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Abstract
The recent established goal of autonomous driving cars, mo-

tivates the discussion about safety relevant performance parame-
ters in the automotive industry. The majority of currently accepted
key performance indicators (KPIs) do not allow a good prediction
over the system performance along a safety relevant critical effect
chain. A breakdown of the functional system down to component
and sensor levels makes this KPI problem evident.

We will present a methodology for sensor performance pre-
diction by a probabilistic approach, on the basis of significant
critical use cases. As a result the requirement engineering along
the effect chain especially for safety relevant processes appears
transparent and understandable. Specific examples from the field
of image quality will concentrate on the proposal of a new KPI,
the contrast detection probability (CDP). This proposal is cur-
rently under discussion within the P2020 work group on auto-
motive image quality and challenges known KPIs such as SNR,
especially with respect their effects on automotive use cases.

Introduction and Overview
In the last few years the market for driver assistance systems

has been emerging very fast. Starting with anti-blockage-systems
(ABS) for braking, the driver assistance systems spread into other
applications of the car like automatic light switching, rain sensors
for wiper control and ultrasound for parking assistance. While
these and other systems are meanwhile standard for new cars, the
development of driver assistance system continued.

Especially with the introduction of video cameras into the
cars, the driver assistance systems tackled the human sense of
sight as it is used for driving cars. Starting with rear view cam-
eras and display viewing applications, these video based driver
assistance systems are able to assist the driver with function like
automatic head beam control (including the switching from high
to low beam), traffic sign recognition, pedestrian detection, detec-
tion of obstacles and lane marking detection.

In all these functions the video camera plays a major role,
however, the driver assistance systems come to full potential if
various parts of the car’s functionality are combined into an ad-
vanced driver assistance system. For example, the traffic sign
recognition can be connected to the automatic speed control to en-
able the car to adapt the speed limit correctly and automatically.
The detection of pedestrians and other cars needs to be connected
to the break system to allow an independent automatic emergency
breaking if the driver is inattentive. Another example is to con-
nect the lane mark detection to the steering wheel actuators to
allow the car follow a marked lane autonomously.

The development from isolated functionalities towards a

connected and highly complex system is required for the intro-
duction of systems for a fully autonomous cars. Considering the
effect chain of these systems the above described functionality
relies on a good signal quality of a video capturing device.

Motivation and Goal
As described, advanced driver assistance systems are based

on a complex effect chain for the video signal processing. This ef-
fect chain has to make ensure that the created output signal guar-
antees enough information to fulfill the demanded function in all
use cases. For a video based ADAS we have for example to con-
sider the effect chain that is composed by a scene in the world,
windshield of the car, camera optics, image sensor and parts of
the image signal preparation. The complete chain contributes to
store an image into memory that can be used by further algorithms
and neural networks.

Analyzing the above mentioned effect chain makes it evi-
dent that meaningful key performance indicators (KPIs) need to
be specified. In this paper we will show by example for the imag-
ing effect chain what KPIs could look like that allow to specify the
components needed for an ADAS systems. The used probabilis-
tic approach that derives a detection probability along the chain is
suited to be transferred to other ADAS systems than the imaging
chain.

The Problem of Requirement Engineering
ADAS

As mentioned above the definition of the components for an
ADAS system is a complex procedure that has to analyze a com-
ponent chain and the components that form it. Two main prob-
lems arise in this context:

Cross Domain Communication First, all the components in
the effect chain are covering their own specific field of exper-
tise. This is the reason why the formation of separate components
makes sense. But further, the indiviudal optimization created in
each field of expertise a different language. In order to specify a
system that enables an ADAS function all these components need
to form a perfect fit, and therefore not only the optics and image
sensor manufacturers need to focus on fitting their components to
each other, but the whole chain needs to be optimized.

Image Quality Definitions The second problematic point in re-
quirement engineering for video based systems concerns the term
image quality. While in consumer cameras, image quality is
driven by the visual image impression demanded by the customer
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base, for driver assistance systems other requirements need to be
fulfilled. For example, the final system has to work over a wide
temperature range of −40◦C to 125◦C. If the image quality fails
within this temperature range, the cars functionality will degrade
which is either not favorable in case of ADAS functionality, or
with respect to autonomous cars, simply not acceptable. On the
other side in consumer cameras the image quality can be focused
to reach its optimum around the typical use case of room temper-
ature. This is a big difference in the definition of image quality
with respect to the temperature requirements.

Another example from this field is the preservation of con-
trasts. While in the visual domain noisy parts of the image can
be corrected and adapted, such a step may yield to catastrophic
problems in driver assistance systems. This is based on the fact
that the image for an ADAS function is usually not viewed by a
human observer, but by a machine or a neural network. For exam-
ple if a pedestrian in the dark is almost fully covered in noise, an
improper image processing may denoise the image in that region.
If the target is to form a visually pleasing image, the noise may be
removed and with it the remaining information of the pedestrian.

Switching off the denoising is however not the solution ei-
ther. The question to answer is rather, how can we make sure that
a system guarantees its functionality in all demanded situations
and which KPIs do we need to specify the components? In other
words and targeting on the above example: How can we set up
a denoising operation in a way that it does not destroy valuable
information? Having that question in mind, we can investigate it
with the analysis of the critical use cases.

Critical Use Cases Analysis
As mentioned in [6], an ADAS has to be functional in all

the demanded use cases. For example, a requirement for a road
sign recognition is usually to detect all visible road signs of a
certain class when the car is driving past them. In this example
the car is benchmarking the human observer. If the roadsign is
covered or occluded, the system does not need to see it as the
human driver would also have missed it. However, if the sign is
in the shadows or misplaced so that its illumination is not in favor
for the imaging chain, the system has to detect it. Those situations
are covered under the so called corner use cases, which means
that the fulfillment of those use cases guarantees the fulfillment of
all other use cases as well.

