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Abstract 
This paper explores the use of existing methods found in image 

science literature to perform ‘first-pass’ specification and modeling 

of imaging systems intended for use in autonomous vehicles. The use 

of the Johnson Criteria [1] and suggestions for its adaptation to 

modern systems comprising neural nets or other machine vision 

techniques is discussed to enable initial selection of field of view, 

pixel size and sensor format. 

More sophisticated Modulation Transfer Function (MTF) 

modeling is detailed to estimate the frequency response of the 

system, including lower bounds due to phase effects between the 

sampling grid and scene [2]. A signal model is then presented 

accounting for illumination spectra, geometry and light level, scene 

reflectance, lens geometry and transmission, and sensor quantum 

efficiency to yield electrons per lux second per pixel in the plane of 

the sensor. A basic noise model is outlined and an information 

theory based approach to camera ranking presented. Thoughts on 

progressing the above to look at color differences between objects 

are mentioned. 

The results from the models are used in examples to 

demonstrate preliminary ranking of differently specified systems in 

various imaging conditions. 

Introduction 
The application of deep learning to self-driving vehicles has 

become a tractable challenge in recent years. As a result, the number 

of cameras on new vehicles is expected to increase significantly and 

questions around the optimum quality and configuration of these 

systems have started to arise. 

Quite clearly the ultimate needs of Advanced Driver Assistance 

Systems (ADAS) are different from those intended for the human 

visual system (HVS). Information is required to be extracted from 

the images for an ADAS system in a timely manner that is intended 

to control a vehicle, whereas images for human consumption are 

generally optimized for aesthetic image quality, or to permit a 

human observer to extract information. This immediately leads to 

differences in system configurations, such as resolution and pixel 

size. Any resolution beyond the needs for the driving task burdens 

ADAS systems with unnecessary computation and the need for fast 

response times and low motion blur decreases exposure times, 

increases frame rates required and ultimately the sensitivity needs 

of the pixel. Cameras that produce images for human consumption 

generally cover a wide range of artistic intent and rendering, from 

portraiture to landscape, and phone screens to large prints. Pixel 

counts tend to be higher and time constraints on processing are not 

nearly as prescriptive. 

These differences further lead to alternative color filter array 

choices to be made and practical differences in the in the tuning of 

image signal processing pipes (ISPs) designed for each. RCCC and 

RCCB versus the typical RGGB arrangements are common for 

ADAS systems as well as adjustments in demosaic, noise, 

sharpening and color processing blocks. 

Until we fully understand what is required by neural networks 

to maximize performance we should treat them as alien observers. 

Quality requirements for human viewing may be a good starting 

point and perhaps where fundamental features are specified in early 

neural layers we can get some clues about what would maximize 

output from neurons by examining them closely. In networks where 

no low-level features are defined, however, we do not get these 

clues. In short, the industry still has a long way to go to arrive at 

neural network calibrated image quality metrics in a similar manner 

to psychovisually calibrated image quality metrics from the likes of 

Keelan et al. [3]. Compounding this at a system level, the way in 

which objects are memorized, tracked and their trajectory 

anticipated in the human visual system is highly advanced. Neural 

networks largely identify objects on a frame by frame basis after 

which they are fed into tracking and motion algorithms. 

A number of the fundamentals that we take for granted in the 

field of pictorial imaging should be reexamined. For example, there 

is no standard “Macbeth” chart for automotive scenes. Road sign 

and marking colors, asphalt, concrete, and the mean color for a car 

would be useful to have access to and standardize for the comparison 

of measurements. Many of the assumptions around reflectivity of 

objects need to be updated as retroreflective materials are often used 

in signage and far from Lambertian. Standard spectra need be agreed 

upon for analysis involving the traffic signals, headlamps, tail 

lamps, nighttime rural and city skies etc. in a similar manner to those 

already derived for daylight, tungsten and fluorescent spectra by 

organizations such as the Commission Internationale de l’Eclairage 

(CIE). 

In this instance imaging science is catching up with the rapid 

progress of practical application the field, but there is a wealth of 

existing knowledge, especially in medical and defense imaging, that 

may be drawn upon. We should be using this work more heavily to 

analyze and guide the design of automotive cameras and not 

reinvent the wheel. The most useful analysis will ultimately rate the 

ability of these systems to perform the tasks they are designed for 

and this intent should be kept at the forefront of analysis efforts. 

Johnson Criteria 
Johnson was perhaps the first person to objectively link task 

performance to imaging system parameters in a meaningful way in 

the 1950’s [1]. Richardson et al. have an accessible description of 

the approach [4]. Through experimentation, Johnson determined the 

number of cycles, or line pairs, that were required for personnel to 

perform various tasks, such as detection, recognition or 

identification of a target. Despite the large variety in targets, ranging 

from people to tanks, he found that the number of cycles needed to 

perform each task correlated well with the smallest object 

dimension. His tasks were, detection, orientation, recognition and 

identification. Detection is merely confirming “something” is there, 

without knowledge of what it is. Orientation, which way “it” is 

pointed. Recognition allows the determination of the class of object, 

person, tank, plane etc. and identification the type, e.g. T72 Tank. 

