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Abstract
Training autonomous vehicles requires lots of driving se-

quences in all situations[1]. Typically a simulation environment
(software-in-the-loop, SiL) accompanies real-world test drives to
systematically vary environmental parameters. A missing piece
in the optical model of those SiL simulations is the sharpness,
given in linear system theory by the point-spread function (PSF)
of the optical system. We present a novel numerical model for
the PSF of an optical system that can efficiently model both ex-
perimental measurements and lens design simulations of the PSF.
The numerical basis for this model is a non-linear regression of
the PSF with an artificial neural network (ANN). The novelty lies
in the portability and the parameterization of this model, which
allows to apply this model in basically any conceivable optical
simulation scenario, e.g. inserting a measured lens into a com-
puter game to train autonomous vehicles. We present a lens mea-
surement series, yielding a numerical function for the PSF that
depends only on the parameters defocus, field and azimuth. By
convolving existing images and videos with this PSF model we
apply the measured lens as a transfer function, therefore generat-
ing an image as if it were seen with the measured lens itself. Ap-
plications of this method are in any optical scenario, but we focus
on the context of autonomous driving, where quality of the detec-
tion algorithms depends directly on the optical quality of the used
camera system. With the parameterization of the optical model
we present a method to validate the functional and safety limits
of camera-based ADAS based on the real, measured lens actually
used in the product.

Optical models for camera system validation
For camera-based ADAS and for autonomous driving the

functional and safety limits of the used camera systems need to
be quantitatively determined [2]. Numerical test methods (SiL
and HiL) play a central role in this functional validation. What
is required is a process in which certain production parameters
or tolerances are systematically varied over a given range - e.g.
operating temperature range - and the optical quality of the cam-
era system is evaluated. In a SiL or HiL setup the images and
video sequences are then modified such that the camera looks as
if it were operating at that set of parameters (e.g. at high tem-
perature). Unfortunately, there currently exists no flexible optical
model that allows this process in a comprehensive and efficient
manner.

In principle the optical properties of a lens are completely
described by the Optical Transfer Function (OTF) in frequency
space, or accordingly by the Point Spread Function (PSF) in im-
age space [3]. The PSF – with which we are concerned in this
paper – is a highly non-linear function with no apparent parame-
terization for mass production tolerances, and hence there exists
no error model for mass production cameras, neither analytical
nor numerical.

(a) (b) (c)
Figure 1. Three example PSFs for different image field parameters

(∆z,R,ϕ). (a) (0, 0, 0), (b) (11.25 µm, 2.25 mm, 0) and (c) (0, 3.00 mm, 0).

Vertical displacement in (c) due to lens distortion.

At first glance this may seem strange, because the Zernike
polynomials were expressedly developed to describe aberrations
in optical systems [4][5]. Zernike polynomials are successfully
used to develop extremely complex optical system (prominent
example: James Webb Space Telescope [6]). Nonetheless, the
Zernike polynomials are ineffective for mass production lenses,
as the aberrations are huge in comparison to diffraction-limited
optical systems like telescopes or microscopes. In mass produc-
tion lenses a large number of Zernike polynomials (50 - 100) need
to be taken into account, rendering this process unusable for fit-
ting or modeling of real, measured lenses.

A lens is designed by help of a appropriate software like
OpticStudio, Code V or OSLO. The PSF is a standard output of
these software packages, and the SW can take tolerances and tem-
perature shifts into account. But then the whole software pack-
age itself would become the optical transfer function, which is
from a numerical point of view completely impractical for high-
dimensional tolerance studies. Also, these packages lack a central
requirement: sequential raytracing offers only limited to no pos-
sibility for depth in object space, which is mandatory for real 3d-
scenes such as those used in SiL or HiL setups for the automobile
industry.

There are publications that use ANNs to estimate optical
aberrations, cf. [7] or [8]. Both publications do not address the
problem of parameterization for mass production. The first pub-
lication is very application specific to atmospheric phase-front
aberrations for telescopes, and it is not obvious how to general-
ize the process to the SiL/HiL requirements presented here. The
blind deconvolution of the second publication is even more lim-
ited, working on 2d images only (no depth information) and using
a spatially invariant PSF, which is exactly not what we require.

In summary there exists no numerical optical model for the
PSF (or the OTF) to be used in the context of SiL/HiL validation
of camera systems for the automotive industry.