Use cases and corner cases can be transferred into critical
use cases which occur if there are one or more external condi-
tions that challenge the fulfillment of the use case. Such condi-
tions could be: fog, snow, heavy rain, dust on the windscreen and
high ambient temperature. For example a system could be good
enough to detect a pedestrian at night under low illumination con-
ditions but then the system could start to degrade in performance
if the same situation is recorded with a car driving from a sunny
park-deck into a parking garage. The reason for the degradation
could be that the dark current of the image sensor leads to an
image quality degradation. Depending on the severity, either the
algorithm needs to be adapted or the information has been erased
while transmitting through the imaging chain. Only an investiga-
tion along the imaging chain gives insight into the root cause.

Some of these critical use cases conditions are already in
the ADAS’ typical specifications, however, many of them are still
demanded implicitly by very general requirements. Fig. 1 and 2

shows a critical use case due to veiling glare in the scene. For the
human observer it is possible to detect the car in both situations,
however the image quality provided by this imaging chain with a
dusty windscreen makes creates here a challenge.

Figure 1: A scene while entering a tunnel with with veiling glare
on the windscreen due to dust particles. A human observer may
still resolve the car due to a good contrast detection ability of the
human eye

Figure 2: The same scene as in fig. 1 but now the veiling glare
has disappeared. Inside the video-stream an object has suddenly
appeared.

Fig. 3 to 5 shows the contrast loss due to fog in Leonberg,
Germany. It is clearly visible that the fog diminishes the ability to
detect the objects in 50m distance. However for a safe driving of
the car, these objects should be detected. Human observers tend to
have a superior contrast detection ability compared to the typical
imaging chains. Therefore the driver assistance system should be
able to resolve the objects even in the heavy fog scene. If a texture
analysis is necessary for good algorithmic performance strong fog
may become a problem due to the contrast degradation.

And fig. 6 and 7 show a classical detection problem due to
a high dynamic range in the scene. With a an imaging chain that
does not allow to capture the whole dynamic range, the objects
outside the tunnel are not visible and therefore cannot be detected.
In this picture the cars outside the tunnel are less than 100m away
and therefore need to be detected to allow a good ADAS perfor-
mance. In fig.7 and 8 the same scene is correctly captured with
a system capable of handling 140dB of dynamic range. Conse-
quently the scene content is correctly transferred into the image
memory.

Given the above examples, it is necessary to analyze the typ-
ical use cases with respect to their illuminances and to analyse the
relevant objects with respect to their reflectances and contrasts.
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Fig. 10 and 9 show recordings with a luminance camera [1]. Here
we can observe that the contrast between the border and the center
of the traffic sign is expressed as Weber contrast[2]:

KWeber =
Emax

Emin
−1 =

1
2 (460+900)
1
2 (80+120)

−1≈ 580% (1)

The contrast of the cyclist and its background however only:

KWeber =
Emax

Emin
−1 =

1
2 (49+134)
1
2 (44+100)

−1≈ 30% (2)

We can summarize that there are a lot of situations that can be
classified either as corner use case, or critical use case in which the

Figure 3: A reference scene showing several cars and traffic lights
in a close distance of ≈ 50m.

Figure 4: The reference scene with typical November fog in Ger-
many, demonstrating the contrast loss of the objects in the box
and also a contrast loss of the close by object.

Figure 5: The reference scene with strong fog. The objects in the
red box are not detectable any more and even the contrast loss
of nearby objects decreased to a level that texture extraction may
fail.

imaging chain needs to be tailored in a specific way to achieve the
demanded performance. If that step is completed and a database
of use cases is available, the problem remains to find meaningful
KPIs to describe the image quality in a way that allows to specify
the whole imaging chain and its components.

A Video Sensing Effect Chain
Before we start to introduce the KPI development, a sim-

plified model of an imaging chain is introduced that describes
the components and some of their typical effects onto the image
quality. This imaging chain is composed by an illumination, a
scene, the windshield of the car, a camera optics, an image sensor
and some basic image signal preparation (ISP). Fig. 11 shows an

Figure 6: Tunnel exit, captured with a camera with limited dy-
namic range ability. The objects outside the tunnel are not visible.

Figure 7: Tunnel exit, captured and correctly tone mapped with a
camera with high dynamic range ability. The objects outside the
tunnel are clearly visible.

Figure 8: Zoom towards the objects outside the Tunnel exit, dis-
tance of the cars from the camera is ≈ 100m.
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overview of this imaging chain and the next subsections introduce
how these blocks influencing the signal. The camera part of this
imaging chain is developed on basis of the EMVA1288 standard
for cameras [3]. Although some of the depicted blocks currently
introduce only linear transformations, a simplification shall not
take place to allow more elaborate models with nonlinear effects
in the future.

Illumination and Scene
The first two blocks of the imaging chain represent the scene

and its illumination. A basic property of a surface is its re-
flectance, which is a constant property that is usually independent
from the illumination. Fig. 12a shows the reflectance map of a
traffic sign. The reflectances have been deduced from the above
analysis conducted with a luminance camera. Fig. 12b shows
the corresponding probability function of these reflectances. To
simpify the model, Lambertian surfaces are assumed.

Illuminating the scene with 10 cd
m2 allows to calculate the

number of photons that are emitted from the surface. Again, to
simplify the model, the light source is limited to 500nm pho-

Figure 9: Luminance camera picture of a typical road scene

Figure 10: Zoom into fig. 9 for a contrast analysis of the objects

tons. Extensions to arbitrary spectral illuminations and also to
spectral reflectances can be created by a linear superposition of
the individual spectra. Further we assume a luminous efficacy of
L = 1000 lm

W as an average value of daytime and night seeing [5].
Using Planck’s constant h and the speed of light c the number

of photons per steradians and square meter is given by:

1 · cd
m2 = 1 · lm

m2 · sr
= 1 · W

L ·m2 · sr
= 1 · J

L · s ·m2 · sr
(3)

= 1 · λ

hc ·L · s ·m2 · sr
= 1 · λ

hc ·L
· photons

s ·m2 · sr
(4)

Fig. 13 shows the traffic sign and the statistics for an illu-
mination of 10 · cd

m2 . The photon flux obeys a Poisson distribution
[7]:

Pµn(n) =
µn

n

n!
e−µn (5)

and is also modeled in this way. Fig. 14 shows an illumination
with only 5 · 10−15 · cd

m2 , resulting in only 4 photons per square
meter and steradians. This makes the Poisson distribution of the
flux visible.