The number of cycles derived by Johnson were 1±0.25, 1.4±0.35, 

4±0.8 and 6.4±1.5 respectively. These are usually simplified to 1, 2, 
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4 and 8 cycles. Figure 1, shows the appearance of an object rendered 

using each of the criteria above. 

 

(a)   (b)  

(c)   (d)  
Figure 1. Rendering of an object using the Johnson criteria. (a) One cycle or 
detection, (b) two cycles or orientation, (c) four cycles or identification and (d) 
eight cycles or recognition. 

 

Figure 2. The geometry of the thin lens equation. 

The power of using the Johnson criteria is that combining this 

with the thin lens equation [5], Eq.1, Figure 2, we can quickly 

estimate the relative performance of an imaging system to conduct 

a task. The thin lens equation states: 

1

𝑓
=

1

𝑢
+

1

𝑣
  (1) 

where f is focal length, v is object distance and u the distance 

from the lens to the image. When object distance, v, is large, 
1

𝑣
→ 0, 

and 
1

𝑓
≈

1

𝑢
, so 𝑓 ≈ 𝑢. We will now refer to v as range, r. From Figure 

2, we can see similar triangles are formed between points ABC and 

CDE and therefore: 

ℎ𝑖

𝑓
=

ℎ𝑜

𝑟
  (2) 

where hi is image height, ho, object height, f, focal length and 

r, range. We know our pixel size, p, and we know the number of 

cycles that we require to perform the task according to the Johnson 

criteria, n. Therefore, the image height needed to complete that task 

is simply: 

ℎ𝑖 = 2𝑛𝑝  (3) 

Substituting Eq.(3) into Eq.(2) we find a pixel size needed to 

complete a given task at a given range for a specified object size, 

Eq.(3). 

𝑝 =
ℎ𝑜𝑓

2𝑛𝑟
  (4) 

It is worth reiterating here that it is the minimum object 

dimension that is used. i.e. for a 1.8×0.5m person we would use 

0.5m. Equation 4 is not in a convenient form to use in practice. More 

commonly we start with sensor dimensions and have an idea of the 

field of view for a specified lens. Given the pixel size as before, the 

number of active pixels in the horizontal direction, AHOR, and the 

horizontal field of view, FOVH, the focal length of the lens is given 

by: 

𝑓 =
𝑝𝐴𝐻𝑂𝑅

2 tan(
𝐹𝑂𝑉𝐻

2
)
  (5) 

Rearranging Eq.(4) we can find the number of cycles, hence 

the capability to perform a task, at a particular range for a given 

object size: 

𝑛 =
ℎ𝑜𝑓

2𝑝𝑟
  (6) 

The equation is intuitive, and a number of basic observations 

can be made. Object size and focal length are in the numerator, so 

as object size and focal length increase the number of cycles 

increases and we can perform more sophisticated tasks with our 

image at longer ranges. Double either the object size or focal length, 

we double the distance at which we can perform that task. Pixel size 

and range are in the denominator and as pixel size and range 

increase, the number of cycles decreases, and we can do less with 

our image. We may also see that, to a first order, pixel size and focal 

length will drive system size for a constant aperture. Figure 3 shows 

curves for the number of cycles on Euro NCAP, child, adult and 

bicyclists [6] for a sensor with 2000, 3um square pixels in the 

horizontal direction with a 60-degree field of view lens. 

 
Figure 3. Johnson Criteria for Euro NCAP objects calculated using an imaginary 
camera system with a 60-degree HFOV with a horizontal pixel count of 2000 
and pixel size of 3.0um. Euro NCAP Adult is 1.8x0.5m, Child 1.154x0.298m and 
Bicyclist 1.865x1.89m [7]. 

105-2
IS&T International Symposium on Electronic Imaging 2018

Autonomous Vehicles and Machines Conference 2018



 

 

The Johnson criteria has several shortcomings and really only 

provides first order rank of camera systems. It was developed for 

human observers looking through image intensifiers. We should not 

expect it to work without modification for automotive imaging. We 

can readily update the number of cycles, however, needed to 

perform a particular task, such as reading the text on a STOP sign, 

or identifying a traffic light using a convolutional neural network 

(CNN) or machine vision algorithm. Johnson does not account for 

f-number, exposure, atmospheric conditions, or noise and we should 

expect the performance in low light or fog to be completely 

different. Even the addition of these factors may not be sufficient. 