PSF modelling
The PSF is a highly non-linear function that represents the

transfer function of an optical system. A typical real automotive
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Figure 2. Model overview: the ANN takes a number of input parameters (in

principle variable) and outputs a PSF. In this report the model parameters are

defocus ∆z, image height R and azimuth ϕ, according to the measurement

parameters.

lens has 4 to 6 lens elements, possibly an IR-cut filter included
as seventh element, and therefore some 8 to 14 optically active
surfaces (some elements may be cemented in subgroups). Each
surface has its own set of tolerances, which are at least 3 position
and 3 direction variables - excluding the topic of surface devia-
tions. Rotational symmetry can apparently not be assumed. Fig. 1
qualitatively depicts three measured PSFs from the same lens at
different image field, and clearly demonstrates the strong varia-
tion in the quality of the intensity distribution. What is required is
a mathematical-numerical model that describes the properties of
real lenses as a function of a limited set of dependent variables.

Non-linear regression with ANN
Regression and especially non-linear regression with artifi-

cial neural networks for highly asymmetric functions is an estab-
lished and ongoing field of research (e.g. [9][10][11]). The ANN
’learns’ the function by training it with an appropriate number of
examples. During training both the function training set as well as
the according parameters are used as input to the first layer of the
ANN. During operation only the input parameters are used, and
the ANN evaluates the function at the given parameter position.
The goal of our novel model is depicted in Fig. 4. The ANN takes
a (limited) number of input parameters and evaluates the output
PSF as a function of those parameters. The input parameters in
principle are variable and depend on the actual simulation goal.
E.g. in a tolerance calculation some tolerance measure might be
used as input into the ANN. In this report we use three input pa-
rameters to the ANN, defocus ∆z, image height R and azimuth
ϕ . These parameters accord to the three measurement parameters
(see next Sec. Measurement). But the strength of our approach is
that it is very flexible in the number and type of inputs, such that
it can be used in a broad variety of different simulation scenarios.
We have used mean square error as the distance metric to train the
ANN. Details of this training process will be published separately.

Measurement
The measurement data were taken in collaboration with the

company trioptics in Wedel, Germany. The used measurement
system was a Trioptics ImageMaster HR. The used setup has an
effective pixelsize of dpixel,effective = 0.3070µm. Due to the com-
bination of the photopic vision filter and a monochromatic CCD-
sensor the measured data does not cover chromatic aberrations.

Figure 3. Measurement overview with 108 measured PSFs for a single

defocus value ∆z = 0µm. Radius varied from R = −3.00mm to R = 3.00mm,

azimuth varied from 0◦ to 165◦. Position to scale, PSF enlarged for visibility.

This is left for future work. Overall 27 lenses were measured,
based on three different lens designs for automotive camera mod-
ules. For this work we selected just a single lens, meaning that the
training of the neural network is based solely on the measurement
data of one lens specimen. The lens has a focal length of 6 mm
and a field-of-view of 60◦.

The measurement has three parameters: defocus ∆z, image
height R and azimuth ϕ . The image height was varied from
R = −3.00mm to R = 3.00mm, azimuth full circle, and defocus
from −50.0 µm to 50.0 µm. Due to measurement time restric-
tions the parameter sampling is not evenly distributed. Basically
two measurement series per lens were recorded: one with high
in-plane resolution for R and ϕ and low defocus resolution ∆z,
and one with reduced in-plane resolution and high resolution and
larger range for the defocus. The first series resulted in 243 mea-
sured PSFs, the second in 972 PSFs. Fig. 3 shows the measured
PSFs for the used lens in a single plane of defocus, i.e. all the
shown PSFs have the same defocus value of ∆z = 0µm. Note that
the PSFs positions are to scale in Fig. 3, but the actual PSFs have
been enlarged to make them visible. Therefore, the outer circle
accords to the image height R = 3.00mm, but the real PSFs are
much smaller.

Downsampling

The first important step is to downsample the high resolution
scans of the PSF: first, if the target image sensor has a pixel size
of (e.g.) 3 µm the high resolution of the measurement (0.3070 µm)
is not necessary. Second, the resolution determines the size of the
ANN, the amount of training data and hence the required comput-
ing resources. For this article we cropped and downsampled the
data to a pixel size of approximately 6 µm, resulting in a work res-
olution of 13x13 for the PSF, mainly restricted due to the limited
computing power. An example of this process is shown in Fig. 4.
Based on this input data we have varied both the structure of the
ANN and the used learning algorithm.
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Figure 4. The original measurement data (left) is cropped and downsam-

pled to approximate real pixel size (right) and in order to reduce the size of

the ANN.

Figure 5. Three exemplary modelling predictions for different field situations

(cf. text, same as Fig. 1). Upper row: measurement. Lower row: model

prediction. Inset: high resolution PSF.