Windshield
After the illuminated scene, the next block in the imaging

chain is the windscreen according to fig. 11. As shown in the use
case analysis, the wind screen may be the source for stray light or
veiling glare (fig. 1) Again the photon fluxes need to be modeled
as Poisson events and simplified to a small patch of the image, the
veiling glare adds a certain number of uniform distributed photons
over the whole image.

Such an effect is easily obtained in a car, if the windscreen
is dirty, e.g. by pollen dust. If the car is driving below an illumi-
nation, the glare photons are added into the imaging photon flux
and reduce the contrast significantly. These added photons are in-
dependent of the scene illuminance and can therefore extend the
amount of photons that are emitted from the scene. Adding the
average photon amount from the scene as veiling glare, the con-

Figure 11: Overview of the used imaging chain, including a zoom
view onto the imager, and the light sensor model.
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(a) (b)
Figure 12: Reflectance Information. 12a: Reflectance map of a
German 100 km

h speed limit sign. 12b: Probability density func-
tion and probability function for the data from fig. 12a

(a) (b)
Figure 13: Emitted Photons in a 10 · cd

m2 illumination 13a: Emit-
tance map of a German 100 km

h Speed limit sign. 13b: Probability
density function and probability function for the data from fig.
12a

(a) (b)
Figure 14: Emitted Photons in a 5 · 10−15 · cd

m2 illumination.
14a:Reflectance Map of a German 100 km

h Speed limit sign.
14b:Probability density function and probability function for the
data from fig. 14a.

trast reduces already significantly:

KWeber =
Emax

Emin
−1 =

1
2 (460+900)
1
2 (80+120)

−1≈ 580% (6)

Eglare ≈ 390 (7)

KWeber,Glare =
Emax +Eglare

Emin +Eglare
−1 (8)

=
1
2 (460+900)+390
1
2 (80+120)+390

−1≈ 118% (9)

Fig. 15 depicts the described veiling glare model and fig.
16 demonstrates the impact onto the visibility in case of a low
photon count. Please note that the SNR value of this signal is
increased over fig. 14a due to the increased photon count. As
only Poisson processes are present, the resulting larger expecta-
tion value gives again a corresponding Poisson standard deviation.
This leads however to an increased SNR value while a reduced
visibility of the object is given.

In addition to the veiling glare, a transmission of 96%
through the windscreen has been modeled.

Figure 15: Simplified glare model: An external light source scat-
ters at the windshield and adds to the object’s photon flux

(a) (b)
Figure 16: Emitted Photons in a 5 · 10−15 · cd

m2 illumination with
100% additional glare photons that diminish the contrast. 16a:
Emitted photons polluted with 100% glare photons. 16b: Proba-
bility density function and probability function for the data from
fig. 16a.

Optics
The next block in the imaging chain is the optics, which are

modelled following [4] p.96:

E
[

photons
s ·m2

]
=

tπ cos4(Θ)

4 f 2
# (1+ml)2 ·L

[
photons
s ·m2 · sr

]
(10)

Here t is the optical transmission, ml the lateral mapping factor of
the optics, Θ the angle of the incoming light with respect to the
optical axis and f# is the f-stop number of the optics.

For the simulations we assume an t = 90%, f# = 2.0, Θ≈ 0
assuming far away objects and for simplification. Then we as-
sume that the distance of the objects is much larger than the focal
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distance f , which simplifies ml to:

ml =
f +d′

f +d
(11)

d′ ≈ 0 means image in the focal plane (12)

d� f → d = N · f (13)

ml =
f +d′

f +d
≈ f +0

f +N f
=

1
1+N

→ 0 (14)

⇒ E · photons
s ·m2 =

tπ
4 f 2

#
·L photons

s ·m2 · sr
(15)

After all this is a linear effect onto the photon flux and the result-
ing photons are focussed onto the imager surface. The effects are
depicted in fig.17

(a) (b)
Figure 17: Photon count at the imager surface after transmission
of the signal trough the optics. 17a Photons at the imager surface
after the optics (polluted with 100% glare photons and 10 · cd

m2 il-
lumination. 17bProbability density function and probability func-
tion for the data from fig. 17a

Other effects of the optics have not been modelled. For
an improved simulation model the strong influence of the opti-
cal point spread function onto the contrast transfer given different
spatial frequencies should be considered.

Imager
The next block in the imaging chain is the image sensor (see

fig. 11). Image sensors consists of several million light sensors
that are copies of each other at different locations. So each light
sensor captures the signal in the same way like its neighbors.

However, the typical ADAS light sensors are able to take
several captures of the same light signal, leading to several differ-
ent captures per image. This is usually realized by either differ-
ent capture surfaces (e.g. split pixel approaches [8]) or by taking
several captures temporally one after the other (staggered HDR
approach [9]). The later approach may lead to motion artifacts for
fast moving objects, while the split pixel approach consumes more
area in the silicon process for comparable pixel performance.

To simulate an image sensor, the light sensors need to be
modeled in detail. The here proposed image sensor is derived
from typical values for illustrative purposes. It is not a model of a
real device.

Light sensor
As shown in fig. 11 the light sensors can be roughly simu-

lated by the four steps: Optoelectronic conversion, Dark current

pollution, electron aggregation in a capacitor and finally an ana-
log digital conversion. Modern image sensors will have a com-
plicated model that exceeds the abilities of a single paper, but the
EMVA1288 camera and light sensor model [3] has been proven
to be a good approximation.