For example, atmospheric scattering is generally exponential with 

distance. Additionally, the Johnson criteria is very poor at predicting 

the visibility of self-luminous objects at sub-pixel sizes, namely 

lights. Johnson is a resolution metric, rather than a signal metric and 

as such it is unable to account for shear power transmitted by point 

sources into the point spread function. What it does give us however 

is a very quick way to rank systems in terms of their likely 

performance in reasonable imaging conditions based on imaging 

geometry. Figures 4 and 5 demonstrate Johnson as applied to a 

commercially available camera with a f/2.4, 3.3mm, 56-degree 

horizontal field of view lens, and 3264×2448 1.12um pixel sensor. 

Figure 4 shows number of cycles versus distance for 20.3cm (8 in) 

lettering on a 1.70m wide sign and Figure 5 the corresponding image 

sequence at various distances for that sign. Despite the simplicity of 

the approach, it does a credible job of predicting a measure of task 

capability for the images for human viewing. Updating the number 

of cycles needed for network performance could be a relatively 

simple task. Data transport, computational burden and thermal 

dissipation are directly related to pixel count and having a tool to 

optimize these at an early stage aides system design enormously. 

Modulation Transfer Function and Point 
Spread Function 

Not all pixels are created equal and a more sophisticated 

approach to modeling resolution through a system is afforded by the 

transfer function, M(), which is the Fourier Transform of the point 

spread function. The modulus of M() is the Modulation Transfer 

Function (MTF). Signal transfer of any number of components, such 

as lens, pixel, demosaic and crosstalk may be estimated, and the 

system response computed by cascading the transfer functions of the 

individual components, as shown in Eq.7. 

𝑀𝑆𝑌𝑆(ω) = 𝑀𝐿𝐸𝑁𝑆(ω) × 𝑀𝑃𝐼𝑋(ω) × 𝑀𝐷𝐸𝑀(ω) ×
𝑀𝐶𝑅𝑂𝑆𝑆(ω)  (7) 

Performing calculations in this manner, the effect of aperture 

on system resolution may be included. For a diffraction limited lens, 

given wavelength 𝜆 and the f-number, MLENS(ω) is calculated using 

[7]: 

𝑀𝐿𝐸𝑁𝑆(𝜔) =
2

𝜋
[cos−1 𝜔

𝜔0
−

𝜔

𝜔0

√1 − (
𝜔

𝜔0
)

2
] (8) 

where 

𝜔0 =
1

𝜆(𝑓−𝑛𝑢𝑚𝑏𝑒𝑟)
  (9) 

 
Figure 4. Johnson curve for a commercially available f2.4 3264x2448 1.12um 
pixel camera with 56-degree horizontal field of view imaging 20.3cm (8 in) text. 
Markers represent distances at which images were captured in Figure 5. 

(a)  (b)  

(c)  (d)  

(e)  
Figure 5. Crops of traffic sign images from the sequence captured by the system 
described in Figure 4. The Johnson curve in Figure 4 indicates that the writing 
should be ‘undetectable’ in (a) 0.54 cycles, ‘detectable’ in image (b) 1.02 cycles, 
it’s orientation largely ‘discernible’ in (c) with 1.67 cycles, recognized as writing 
in (d) 4.66 cycles and identifiable (completely legible) in (e) with 8.85 cycles. 

For more representative results, MLENS(ω) can be computed for 

each wavelength under consideration and an average calculated, and 

weighted according to the system quantum efficiency at each of 

those wavelengths. Further, the f-number used in the calculation 

may be de-rated as suggested by Keelen [8] to simulate typical lens 

performance. Pixel response, MPIX(ω), may be calculated using: 

𝑀𝑃𝐼𝑋(ω) = 𝑠𝑖𝑛𝑐(𝜋𝑝𝜔)  (10) 

where p is the pixel size and ω, spatial frequency, as 

previously. It should be noted, however, that this result gives the 

optimum spatial frequency response for the pixel, when the signal is 

precisely in phase with the sampling grid. Jenkin [9] and others [10] 
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have shown that when the sampling grid is out of phase with the 

signal, the frequency response degrades. It may be shown that when 

considering all possible phase differences between the signal and the 

sampling grid, the minimum possible response is [9]: 

𝑀𝑃𝐼𝑋𝑀𝐼𝑁
(ω) = (

cos(𝜋𝜔𝑠) sin(𝜋𝜔𝑝)

𝜋𝜔𝑝
)  (11) 

where s is the sampling pitch. The average response is then 

given by [9]: 

𝑀𝑃𝐼𝑋𝐴𝑉𝐸
(ω) = (

cos2(
𝜋𝜔𝑠

2
) sin(𝜋𝜔𝑝)

𝜋𝜔𝑝
)   (12) 

where all terms are defined as previously. It is argued that for 

safety critical systems, the average or phase de-rated transfer 

functions are more appropriate estimates of pixel response. The line 

spread functions (LSFs) calculated from the above result 

corresponding to the minimum response is shown to be equivalent 

to two neighboring pixels [2]. Figure 6 shows the maximum, 

minimum and average transfer functions calculated for a 3μm pixel.  