PSF model example
Fig. 5 shows an example of the prediction process for a given

lens sample. The three columns a, b and c represent three different
field positions (∆z,R,ϕ), the same as in Fig. 1: (a) (0, 0, 0), (b)
(11.25 µm, 2.25 mm, 0) and (c) (0, 3.00 mm, 0). The upper row
shows the actual measurement, the lower row the output from the
ANN for the given input parameters. The inset displays the high
resolution measurement image of the respective PSF. The MSE
distance metric yields satisfactory agreement between the mea-
surement and the model. Improving on the accuracy of the predic-
tion will be a focus of our further studies. Nonetheless, the ANN
can model the distinctly varying spatial distribution of the PSF,
especially the changing quality is modeled faithfully. In summary
we therefore can apply the model PSFs as a transfer function to
existing images.

Implementation
The goal of a validating SiL or HiL setup is to simulate or

modify scenarios to look like they were taken under different
circumstances. For example, the temperature expansion of the
plastic holder may lead to a defocus ∆z, giving a blurred image.
Therefore the image data – either simulated or already recorded
data – needs to be modified to reflect these circumstances. For the
optical question at hand this means that the existing images need
to be convolved with the appropriate PSF as a transfer function.
This section describes the steps we have used to convolve existing

Figure 6. Example Image taken in Düsseldorf, with constant value border

continuation.

Figure 7. Example Image with valid image area and sampled points

images efficiently with the predicted PSF from our ANN.
The filter process will be described using the example image

in Fig. 6. The image was taken with a (very) high quality con-
sumer camera. Since our PSF measurements are only valid up to
a certain image height, we black out every pixel outside of this
range, imitating an undersized aperture on the image sensor with
given pixel size. The aperture is visible in Fig. 7.

Using our ANN model we can now map a unique PSF to each
valid pixel in any image of a sensor. Optically this would accord
to the real physical situation that the light from every viewing
direction within the angular resolution (which following Fourier
optics is of course determined by the pixel size) travels through
the lens on its own path, and hence has its own PSF.

Convolving every single pixel with its appropriate PSF is nu-
merically cumbersome though, and we opted for a more practical
approach by manually determining ROIs and then interpolating
the results. In other words, we assigned single PSFs to larger
ROIs – thus reducing the number of required PSFs – and inter-
polated the PSFs for the ROIs to avoid discontinuities at the ROI
borders. The red dots in Fig. 7 represent the corners of ROIs. It
actually would be an interesting research question in its own right
to determine a quantitative limit for the size of this ROI, or if a
separate PSF for every pixel is required. Thus every pixel of the
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Figure 8. Example of a rectangular area for convolution.

Figure 9. Construction of the weighting function for the bilinear interpolation

of the PSF. Left: single kernel for simple bilinear weighing, middle: all four

kernels, right: resulting final kernel.

target image is of course convolved with a PSF, but neighbouring
pixels are treated with (almost) the same PSF, and the exact PSF
is determined by bilinear interpolation as will be detailed in the
following section.

Interpolation
Since kernels of pixels which are positioned closely together

are similar, we can sample a smaller number of PSFs and interpo-
late the fully convoluted image based on those. To achieve this we
choose a uniformly spaced grid of pixels across the image (Fig. 7).

Every valid pixel of the image will be inside a rectangle con-
sisting of four points in this grid. Using bilinear interpolation, we
can calculate a new PSF kernel based on those. The maximum
error of this interpolation can be estimated by comparing the bi-
linear interpolation’s result to the ANN’s. Every sampled point is
the corner of four rectangular parts of the image. These four areas
create a new ROI with the sampled point at its center as shown in
Fig. 9.

Weighting four of these bigger rectangles appropriately and

Figure 10. Sum of weighted areas. Left: cropped image parts, middle:

weighted image parts, right: resulting weighted and convolved degraded im-

age part.

Figure 11. Resulting degraded image after applying the spatially variant

PSF, with a defocus value of ∆z = 0.

adding their values we get the exact result of a convolution with
the corresponding PSFs, that could have been calculated through
bilinear interpolation. The weighting scheme and how four of
these weighted areas sum to a whole are visible in Fig. 9.

Fig. 10 shows the application of this weight function to the
ROI from Fig. 8. The right image thus is the result of a convo-
lution of the whole area with four different PSFs only, instead of
the 160 different PSFs according to a pixel-exact model.