Optoelectronic Conversion (OEC): The OEC describes the
photon to electron conversion at the surface of the light sensor.
Here we assume a pixel pitch of 2µm leading a photo receptive
surface of Alightsensor = 2µm · 2µm = 4 · 10−12m2. The quantum
efficiency in average over the whole visual spectra may yield to
η ≈ 70% electrons

photons with peaks reaching around η ≈ 80%. Typical
integration times of the sensor element at daytime will be around
texp. = 1ms to texp. = 10ms to avoid saturation at the bright parts
of the scene. This results to

e[electrons] = E · photons
s ·m2 ·Alightsensor · texp. ·η (16)

Due to the very small size of the photo sensitive area, the num-
ber of photons per lightsensor capture decreases to a few dozen
as shown in fig. 18 for an exposure of 5ms. Fig. 19 shows an
exposure of 100ms which gives 10 times more photons, however
in 100ms the dark current effects will become visible as shown in
the next section.

(a) (b)
Figure 18: Produced photo electrons for a 5ms exposure. 18a:
Electrons generated at the photo diode with 5ms exposure time.
18b: Probability density function and probability function for the
data from fig. 18a.

(a) (b)
Figure 19: Produced photo electrons for a 100ms exposure, row
and column wise effects become visible. 19a: Electrons generated
at the photo diode with 100ms exposure time. 19bProbability den-
sity function and probability function for the data from fig. 19a.
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Dark Current Pollution: While the photo active area of the
light sensor is producing electrons that are generated by light, un-
wanted effects produce electrons as well. As these electrons are
generated even without light, they are called dark current elec-
trons. These dark current electrons are generated by the thermal
energy that is present in the system. The dark current obeys also
a Poisson process.

However, each lightsensor has dark current properties due to
variations in the manufacturing process, resulting in the following
Poisson Processes that create the dark current:

• Pµl as an average dark current which is is identical to all
light sensors.

• Pλl,i, j
as an individual dark current for each light sensor.

• Pµc as an average column wise dark current, identical to all
columns

• Pλc,i
an individual column wise dark current.

• Pµr an average row wise dark current that is identical to all
rows

• Pλr, j
an individual row wise dark current.

The parameters µ[ e−
s ] and λ [ e−

s ] are hereby given in units of elec-
trons per second. µ represents the overall dark current effects,
while the deviation of the parameters λ are responsible for differ-
ences that are systematic different between the light sensors. The
standard deviation over all parameters of a given type of lambda
is called Fixed Pattern Noise (FPN):

λ(·) : realization of: PFPN,{r,c,l} (17)

A separation between µ and λ is not done in each standard or
investigation, however, due to the physical properties of different
electron creation processes, this model is more accurate.

The dark current is a thermal generated process, the param-
eters µ and λ have a strong temperature dependency. We use
the EMVA1288 model to describe it and use reference values
µref,λref, measured at a reference temperature Tref. This allows
to calculate the Poisson parameters for the temperature of interest
T by applying a doubling Temperature Tdoubling in the following
way:

µ = µref ·2
T−Tref

Tdoubling λ = λref ·2
T−Tref

Tdoubling (18)

In each final measurement of a single light sensor, the differ-
ent dark current contributions add up. This makes a direct mea-
surement not possible, and to extract the above mentioned compo-
nents, measurements at darkness and two different temperatures
have to be conducted. A linear system of equations can be formed
by calculating the row and column wise sums. The sums can be
interpreted as estimators of the parameters µ and λ of the random
processes:

η{r( j),c(i),l(i, j)}(T ) = µ{r,c,l}(T )+λ{r( j),c(i),l(i, j)}(T ) (19)

→Pη{r,c,l} also a Poisson Process (20)

e{r,c,l}(T ) as the realizations of Pη (21)

m{r,c,l}(T ) as the realizations of Pµ (22)

l{r,c,l}(T ) as the realizations of Pλ (23)

k = el + er + ec as measurements (24)

Given i, j ∈ M,N as row and column indices, which apply to:
l(i, j),r( j) and c(i) we obtain:

k = el + er + ec (25)
1

MN ∑
i, j

k︸ ︷︷ ︸
≈µk

=
1

MN ∑
i, j

el︸ ︷︷ ︸
≈ηl(T )

+
1

MN ∑
i, j

er︸ ︷︷ ︸
≈ηr(T )

+
1

MN ∑
i, j

ec︸ ︷︷ ︸
≈ηc(T )

(26)

1
N ∑

i
kc︸ ︷︷ ︸

≈µkc

=
1
N ∑

j
el︸ ︷︷ ︸

≈ηl(T )

+
1
N ∑

j
er︸ ︷︷ ︸

≈ηr(T )

+
1
N ∑

j
ec︸ ︷︷ ︸

≈ec

(27)

1
M ∑

j
kr︸ ︷︷ ︸

≈µkr

=
1
M ∑

i
el︸ ︷︷ ︸

≈ηl(T )

+
1
M ∑

i
er︸ ︷︷ ︸

≈er

+
1
M ∑

i
ec︸ ︷︷ ︸

≈ηc(T )

(28)

So far we have M equations of type 27 and N equations of type 28.
We can use the definition of variance and the fact that for Poisson
processes the variance (σ2) equals the expectation value µ:

1
N ∑

j
(µk−µkc)

2 =
1
N ∑

j
(ηc− ec)

2 ≈ σ(T )2
c = ηc (29)

1
M ∑

i
(µk−µkr )

2 =
1
M ∑

i
(ηr− er)

2 ≈ σ(T )2
r = ηr (30)

With the knowledge of the parameters ηc(T ) and ηr(T ) we can
use equation 26 to determine ηl(T ), and then subsequently the
equations of type 27 and type 28 to estimate the realizations ec
and er. Following with equation 26 we can finally estimate el as
well from the measurements k.