It is possible to calculate LSFs from the MSYS(ω) by taking the 

modulus of the inverse Fourier transform. To increase sample points 

in the resultant LSF and to avoid aliasing and false high frequencies 

being introduced, mirroring MSYS(ω) around the DC (zero 

frequency) value and padding with an equal number of zero points 

to yield a curve that is four times the size of the original MTF is 

recommended. Figure 7 shows MSYS(ω) modeled for an imaginary 

3.75μm pixel f/2.4 system, for the sampling grid in and out of phase, 

Eqs 10 and 11.  Crosstalk and demosaic have been omitted for 

simplification. Figure 8 shows the corresponding LSFs. 

Determining the width of the LSF using an appropriate criterion 

such as the full-width-half-max(FWHM) or 80% encircled energy 

yields a consistent manner to calculate an effective pixel size (cell 

size) to use in a Johnson criteria type calculation. This in turn allows 

the relative performance of systems with different pixel sizes and 

apertures to be predicted and compared.  

Signal Modeling 
Resolution modeling does not yield a complete picture of the 

performance of any imaging system as sensitivity to light will also 

determine whether signals are recorded at a threshold where they 

can be detected. There are many approaches recorded in the 

literature. Richardson details one of the most accessible that can 

readily be modified for automotive imaging [11,12]. 

Ambient light level and its color temperature are first specified 

in lux and kelvin, LAMB, and CTAMB respectively. Photometric units 

are used as they are familiar and easily understood. Scaling for the 

radiometric properties of the illumination falling outside of the 

sensitivity of the human visual system is included in the calculation 

as follows. For convenience a blackbody curve is generated at the 

specified color temperature, CTAMB, to model the spectrum of the 

illumination. In practice this could be any illumination spectra 

specified in Wm-2μm-1 [4]. 

𝑊(𝜆) =
𝐶1

𝜆5[𝑒
𝐶2

𝜆𝐶𝑇𝐴𝑀𝐵−1]

  (13) 

 

Figure 6. The maximum (in phase), minimum (out of phase) and average 
transfer functions for a 3.0um pixel [2]. Note that the transfer function below 
zero represents a phase reversal of the signal. 

 

Figure 7. Maximum and minimum transfer functions calculated for an imaginary 
3.75μm pixel, f2.4 system with the sampling grid in and out of phase with the 
signal. Also shown is the f2.4 lens transfer function calculated using a 
wavelength of 550nm. 

 

Figure 8, Line Spread Functions(LSFs) and corresponding encircled energies 
for the system transfer functions shown in Figure 7. Widths of LSFs are 
calculated at FWHM and 80% encircled energy. 

105-4
IS&T International Symposium on Electronic Imaging 2018

Autonomous Vehicles and Machines Conference 2018



 

 

where C1 is the first radiation constant, 3.74x108 Wm-2μm-4, and C2 

the second radiation constant, 1.44x104 μmK-1 [12]. The relative 

spectral luminous efficiency curve, V(𝜆), of the CIE is scaled by the 

peak luminous efficacy of human vision (683 lumens per watt at 555 

nm) [13] and multiplied by the blackbody curve above then 

integrated to yield the total lux, LSOURCE, represented by the 

illumination curve generated: 

𝐿𝑆𝑂𝑈𝑅𝐶𝐸 = 683. ∫ 𝑊(𝜆). 𝑉(𝜆)𝑑𝜆
𝜆𝑀𝐴𝑋

𝜆𝑀𝐼𝑁
  (14) 

where λMAX  and λMIN are the maximum and minimum 

wavelengths of interest.  

The object is considered a Lambertian reflector with reflection, 

ROBJ, and thus the light scattered, LREF, by the object in units of lux 

m-2str-1 is [12]: 

𝐿𝑅𝐸𝐹 =
𝑅𝑂𝐵𝐽.𝐿𝐴𝑀𝐵

𝜋
  (15) 

A factor, LSCALE, by which to multiply W(𝜆) may then be calculated, 

Eq.16, to yield the blackbody curve correctly scaled to the wattage 

required to yield the lux reflected from the object. We then multiply 

by the absolute quantum efficiency curve of the sensor, Q(𝜆), and 

absolute transmission of an infrared filter, I(𝜆), to yield the spectrum 

of light available to the sensor in Wnm-1m-2str-1 before lens and pixel 

geometry are considered, P(𝜆). 

𝐿𝑆𝐶𝐴𝐿𝐸 =
𝐿𝑅𝐸𝐹

𝐿𝑆𝑂𝑈𝑅𝐶𝐸
  (16) 

and  

𝑃(𝜆) =  𝐿𝑆𝐶𝐴𝐿𝐸 . 𝑊(𝜆). 𝐼(𝜆). 𝑄(𝜆)  (17) 

The solid angle, ᘯ, of the lens collecting the signal reflected from 

the projected pixel area is [12]: 

Ω =
𝜋𝐷𝑂𝑃𝑇𝐼𝐶𝑆

2

4𝑟2
 (18) 

where, DOPTICS, is the effective diameter of the lens and r is range as 

previously. Multiplying by the solid angle and transmission of the 

lens, TOPTICS, yields the power per nm per square meter, PSENSOR, 

captured by the sensor: 

𝑃𝑆𝐸𝑁𝑆𝑂𝑅(𝜆) =  𝐿𝑆𝐶𝐴𝐿𝐸 . 𝑊(𝜆). 𝐼(𝜆). 𝑄(𝜆). Ω. 𝑇𝑂𝑃𝑇𝐼𝐶𝑆  (19) 

Multiplying by the area of the pixel, APIXEL, yields the power per 

nm per pixel. 