Degraded image
The resulting degraded image of this process is depicted in

Fig. 11. There the spatially varying PSF is convolved with the
original image with the right PSF at the appropriate position.
For completeness we also applied a standard blind deconvolu-
tion (aberration-limited) to minimize the influence of the origi-
nal lens – for accuracy this probably wasn’t necessary consider-
ing the huge difference in optical quality between a state-of-the-
art consumer lens and a series production automotive lens, but
was also included in the algorithm as a place holder function for
a more rigorous examination. Because the physical size of the
original image is larger then the maximum radius of our mea-
surement (Rmax = 3mm) the performance of the measured lens
strongly declines toward the edge of the image circle. In a real
application the size of the imager would be selected as a rectangle
distinctly within the circle, hence the very strong blurring at the
edges would not be visible.

Note that for this simulation the defocus value is ∆z = 0 for
the whole image, i.e. the depth information (or an inclusion of the
field curvature) is not present. In that sense Fig. 11 is similar to
the output of a standard lens design software where the user traces
an example image through the lens design. But even this already
demonstrates the advantage of our model: instead of tracing an
image through a large software package you can now include the
same functionality – and more, because it also works on measured
lenses – in a simple, portable numerical function you can include
as a library in any optical simulation. What further differentiates
the optical model presented in this paper is the ability to include
depth information in the formation of the resulting image, which
will be discussed in the next section.
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Figure 12. Linear depth gradient applied to a checkerboard. Please note

the slight differences between the left and right edge of the image, resulting

from positive and negative ∆z values.

Depth
Camera-based ADAS are fixed-focus systems, where the

lens-imager position is determined once and for all with the align-
ment procedure during production. Therefore objects with dif-
ferent distances (in object space) will also have different image
distances in relation to the principle planes, i.e. they will have a
defocus value ∆z with respect to the image plane that was fixed
during alignment (which in real lenses is of course not a plane but
the field curvature). As mentioned in the introduction the strength
of this optical model is that it allows for this depth information
and hence the exact focus position (or rather the defocus value
∆z) to be used, which is – to the best of our knowledge – a new
feature for optical simulations.

This idea is applicable in both optical ray tracing and com-
puter game like z-Buffering. There are different possibilities to
calculate the value for ∆z in these scenarios. As a simple ex-
ample consider an OpenGL-like 3d-engine that uses a z-buffer,
which is just a measure for the depth information (hence the name
z). The z-buffer information is linearized and scaled to yield
real z values (in object space), and using the simple lens formula
1/ f = 1/o+1/i (with f focal length, o object distance and i im-
age distance) a defocus value ∆z in relation to a given image plane
can be determined.

To demonstrate this feature we have applied the model with
a linear depth gradient to a simple checkerboard (see Fig. 12). In
the image the value for ∆z is varied from left to right from posi-
tive maximum measurement value (here: 50 µm) to negative max-
imum (−50 µm). This setup corresponds roughly to a checker-
board in object space that is strongly tilted with respect to the
optical axis of the camera system.

For clarity we used an almost spatially invariant PSF, by scal-
ing the image thus that the field height has only a negligible in-
fluence. Thus the visible blurring stems (almost) only from the
value of the defous ∆z. This is of course unrealistic, but this way
the effects of depth and decreasing lens performance with large
field are separated. Looking closely at the left and right edge of
Fig. 12 there are subtle differences in the blurring, because the
lens exhibits an asymmetric PSF function for positive and nega-

tive values of ∆z. This shows nicely the new quality of simulation
possible with our novel optical model.

Summary and outlook
With the presented universal optical model we are now able

to included measured lens data within optical simulations, for
both ray tracing and z-buffering. For the context of testing and
validating algorithms for autonomous driving this opens a new
quality currently not found in SiL or HiL test setups. As an exam-
ple, the thermal expansion of a camera head is a central validation
question for every camera maker, mainly the defocussing effect of
the thermal expansion of the plastic holding components. This de-
focussing is expressed as ∆z. Therefore with the new model you
can now setup a SiL or HiL simulator that examines the camera
response of your real algorithm to the blurring effect or your real
measured PSF. Systematically varying ∆z then allows you to sys-
tematically test and validate the function and safety limits of your
own ADAS algorithms with respect to the temperature expansion
of the camera head.

This work shows the feasibility of our approach. There are
several different optimizations and expansions we are pursuing.
First of all is the spatial resolution, both of the measurement (how
many sampling points to you need for a faithful model?) as well
as the model itself (downsampling resolution? One PSF for every
pixel in the target image?). The distance metric for the training
of the neural network can also be varied to reflect spatial infor-
mation, like CNNs. Finally, the direct comparison of a simulated
driving scene and its real, measured counterpart will be an impor-
tant step in demonstrating the ability and the limits of our new
universal optical model.
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