Given the realizations of a single frame, the capture of mul-
tiple frames at different and different Temperatures T allows to
extract the wanted parameters:

e{r,c,l}(t,Ta) = m{r,c,l}(t,Ta)+ l{r,c,l}(t,Ta) (31)

e{r,c,l}(t,Tb) = m{r,c,l}(t,Tb)+ l{r,c,l}(t,Tb) (32)

Finally the temporal statistics over multiple measurements for the
different realizations of types l(t) yields to the individual Poisson
Parameters λ for each row, column and light sensor. The statis-
tics of the different m(t) yields to the Poisson parameters of type
µ that are identical for each type of row, column and pixel. When
correcting the dark current effects, these parameters form the ex-
pectation values and can directly be subtracted from the signal.

The nature of the dark current makes it almost undetectable
at single frames if low temperatures and low exposure times are
given. Fig. 20 shows the accumulated electrons including the dark
current electrons for an exposure time of 5ms as before. However,
in fig. 21 the 100ms exposure time shows first effects of the dark
current. Both evaluations have been simulated at 125◦C, a total
dark current of 50 e−

s , a row wise dark current of 5 e−
s , a column

wise dark current of 10 e−
s , a total FPN of 20 e−

s standard deviation,
a row wise FPN of 5 e−

s standard deviation, a column wise FPN of
10 e−

s standard deviation.

Accumulation in a Capacitor The generated photo electrons
and the dark electrons are summed up and stored in a capacitive
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(a) (b)
Figure 20: Photo and Dark current electrons for a 5ms exposure of
the discussed scene. 20a: Photo and dark current generated with
5ms exposure time. 20bProbability density function and probabil-
ity function for the data from fig. 20a.

(a) (b)
Figure 21: Photo and Dark current electrons for a 100ms exposure
of the discussed scene. 21a: Photo and dark current generated
with 100ms exposure time. 21b: Probability density function and
probability function for the data from fig. 21a.

element inside the device. As the charge storage is limited, the
simulation clips all occurrences that are larger than the storage
limit. The storage limit is also called the full well capacity (FWC)
and forms a well established KPI of light sensors and image sen-
sors.

The storage has been set to 15000e−, for this simulation. The
real imaging chain is more complicated due to the fact that the
electrons are usually generated and stored in different locations.
Therefore usually a transfer loss during the read processes occurs
which is connected to the so called kTC noise. These effects have
not been simulated in the current chain.

ADC Conversion Having the electrons stored inside the capaci-
tor, they result in a certain voltage, which is then usually amplified
and connected to an analog digital converter. To avoid modeling
all the effects inside this chain, again the simplified EMVA1288
model has been used.

Here an overall system gain is used to describe how many
digital numbers are produced per electron. In use cases where a
single electron should be countable at least K = 2 DN

e− should be
used according to the sampling theorem.

But as in many cases, the lower bound of electrons is polluted
by noise anyway and a system gain is chosen that guarantees to
reach the full well capacity with the available digits of the ADC.

For 15ke− a 12 bit ADC should use a system gain of:

K =
212DN

15000e−
≈ 0.25

DN
e−

(33)

Of course such an undersampling produces (discretization) arti-
facts that can be seen in fig. 22.

(a) (b)
Figure 22: Digital numbers (DN) after discretization with 12
bits. 22a: Digital numbers (DN) created from the 5ms exposure.
22bProbability density function and probability function for the
data from fig. 22a.

Image signal processing (ISP)
As mentioned in the imager section, multiple captures are

produced by the light sensors. The ISP is now responsible to re-
combine these captures into one light signal that corresponds to
the input signal of the system in the best possible way.

HDR reconstruction
To accomplish this, an HDR reconstruction module extracts

out of the multiple exposures the linear gain factor that has been
applied onto the photon fluxes. This gain factor allows to normal-
ize all captures onto the longest exposure. Given the number of
HDR-bits that are foreseen to capture the whole signal, it may be
that these bits do not allow to cover the largest number that is pro-
duced by the gained exposure stages. Such a misalignment causes
a loss of dynamic range of the sensor’s hardware capabilities and
is demonstrated in the later section of this paper.

The dynamic range can be adjusted with the overall system
gain of the light sensors but sacrifices the accuracy in low light
scenarios. For this simulation a 22-bit number has been used to
capture the HDR signal.

Tonemapping
After the signal is HDR reconstructed, the output usually dis-

allows to to display and to process the signal in an efficient way.
Therefore the HDR number is compressed in a process that is
called tone mapping. Tonemapping can be done by analyzing the
contained information inside the signal, or simply by design of
the demanded information by the next processing steps.

In case of a visual pleasing representation, a logarithmic
guarantees a constant contrast encoding. In this simulation an 8-
bit logarithmic tone mapping has been used. Despite the constant
contrast encoding, we see in fig. 23 that some information of the
original data has been lost. This is especially visible in the his-
togram, that shows the discretization effects of the tone mapping,
which include rounding and changes in the intensity steps.
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(a) (b)
Figure 23: Digital numbers (DN) after HDR reconstruction and
log-compression to 8 bits. 23a: Compressed 8-bit logarithmic
digital numbers created from the 5ms exposure. 23b: Probability
density function and probability function for the data from fig.
23a.

However, such a discretization might not be visible at the
imager output. If we calculate back all the effects that have been
introduced towards in the effect chain (e.g. the dark current and
veiling glare effects) we end up in the cd

m2 domain. Due to the
corrections, the gaps in the histogram have been filled as shown
in fig. 24.

(a) (b)
Figure 24: Reconstruction of cd

m2 from the Digital numbers in
fig.23. 24a: Spatial impression in cd

m2 after inverting the effect
chain. 24b: Probability density function and probability function
for the data from fig. 24a

Contrast Detection Probability
Without extended simulation and experimental efforts the

presented effects in the imaging chain are hard to judge with their
impact onto image quality. As shown, it might happen that the
object detection in the final image signal gets severely degraded.
To specify requirements along the imaging chain a measure of the
signal to noise ratio is often used. But still it remains difficult
to connect an SNR value to the algorithmic or human ability to
recognize an object inside the represented signal.