𝑃𝑃𝐼𝑋𝐸𝐿(𝜆) =  𝐿𝑆𝐶𝐴𝐿𝐸 . 𝑊(𝜆). 𝐼(𝜆). 𝑄(𝜆). Ω. 𝑇𝑂𝑃𝑇𝐼𝐶𝑆. 𝐴𝑃𝐼𝑋𝐸𝐿  

 (20) 

The energy per photon, E(𝜆), is calculated using: 

𝐸(𝜆) =
ℎ𝑐

𝜆
  (21) 

where h is Plank’s constant, 6.62x10-34 m2 kg s-1, and c is the speed 

of light, 299792458 ms-1. Dividing PPIXEL(𝜆) by E(𝜆), multiplying 

by the integration time, TINT, and integrating yields the total number 

of photoelectrons captured by the pixel, PHPIXEL: 

𝑃𝐻𝑃𝐼𝑋𝐸𝐿 = ∫
𝑇𝐼𝑁𝑇.𝑃𝑃𝐼𝑋𝐸𝐿(𝜆)

𝐸(𝜆)
𝑑𝜆

𝜆𝑀𝐴𝑋

𝜆𝑀𝐼𝑁
  (22) 

Finally, if the total number of photons calculated as being detected 

by the pixel exceeds the linear full well for the pixel, the total 

number of photons is clipped at that value. 

Headlamps 
A rudimentary model of headlamps may be created by 

specifying a color temperature, CLAMP, and luminous flux, LFLAMP, 

that is emitted into an elliptical beam of horizontal angle, αH, and 

vertical angle αV, Figure 9. The horizontal, SH, and vertical, SV, semi-

radii, at range, r, are then calculated: 

𝑆𝐻 = 𝑟 tan (
𝛼𝐻

2
)  (23) 

𝑆𝑉 = 𝑟 tan (
𝛼𝑉

2
)  (24) 

The cross-sectional area of the headlamp beam, ALAMP, is simply: 

𝐴𝐿𝐴𝑀𝑃 = 𝜋𝑆𝐻𝑆𝑉  (25) 

and thus the number of lux per square meter falling on the 

object provided by the headlamp, LLAMP, is the total luminous flux, 

LFLAMP, divided by the area, ALAMP, provided the beam size is larger 

than the object considered: 

𝐿𝐿𝐴𝑀𝑃 =
𝐿𝐹𝐿𝐴𝑀𝑃

𝐴𝐿𝐴𝑀𝑃
 (26) 

Calculations may then proceed from the point of generating 

and scaling the illumination spectra generated for the color 

temperature, Eq.13 onwards, to yield the total number of photons 

generated per unit exposure for the headlamp. The ambient and 

headlamp components may then be combined to yield the total 

photoelectrons in the pixel. The ambient and headlamp components 

should be calculated separately as they will likely have significant 

color temperature differences. Further, as models are developed to 

incorporate retroreflective material behavior, the response from 

each is likely to be different based on geometry. It should also be 

noted that we ignore the area where light from both headlamps 

overlap in this calculation, and that we have assumed a uniform 

beam with elliptical symmetry, the area of which scales in 

proportion to the distance. In reality, the beam is not symmetric (to 

 

Figure 9. Headlamp model describing the spread of the luminous flux, LFLAMP 
into area ALAMP = πSvSh at range, r. The vertical and horizontal angle of the 
beam is αv and αh respectively. The solid angle of the headlamp, ΩLamp = ALamp 
/ r2. 
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avoid blinding the oncoming traffic) and the contribution of 

multiple headlamps must be considered. Figure 10, shows however, 

that within approximately 40 meters, the contribution of a typical 

1500 lumen headlamp is a significant proportion of the total 

illumination against a 2 lux ambient light level. 

 

Figure 10. Example of model for 1500 lumen, 3200k headlamp casting light into 
a 60x30 degree elliptical beam. Also shown is a 2 lux ambient background light 
level to yield the total lux falling onto the object versus distance. 

Noise Modeling 
Noise degrades the detectability of signals, especially in low 

light conditions. There are many sources of noise in imaging 

systems and it would be tempting to generate a dozen or so terms to 

model this. Holst and Lomheim provide a good overview of these 

and we concentrate on the most significant terms here [14]. 

