforms which meet all the requirements listed above and also 

provide demonstrations of the same. Unfortunately, none of them 

are fully developed and available for usage yet, but should be 

available soon. 

Proposed Solution 
Since there is no single simulation platform available to test 

the perception and navigation modules together, we propose to use 

a two stage approach as shown in Figure 5. We propose to develop 

and test the perception task of the block diagram separately from 

the rest of the chain. The perception algorithm block can be 

developed and tested using raw sensor data from real world. This 

enables the use of existing datasets from public domain such as 

KITTI [9], Cityscapes [10], Oxford RobotCar [11] etc. This also 

expedites the development time of the perception algorithms as 

these datasets are well maintained and robust. However, the 

labelling of these data would have to be done if it has to be used 

for supervised learning type of algorithms. 

The rest of the chain can be developed using any of the 

simulation platforms already discussed above. The input to the 

simulation module would be an object list (which includes object 

position, velocity), drivable space (semantics), which is typically 

the output of the perception module. These variables can be 

statistically modelled along with noise terms and fed as input to the 

rest of the blocks such as fusion, localization etc. as shown in 

Figure 6. Almost all simulation platforms available today allow for 

statistical modelling in their simulation environment. 

Another approach is to combine simulation platform with real 

world data. Many simulation platforms allow capturing real world 

data and simulating this in the virtual environment. This approach 

allows capturing the detailed environment of the real world such as 

lane markings, intersections, traffic signs, traffic lights, sidewalks, 

parking garages etc. in the virtual environment. These approaches 

are suitable for applications like autonomous parking, where the 

area is limited and contain mostly stationary obstacles. Since the 

Figure 6: Simulating Perception using Statistical Modelling 
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area is limited, the environment can be made more realistic as it 

would require less time and effort. Hence, this approach can allow 

end-to-end testing of both perception and navigation modules. 

However, this approach would be laborious to scale to larger areas. 

The proposed two stage approach allows us to develop all the 

perception and the navigation blocks independently, without 

having to test on a real car. Once a single simulation platform is 

made available, the algorithms developed using the above 

approach can be put together and tested end-to-end as it would be 

done in a real car. 

Conclusion 
 In this paper, we have presented the key requirements for 

using virtual simulation platforms in developing software and 

algorithms for autonomous driving. We have presented the details 

that need to be modelled to make a virtual simulation platform a 

viable solution for software development and testing. We have also 

presented the usage models of the virtual simulation platform, both 

in data collection or development phase and testing phase. Since 

there are gaps in meeting all the requirements by virtual simulation 

platform available in the market today, we have proposed a two 

stage approach for developing software and algorithms for 

autonomous driving to achieve near term goals. As the industry 

focus and innovation increases in this domain, a simulation 

platform which can meet all the requirements should be available 

very soon. 
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