Given the requirement engineering section above, the con-
trasts of the objects in question are known and including elabo-
rated optical simulations, these contrasts could also be expressed
depending on the object’s spatial frequencies. As the photon flux
is based on a Poisson process, all measurements along the system
chain are realizations of on random variables that are based on the
photon flux. Therefore each measurement result can be expressed
inside confidence intervals with given probabilities.

Given the requirement engineering, the imaging chain has to
guarantee that a specified contrast can be detected in the signal.
Concluding, the contrast measurement will also be a realization of
a random variable. Given the knowledge of the objects in ques-
tion, a good requirement for the imaging chain is to guarantee the
measurement of a demanded contrast by a given probability. And
to specify the probability an established or derived confidence in-
terval has to be given.

Definition
There exist manifold contrast definitions, among them is the

Weber Contrast [2] which is based on the Weber-Fechner law on
human perception:

KWeber = KW =
Emax

Emin
−1 with: 0≤ KWeber ≤ ∞ (34)

If we assume a relative brightness difference p:

Emax = (1+ p)Emin (35)

⇒ KWeber =
Emax−Emin

Emin
(36)

=
(1+ p)Emin−Emin

Emin
(37)

=
Emin((1+ p)−1)

Emin
(38)

= p = pWeber (39)

the contrast KWeber corresponds directly to this percentual illumi-
nance difference.

In the field of Optics the Michelson contrast is the more com-
mon used contrast and it is defined by:

KMichelson = KM =
Emax−Emin

Emax +Emin
with: 0≤ KMichelson ≤ 1

(40)

and can be transferred into the Weber Contrast by:

KM =
Emax−Emin

Emax +Emin
(41)

⇔ 1+KM

1−KM
−1 =

Emax

Emin
−1 (42)

⇔ 1+KM

1−KM
−1 = KW (43)

⇔ KW =
2KM

1−KM
(44)

Having a contrast definition at hand we can now define the
random variable of the measured contrast:

Kmeas. : random variable (45)

and the derive the Contrast Detection Probability CDP by uti-
lizing the probability function Prob(·) and systems or components
input contrast Kin:

CKin DP = Prob(Kin(1− ε)≤Kmeas. ≤ Kin(1+ ε)) (46)

IS&T International Symposium on Electronic Imaging 2018
Autonomous Vehicles and Machines Conference 2018 148-9



Example for CDP
A requirement for a specific use case could be to detect an

input contrast of KW = 100% with a probability larger 90% in a
confidence interval of ε = 50%. Concluding, the random variable
that measures the contrast KW at the point of interest should then
realize to contrast values K ∈ (50%,150%) with a 90% probabil-
ity. Fig.25, 26 and 27 illustrate this example for the discussed
optical simulation with help of a checker board reflectance map at
different illuminations. It becomes visually evident that less pho-
tons result in higher noise and consequently in less probability to
detect the contrast. The CDP confirms this impression.

It should be mentioned that the CDP is defined in the phys-
ical dimension of the input. For this paper this is the reflectance
map of the scene, or the derived cd

m2 luminous emittance of the cor-
responding lambertian surfaces. Thus the digital numbers at the
end of the evaluation chain have to be transferred back into the
cd
m2 domain before an evaluation of the CDP is possible. Numbers
that are below 0 cd

m2 should be clamped to 0 as there is no negative
photon count in the physics of this context.

(a) (b)
Figure 25: Checkerboard Reference. 25a: A checkerboard with
a contrast of 100% and 20 cd

m2 . 25b: Probability density function
and probability function for the data from fig. 25a .

(a) (b)
Figure 26: Checkerboard after processing by the imaging chain,
with reduced CDP. 26a: A checkerboard with a contrast of 100%
and 20 cd

m2 after HDR Reconstruction. 26b: Probability density
function and probability function for the data from fig. 26a.

Depended variables and Comparison to SNR
Contrast detection probability can be evaluated against dif-

ferent parameters. For a random variable such evaluations rep-
resent the conditional probabilities. In this paper CDP is investi-
gated, given the realization of different intensities in a scene. This

(a) (b)
Figure 27: Evaluations of the Contrast detection Probability for
the examples of 100% contrast (see fig.25) and 30% contrast (see
fig. 26. 27a: CDP evaluates to ≈ 100%, because 100% of the
measurements are inside the interval of 50− 150%. 27b: Af-
ter HDR reconstruction in the imaging chain, CDP evaluates to
≈ 90% because 90% of the measurements are inside the interval
50−150%.

allows to judge the system performance with respect to the dy-
namic range of the intensity which is a critical use case as shown
with the tunnel exit in fig. 6

Other parameters that like the realization of spatial frequen-
cies and the different temperatures are also valuable choices for
conditional CDP probabilities. To compare the KPI’s suitability
we compare the results against the common measure in signal the-
ory: The signal to noise ratio (SNR). We show that SNR can be
connected in some cases to the manifold contrast requirements by
using the CDP as transfer layer. CDP considers all the events that
fall inside the demanded range of measurement, and considers
therefore all relevant details of the probability density function.
SNR is on the other hand just one parameter that describes the
density function just very roughly. However, as SNR does not
consider the various shapes of the probability density functions
(e.g. due to dark currents and quantization), it can be shown that
there is no general mathematical way to connect SNR and CDP
without further assumption. Possible connections between SNR
and CDP that are based on weak assumptions towards the proba-
bility densities are not within the scope of this paper.

Experimental results
For a first insight of the KPI’s development the imaging

chain according to fig. 11 is evaluated and the SNR and CDP
are measured in their temporal order. Fig.28 shows how SNR
and CDP develop along the imaging chain and a 500%,100% and
30% Weber contrast have been evaluated for CDP, all referring to
the same SNR values, which are evaluated by a uniform intensity
patch at the average intensity of the CDP contrast intensities.