Generally, we may divide these into signal dependent and 

independent sources. Whilst signal dependent sources are 

troublesome, independent are more so as they remain at a fixed level 

as the signal diminishes and tend to determine the performance of 

the camera system at low light levels. The relative levels of 

dependent and independent noise can also yield a crossover point 

where in high light levels, System A may be preferred over B, 

whereas in low light conditions System B may well be the better 

choice. 

Our first signal dependent noise source, photon shot noise, 

NSHOT, is due to the quantum nature of light, a Poissonian process, 

and increases as the variance of the mean signal [15]. Therefore, an 

exposure of N quanta will yield shot noise of √N. Pixel-to-pixel 

variations in sensitivity, or pixel response non-uniformity (PRNU), 

NPRNU, may simply be modelled as a percentage of the mean signal 

level. Read noise, NREAD, is signal independent and may be thought 

of as being generated by any process that reads the signal. This is 

usually expressed as a root mean squared fixed number of electrons. 

Dark current, a second signal independent source, is caused by 

thermal generation of carrier pairs in the bulk silicon. It is usually 

expressed as the number of carriers per ms at a nominal temperature, 

usually junction temperature. 

Dark current adds its own shot noise to the signal, with a 

standard deviation of NDARK. Independent noise sources add via 

quadrature and thus the total noise, NTOTAL, in an exposure is given 

by [15]: 

𝑁𝑇𝑂𝑇𝐴𝐿 = √𝑁𝑆𝐻𝑂𝑇
2 + 𝑁𝑃𝑅𝑁𝑈

2 + 𝑁𝑅𝐸𝐴𝐷
2 + 𝑁𝐷𝐴𝑅𝐾

2 (22) 

Read noise and dark current generally vary according to pixel 

size. Elementary models of this variation will affect results at low 

light levels when attempting to optimize for pixel size. 

The signal to noise ratio may now be calculated using the 

results from the above signal and noise modeling for various object, 

lighting and imaging properties. For objects with an image greater 

than one pixel in size, the signal should be above the noise floor to 

be detectable. Further, a threshold SNR may be set to determine if 

the object is detectable by an algorithm. Richardson details an 

approach to signal modeling for objects where the image is less than 

one pixel in size [12]. 

Information Theory Approach to Camera 
Ranking 

A challenge that remains is combining resolution, signal and 

noise models into a method that allows the comparison of camera 

systems that have competing aims. For example, Camera A, may 

have high sensitivity due to a larger pixel, but low resolution, 

whereas Camera B may trade this sensitivity for resolution, by 

having smaller pixels. Compounding this may be different focal 

lengths, f-numbers of lenses used, as well as choices of color filter 

array and available quantum efficiency versus the spectra of light 

available for detection.  

A great deal of performance analysis of neural networks relies 

on modification and use of information theory [16]. If neural 

network performance does increase as the information made 

available to it increases, then we might assume, that to a first order, 

a camera capable of providing more objective information 

describing a given scene or target would be desirable. Of course, a 

secondary concern is that, above a certain threshold, increase in 

network performance may well be asymptotic with a given increase 

in information leading to diminishing returns for increasing camera 

cost. Additionally, once network performance is sufficient for the 

task at hand, namely driving, any additional system cost is 

superfluous. 

Information capacity, C, describes the ability of a system to 

store or transmit information in an objective manner and may be 

generally defined as [17]: 

𝐶 = 𝑛 log2 𝑚  (23) 

where m is the number of independent levels a symbol may 

transmit and n the total number of symbols. Using the above for 

example, the maximum information that may be carried by a 

640×320 pixel, 256 level image would be: 

 𝐶 = 640 × 320 log2(256) = 204800 × 8 =
1638400 𝑏𝑖𝑡𝑠 = 204800 𝑏𝑦𝑡𝑒𝑠 = 200 𝐾𝑏.  

Jenkin has previously detailed the estimation of the information 

capacity of an imaging system [18], and we only superficially 

describe it here.  

Earlier, it was shown that MTF modeling may be used to 

calculate an effective cell size for an imaging system via conversion 

to the LSF and subsequent determination of encircled energy or LSF 

width at a specific signal level. The total number of symbols, n, in 

the image is then: 

𝑛 =
𝐴𝑆𝐸𝑁𝑆𝑂𝑅

𝜋(
𝑊𝐿𝑆𝐹

2
)

2  (24) 
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where ASENSOR is the area of the active portion of the sensor and 

WLSF the width of the LSF. The signal level and noise in the pixel 

may be determined using the techniques above for a target at a given 

range. As noise in the system increases, its ability to record 

independent distinguishable levels decreases as they require more 

separation. If the noise is ergodic, the number of recording levels in 

a single pixel is [19]: 

𝑚 ≈
𝑃𝐻𝑃𝐼𝑋𝐸𝐿

2k𝑁𝑇𝑂𝑇𝐴𝐿
+ 1  (25) 

where k is a constant. Because our effective cell size is larger 

than a single pixel, a correction is required according to Selwyn’s 

Law, detailed in [18] reducing the effective noise fluctuations, 

becoming: 

𝑚 ≈
𝑃𝐻𝑃𝐼𝑋𝐸𝐿.𝑊𝐿𝑆𝐹

2k 𝑁𝑇𝑂𝑇𝐴𝐿.𝑝
+ 1  (26) 

where p is pixel size as previously. We can now use numerous 

approaches to compare camera systems. Using a 100% Lambertian 

reflector, illumination conditions and exposure, it is possible to 

calculate the maximum number bits possible that may be recorded 

for a single frame.  