The figure shows that the SNR decreases from a very large
number in the photon domain of 150dB down to < 20dB. One can
observe the unwanted effect that the SNR increases at two stages
if SNR is measured in the signal domain of the corresponding
blocks:

• Adding veiling glare photons at the windscreen, the SNR
increases because adding another Poisson random variable
increases the signal value, but the noise characteristics re-
main poissonic.

• Tone mapping increases the SNR as well because here the
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standard deviation of the signal gets decreased by quantiza-
tion effects. Consequently the SNR value increases.

In both cases we have shown in the imaging chain analyses that
the image quality in fact degrades. Therefore it is not useful to
measure SNR in output domain if the goal is to describe image
quality with SNR. False increases of such a wrongly designed
KPI may lead to wrongly specified system components.

If we transfer the measured data numbers back into the orig-
inal input domain (in our example always cd

m2 ) then the SNR be-
haves as expected in the shown example of I = 20 cd

m2 . But in the
next section we will show later that this is unfortunately not al-
ways the case.

Considering the CDP, we can observe that for the same SNR
values the systems reaction to detect different contrasts differs.
Due to the fact that CDP is a probability the values are bound to
the interval CDP ∈ (0,1), which makes a detailed analysis much
easier than with the unbound SNR values. Very large SNR num-
bers don’t increase contrast detection probability any more, and
useless for the requirement evaluation. CDP decreases with each
step of the imaging chain as does the image quality, therefore
these CDP results are as expected from the image quality anal-
ysis.

Given the direct link towards contrast detectability, CDP is
to favor over the SNR when it comes to specify a system perfor-
mance and the components inside the system.

Figure 28: Overview of the KPI development along the effect
chain. The SNR measure increases although the signal is de-
graded, e.g. through veiling glare at the windshield and after tone
mapping. SNR in the cd

m2 domain behaves as expected, but does
not mirror directly the impact onto the imposed requirement. CDP
shows the detection probability of a 100% contrast and how it is
degraded by the several steps in the imaging chain. The require-
ment can be judged directly

Fig.28 did show the development of the KPIs given the only
one illumination of 20 cd

m2 . However to judge an imaging system,
the performance over the whole dynamic range of the scene needs
to be analyzed.

For the next plots, fig.28 showed that signals before the opto-
electrical conversion do not degrade the image quality. Fig. 29
and fig. 30 therefore show the development of the KPIs SNR and
CDP starting with the opto-electrical conversion, but evaluate a
single exposure imaging chain over all illuminances.

SNR Bad Practice: Fig. 29 emphasizes the above statement to
never measure the SNR in the component’s signal domain. If this
is done effects like in the left hand side of the plot will appear:

• The tonemapped SNR is higher than the SNR achieved by
the optical output, which does not correlate to the observed
image quality.

• At the capacitor level, the fact that 0 electrons are quantized
leads to the SNR values above the optical signal.

• The same happens for the HDR-Output where the SNR
might lead to higher values than possible due to quantiza-
tion effects.

Compared to the observed image quality from the imaging chain
analysis the SNR values do not correlate to the image quality.

Figure 29: SNR and CDP comparison. CDP for a 30% contrast.
SNR correlates not to image quality, as reduced image quality
in tone mapped and HDR output is observed, while SNR is in-
creased. From for less than 10 cd

m2 SNR does not drop according to
the image quality degradation. CDP however is always below the
optical CDP and therefore maps the image quality for the given
requirement.

SNR Good Practice: If the SNR is calculated in the domain of
the physical system input (e.g. cd

m2 ), the above described negative
SNR effects become obsolete (see fig.30). But still at points below
−5dB for this setup one can observe a crossing point between
the optical SNR and the SNR calculated back from the quantized
digital numbers which does not correlate to the demanded image
quality description.

In our example this −5dB point is located in the area for
very low light performance. There exist techniques to increase
the SNR at this points, however their impact onto the contrast de-
tection probability has not been shown. For example a black level
cut of the signal might increase the SNR of the signal drastically
in this region, leading to improved visual image quality but result-
ing into a decreased contrast detection probability. Therefore only
if the CDP is increased as well by the black level compensation
the effect is of value for the system performance.

With respect to the SNR and CDP comparison, we observe
that once the capacitor reaches its full well level, the CDP con-
verges to 0% while the SNR converges to infinity. This is due to
the fact that more and more pixels achieve saturation and therefore
the standard deviation gets reduced when calculating the SNR.
For the CDP, the difference between the two contrast levels be-
comes 0 if the full well level is reached and therefore the CDP
drops to 0 this correlates will to the observed image quality, the
SNR increase does not.
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In the SNR measurements oscillations in the tone mapped
signal occur which exceed the SNR value that is possible by the
optical signal even before the full well level is reached. This leads
to the effect that if only the tone mapped signal is available, the
calculation back to the cd

m2 domain results in too high estimates
of the image quality when judged by SNR. The CDP shows the
mentioned oscillations as well, however they are limited below
the contrast detection ability of the optical signal. The reason for
these oscillations are quantization effects that arise due a limited
count of digital numbers.

Figure 30: SNR and CDP for 30% contrast comparison. SNR is
measured in cd

m2 dimension. SNR stops to decrease for intensities
less than 1 cd

m2 . And SNR oscillations exceed the optical SNR val-
ues. CDP behaves in accordance to image quality always below
the optical CDP. Oscillations are visible according to quantization
in the tone mapping

HDR Sensors
A single exposure is not able to capture a high dynamic range

scene. Therefore SNR and CDP are evaluated for an image sen-
sor model that uses a staggered HDR approach. Here we use the
above mentioned imaging chain and use a 3-fold exposure with
expose ratios of 100. For the simulated sensor this is necessary
to cover the dynamic range of 140dB needed for scene like the
tunnel exit.

Fig. 31 shows the concatenated SNR plots of the three expo-
sures, including the combined HDR output and the tonemapped
8-bit signal. Due to limited bits for the HDR signal it saturates
before the third exposure has reached its full well capacity. Such
a behavior should be avoided by a good exposure control, but also
shows how the ISP setup may limit the sensor’s performance. The
CDP part of the plot is generated for a 30% contrast and reveals
that the SNR drop which go below 20dB SNR result in less than
50% contrast detection probability for such contrasts. For a hu-
man perception, objects are hard to identify if randomly more than
50% of their features become are wrongly depicted. Therefore the
limit of 50% CDP is a good indicator for a threshold of visibility
and detectability. As mentioned before such a clear interpretation
is not possible in the SNR domain.

To demonstrate the effect of lost detectability in the SNR and
CDP drops, the cyclist that has been analyzed in fig. 10 is trans-
ferred into a reflectance map and used as input for the imaging
chain. Fig. 32 shows the a cyclist with 30% contrast, evaluated

at certain illuminations. It can be observed that the cyclist dis-
appears even though the illumination has increased from 500 cd

m2

to 900 cd
m2 . This is a paradox effect as more light actually guaran-

tees a better detectability. Thus the operation mode if this image
sensor makes it impossible to detect the cyclist at certain illumina-
tion levels. The covered dynamic range of the sensor is however
unchanged at 140dB.

To emphasize the above discussion, fig. 33 shows the plot
for 500% contrast requirement. While the SNR numbers remain
unchanged, the CDP does never drop below 80%. Fig. 34 shows
the same evaluation as 36 but this time the object of interest with
a 500% contrast. The object is detectable throughout the whole
dynamic range as predicted by the CDP evaluation.

Concluding, the analysis of the objects in question for the
required use cases has to be ombined with the KPI contrast detec-
tion probability to judge and forecast the systems ability to detect
the object or not.

Low Light Requirement Engineering
For the requirement derivation of low light performances,

the SNR = 1 point is currently state of the art for specification
and classification. Investigating this practice, fig. 33 shows this
point at around 1 cd

m2 . The SNR = 15 level is reached at around
10 cd

m2 CDP evaluates at the 1 cd
m2 point to 40% and for 10 cd

m2 for
the CDP = 80%. Thus we do not expect to detect the 500% con-
trast traffic sign at the SNR = 1 point. At the SNR = 15 point
this is however possible according to the CDP values and fig. 35
confirms these judgments.

Given the task to detect the 30% cyclist, the CDP evaluates
to 10% at the SNR = 1 point with 1 cd

m2 and evaluates to 40% at
the SNR = 15 point at 10 cd

m2 . Fig. 36 confirms that the cyclist is
not detectable in either case.

Concluding the performance specification for low-light sce-
narios should also be evaluated using object contrasts to obtain a
good system performance. If that is not done the wrong SNR val-
ues get specified and the image sensors might get tuned towards
the wrong goal.

Figure 31: SNR and CDP for 30% contrast and a 3-fold staggered
HDR sensor, covering a 140dB illuminance range
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(a) 500 cd
m2 , detectable (b) 700 cd

m2 , starting to become noisy

(c) 900 cd
m2 , not detectable (d) 3000 cd

m2 , possilbe detection
Figure 32: Verification to fit the requirement analysis of fig. 31
onto a real life reflectance target. Paradox effect: Even with dou-
bled amount of light the object disappears due to the sensor’s
operation mode. At 900 cd

m2 , the cyclist is not detectable and the
CDP < 50% according to sensor analysis.

Figure 33: SNR and CDP for 500% contrast and a 3-fold stag-
gered HDR sensor, covering 140dB scene dynamic

(a) 500 cd
m2 , detectable (b) 700 cd

m2 , detectable

(c) 900 cd
m2 , detectable (d) 3000 cd

m2 , detectable
Figure 34: Same sensor setup as in fig. 32, however with a 500%
contrast in the object: traffic sign. The sign is always detectable,
which is confirmed by a CDP¿90% over the whole dynamic range.

(a) (b)
Figure 35: Low light requirement analysis for a traffic sign. 35a:
500% contrast traffic sign at 1 cd

m2 and CDP= 40%, not detectable.
35b: 500% contrast traffic sign at 10 cd

m2 and CDP = 80%, well
detectable

(a) (b)
Figure 36: Low light requirement analysis for the cyclist. 36a:
30% contrast cyclist at 1 cd

m2 and CDP= 10%: not detectable. 36b:
30% contrast cyclist at 10 cd

m2 and CDP = 40%: not detectable.
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Outlook and Summary
In this paper we have emphasized the importance of safety

relevant performance parameters for the automotive industry.
Specific examples from the field of image quality have been used
to derive performance KPIs. Therefore an analysis over the sys-
tem’s performance along a safety relevant critical effect chain
has been conducted and we demonstrated that currently accepted
KPIs such as SNR do not allow a precise and meaningful require-
ment derivation. We proposed a probabilistic approach for con-
trast detection, the contrast detection probability as a new KPI.
As a result the requirement engineering along the effect chain es-
pecially for safety relevant use cases appears transparent and un-
derstandable.

The proposal of CDP as new KPI is currently under discus-
sion within the P2020 work group on automotive image quality.
The general approach to use detection probabilities in addition
the classic KPIs is also discussed and under development. For
example in this paper only one contrast has been judged against
its influencing variables. In other fields of image quality, for ex-
ample for color requirements, a similar approach is developed to
specify a color separation probability (CSP) and to judge the sys-
tems geometric resolution via a geometric resolution probability
(GRP).

The backbone of these ideas lies in the fact that the basic
signal is a stochastic process and therefore should be described
with KPIs based on random variables. In the near future safety
relevant use cases will be pushed in the focus of development and
a clear and easily understandable requirement derivation has to be
conducted. The presented approach offers a possible solution to
face this challenge.

.
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