While the above is useful for comparing camera systems of a 

similar field of view, it does not give us an idea of how a scene of 

interest is mapped to the field of view of the camera, namely, 

absolute performance with respect to the real world. We can achieve 

this by calculating the solid angle of the lens, and dividing the 

information capacity per frame to yield information per steradian 

per frame. As an example, if we compare an 8Mp 100-degree HFOV 

versus a 3.5Mp 50-degree HFOV camera, each with the same format 

sensor and f-number lens, such that they can both record 256 distinct 

levels, they would yield 7.6 Mb and 3.8 Mb per frame respectively. 

The 8Mp camera records more information per frame. The solid 

angle of the lenses, however, is 0.01 and 0.0039 steradians, yielding 

761 Mb Str-1 and 868 Mb Str-1 respectively. The 3.5Mp system 

actually records more information per unit solid angle than the 8Mp. 

The coverage of the scene by each system is vastly different, which 

is also an important consideration, but the basic ability to identify 

an object within the field of view is now objectively compared. The 

above is a trivial example, as the number of recorded levels were 

contrived to be the same, but once the effects of f-number, quantum 

efficiency and sensor performance are included, this becomes a 

powerful technique with which to fairly evaluate the ability of 

various systems with hugely differing specifications. 

A final approach is to move from generalized throughput for 

the camera system to that for specific targets. By multiplying Eq.19 

by the reflectivity of the object in question, OREF, and substituting 

the area of the image of the target, ATARGET, for the active area of the 

sensor in Eq.24 it is possible to calculate the number of bits yielded 

for a specific target and conditions. The area of the target may be 

calculated using Eq.2 to yield the width and height. Incorporating 

the target reflectivity and size as opposed to calculating maximum 

throughput is interesting as it forces the calculations into regimes 

where the noise floor of the sensor is more acute and may affect 

results in low light conditions. 

Figure 11 shows maximum information capacity per frame per 

steradian for a fictitious 6.0 × 3.4 mm sensor with varying pixel 

sizes, f2.2 50-degree HFOV lens with transmission 0.9. Read noise 

is set at 3 electrons, PRNU at 0.5%. A typical monochrome quantum 

efficiency curve is used in conjunction with a 670 nm 

 
Figure 11. Information capacity per frame per steradian versus pixel size for 
constant sensor format 6.0x3.4mm, with 50-degree HFOV f2.2 lens. Other 
imaging conditions are described in the text. 

 

infrared cut-off filter. Ambient illumination is modeled at a 

color temperature of 5500k and 1, 10, 100, 1000 and 10000 lux. The 

mean transfer function (Eq.12) is calculated and the aperture for the 

lens MTF is degraded 10%. The full-width-half-max of the LSF is 

used for cell size estimation. The integration time is 10ms. 

Wavelengths are modeled between 380 and 700nm. Parameters are 

chosen to demonstrate the capability of the modeling and do not 

represent a real system.  

It may be seen that the information capacity continues to rise 

as pixel size is made smaller for all light levels when keeping the 

sensor size the same. This is intuitive as the number of pixels 

increases. The information capacity reaches a peak and starts to 

diminish, however, as the signal that is being divided by an 

increasing number of pixels gets smaller and is challenged by the 

noise floor of the sensor. The pixel size that produces the optimum  

information capacity increases as the mean light level 

decreases as may be noted. The position of these peaks will shift as 

the noise sources in the sensor are modelled with increasing 

accuracy. There is little increase in information capacity above 100 

lux for these exposure conditions aside from pixel sizes below 

0.9µm. The light level modelled is saturating the pixel for the 

exposure time. 

Figure 12, illustrates information capacity per frame of the 

8Mp versus 5Mp sensors with the same sensor format, f/2.2 100-deg 

HFOV lens with ambient illumination of 5500k between 1 and 60 

lux. The read noise has been artificially set to 6e- and 3e- in the 8Mp 

and 5Mp sensors respectively and all other imaging parameters are 

as before. It may be seen that the modeling correctly predicts that 

the 8Mp sensor will outperform the 5Mp at all light levels above 

approximately 2 lux. Below 2 lux the curves merge, the high read 

noise modeled in the 8Mp sensor is degrading the low light 

performance. This effect is exacerbated when we additionally model 

a 1.8×0.5 person in the scene at a distance of 25m with mean 

reflectance of 0.5%, Figure 13. The low reflectance of the person 

forces the signal well into an effective sub-lux range of 0.005-0.3 

lux despite the ambient conditions of 1 to 60 lux. The crossing point 

of the two sensors, where the 5Mp device starts to outperform the 

8Mp, is seen to be approximately 30 lux. Adding a headlamp of 

2100 lumens, 3200k with a beam spread of 60 degrees horizontal 

and 30 degrees vertical, Figure 14,  
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Figure 12. Information capacity per frame of 8Mp versus 5Mp sensors with the 
same sensor format, f/2.2 100-deg HFOV lens with ambient illumination of 
5500k versus ambient light level. The read noise has been artificially set to 6e- 

and 3e- in the 8Mp and 5Mp and the exposure time is 10ms. Other parameters 
are specified in the text. 

 

Figure 13. As for Figure 12, though imaging a person of 1.8x0.5m and mean 
reflectance of 0.5% at a distance of 25m. Note the increased performance of 
the 5Mp over the 8Mp below 43 lux. 

improves the recorded information but does not eliminate the 

crossing point between the sensors because, at 25m the person is 

only dimly lit by the modelled headlamp. 

Generating curves of information recorded from the target per 

frame versus distance for the above imaging conditions with the 

headlamp in place for 1, 10 and 100 lux again illustrates the ability 

of the modeling to predict the better performance of the 5Mp sensor 

in the low light conditions, Figure 15. As we examine distances 

where the object comes into range of the headlamp, however, we 

can see that the 8Mp again starts to outperform that of the 5Mp, 

below 10m, Figure 16. We would expect this crossing to occur at 

greater distances for materials that are retroreflective  

 

Figure 14. As for Figure 13 with a 2100 lumen headlamp added with color 
temperature of 3200k, horizontal and vertical beam spread of 60 and 30 
degrees respectively. Note the increased information recorded over that in 
Figure 12, however, also that the crossing point remains as the object is only 
poorly lit by the headlamp at 25m distance. 

 

Figure 15. Information recorded from the target and imagers described in Figure 

14 versus distance. At 100 lux the 8Mp imager outperforms the 5Mp. At 10 and 
1 lux, the 5Mp system performs best for the distances shown. 

and can return more of the headlamp illumination, illustrating the 

need for improved and varied object modelling. It is worth 

reiterating that the sensor and imaging parameters have been set up 

to illustrate the capability of the modelling and do not represent real 

systems. 

Figure 17 elucidates why the Johnson criteria approach works 

well in good lighting conditions by comparing information capacity 

curves with Johnson curves for a 1.8×0.5m person with 1000 lux 

ambient lighting using the above 5Mp and 8Mp parameters. When 

imaging is not limited by poor signal, geometry completely 

dominates the information capacity calculations. The curves are a 

similar shape, aside from a scaling error, which is determined by the 

method chosen to evaluate the LSF width and  
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Figure 16. As for Figure 15, though rescaled to focus on the 0 to 15m range. 
Notice that as the distance between the object and the headlamps is reduced 
the 8Mp sensor again starts to outperform the 5Mp due to the increased 
illumination reaching the object. 

 
Figure 17. A 1.5x0.8m person, imaged at 1000 lux, 5500k ambient illumination 
with the 8Mp and 5Mp systems and f2.2, 100-deg HFOV lens versus distance, 
blue curves. Also shown is the Johnson curve for the sensors determined 
using the FWHM of the calculated LSF for each, orange curve. 

hence the cell size in the information capacity calculation, as 

opposed to the pixel size in the Johnson calculation. 

Monochromatic systems have been modeled in this paper, 

however, it is perfectly feasible to model color systems by using 

quantum efficiency curves for each channel to arrive at the signal 

level for each. Color crosstalk may then be modelled by mixing a 

proportion of each channel determined by the CFA arrangement. 

Instead of assuming a neutral reflector, a term representing the 

spectral reflectance of the object may be added into Eq.19. The 

multiple channel results may then be input into color correction 

matrices etc. and, if a number of colored objects are modeled, color 

separation determined.  

Further work is needed to model high dynamic range systems 

and it is anticipated that this may be achieved by repeating 

calculations for multiple exposure times and combining the results 

or by adding terms representing de-sensitization of channels.  

 

Conclusion 
An initial approach to modeling and analyzing camera systems 

intended for autonomous vehicles has been presented that has drawn 

almost entirely from the existing imaging science field. First order 

ranking is generated by the use of the Johnson criteria. Threshold 

detection may be estimated by signal and noise models. A more 

sophisticated approach is afforded by information capacity 

modeling that is able to predict change in rank of systems with 

respect to light level and distance. The models are able to compare 

camera systems with vastly differing imaging specifications, with 

reference to target parameters and scene coverage, to predict which 

system will provide a network with the most objective information. 

Further work is needed to extend this modeling to color and HDR 

systems which also account for retroreflective materials. 
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