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Abstract
Circular Coding [18] is a 2D coding method that allows data

recovery with merely a cropped portion (size W ×H) of the code
and no carrier image knowledge involved. The B-bit payload is
repeated from row-to-row, with each row being circularly shifted
by D positions relative to the previous row. Every V rows, a phase
row is interleaved between the payload rows. It is also shifted in
the same manner as the payload rows. The encoded data array is
embedded in a halftone image by shifting the dot-clusters within
the halftone cells. The resulting image can be printed, and then
captured with a mobile phone camera. The encoded data array is
extracted from the captured halftone image by detecting the shifts
in the dot-clusters.

In this paper, we introduce the encoding and decoding sys-
tem and investigate the performance of the method for noisy and
distorted images. For a given required decoding rate, we modele
the transmission error and compute the minimum requirement for
the number of bit repeats. Also, we develope a closed form solu-
tion to find the the corresponding cropped-window size that will
be used for the encoding and decoding system design.

Introduction
Information embedding techniques in hardcopy prints are

useful in many applications. One category of the data embed-
ding techniques embed data in a region that is solely dedicate
to contain the message, but the visual appearance of the coded
image may be unsatisfactory. 1D and 2D barcodes [20] and
DataGlyphs [10] [9] are the predominant techniques in this class.
In the other category, information is embedded while the original
image is retained. Many methods of hiding information in print-
ing [1–3, 8, 12, 14, 15, 18, 19, 21, 22] have been proposed. Among
them, Bulan [3] used a orientation modulation for data hiding in
clustered-dot halftone prints, where the message is represented by
the different orientations of the clustered-dot halftoning.

Once the image is encoded, printed, and captured by some
device, there are different errors that might be present, such as
the local distortion in printing, rotation and distortion in capturing
the image. These errors and data erosion requires a robust channel
coding method to ensure the decoding success. Ulichney [19] pro-
posed a circular coding with an interleaving method for channel
encoding. Circular Coding [18] is a 2D coding method that allows
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data recovery with merely a cropped portion (size W ×H) of the
code, and no carrier image knowledge involved. The B-bit pay-
load is repeated from row-to-row, with each row being circularly
shifted by D positions relatively to the previous row. There is a
phase row interleaved between the payload rows in every V rows.
It is also shifted similarly as the payload rows. The encoded data
array is embedded in a halftone image by shifting the dot-clusters
within the halftone cells. The resulting image can be printed and
captured with a cell phone camera. The encoded data array is ex-
tracted from the captured halftone image by detecting the shifts in
the dot-clusters. To decode the payload from data array given B,
D, and V , the relative location of the phase rows is determined by
finding the best fit to the assumed data structure. Then the phase
rows are decoded to get the payload starting position in each line
of the data array that contains payload information.

In this paper we will analyze the performance of the encod-
ing scheme and use a statistical model to predict the decoding
performance with simulated data transmission errors and erosion.

Data Embedding Framework
The data embedding framework is shown in Fig. 1. The mes-

sage m is embedded into the continuous-tone (carrying) image
I[m,n], which is halftoned and used to embed message m into the
cluster dot/hole. The data embedded halftone image is denoted as
Ih[m,n], which is printed and captured by some device, such as
a scanner or a camera. The decoded message m̂ is then decoded
from the captured image, which is denoted as Ic[m,n]. To over-
come the data erosion and error in the printing-capture channel,
we used the channel encoder with data redundancy.

Channel Encoder With Circular Coding
The goal of encoding is to represent a payload using a 2D

binary symbol. The data carrying unit is the image cluster of 4×4
pixels. There are 3 steps for image decoding:

Halftoning
Digital image halftoning quantizes a gray scale image to 1

bit/pixel. It could be classified to amplitude modulation (AM),
frequency modulation (FM), or AM-FM hybrid. Block-error dif-
fusion [7] is the method of producing FM halftones for printing
and display. Halftone images are typically binary. Each pixel of
halftone image is either on or off, indicating whether link/toner is
deposited on this pixel or not. There are various methods that can
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Figure 1: Halftone data embedding framework.

be used to embed data into halftone images [4–6, 11, 13, 16] .
The gray scale image is block-thresholded with a screening

array T (k, l):

T (k, l) =
1

64
·



50 52 48 44 15 13 17 21
54 64 62 46 11 1 3 19
56 58 60 42 9 7 5 23
36 38 40 34 31 27 25 29
16 14 18 22 49 51 47 43
12 2 4 20 53 63 61 45
10 8 6 24 55 57 59 41
32 28 26 30 35 37 39 33


(1)

Let I(m,n) denote the gray scale image, then the halftone image
Ih(m,n) is obtained using Eq. (2).

Ih(m,n) =

{
1, if I(m,n)≥ T (m,n)
0, if I(m,n)< T (m,n)

(2)

The halftone cell is 8× 8, and each halftone cell contains 4 sub-
cells, each of which is 4× 4. For a constant gray scale image at

Figure 2: Halftone images using the screening array T (m,n) with differnt
gray scale value.

level 0 ∼ 1, there are only 33 halftone patterns as shown in Fig.
2. To make the halftone patterns limited within these patterns, we
will first average the gray scale value with each 4×4 sub-cell.

For each of the sub-cells, if it is all black or write, we call it
an “abstention” sub-cell; if it is white holes surrounded by black
ones, or vice versa, we call these potential “carrying” sub-cell.
Examples of the sub-cells are shown in Fig. 3.

Creating the data array using circular coding
method

The payload contains B binary symbols. It is then repeated
in the first row of the data array, until the end of the row. For

Figure 3: Example of halftone cell and sub-cell. Halftone cell has a size
of 8 × 8, and sub-cell has a size of 4×4.

each row below, every symbol is circularly shifted by a given bit
value D. However, for every V -th row, the payload is replaced by
a phase row, which has the same length as the payload, and which
is used to represent some important information. As we circularly
shift the payload and transfer each version of the payload to its
decimal value, there will be some versions that have the small-
est decimal value, which we define as the standard version of the
payload P, denoted as S. Then the payload P is represented as
the standard version S, and the circular shifting bits C. C is en-
coded in the phase line with some method. We select the payload
with the unique standard version S, to avoid confusion in further
decoding.

Embedding the data array into the halftone image
The data array symbol is used to hide data into each of the

halftone sub-cells, row by row, and sub-cell by sub-cell. If the
sub-cell is an abstention, we can not embed any symbol in it, but
it still takes one position in the data array.

The symbol can be embedded into the halftone cluster by
changing the orientation of the cluster [3]. Or it can be embedded
into the clustered-dot halftone image by shifting the clustered-dot
within the sub-cell [17]. For example, let the un-shifted halftone
sub-cell represent 0s, and shift the cluster-dot right and down one
pixel within the halftone sub-cell to represent 1s. In order to have
a homogeneous shift of the clustered-dots for the whole encoded
halftone image, we use the ‘alanced shift’ rule. That is, for each
gray level, we push the clustered-dot either to the north-west and
south-east direction to represent 0s, and push the clustered-dot ei-
ther to the north-east or south-west to represent 1s. We alternately
select the direction for each time we need to encode a bit.

In Fig. 4, the gray-scale image is halftoned, then the cluster
of the black dots or white holes within each halftone sub-cell is
shifted to embed the data array.
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Figure 4: Example of embedding a data array into a halftone im-
age. P = [11111111111111111],U = [00000000000000000],B = 17,D =

2,V = 3.(a) gray-scale, (b) halftoned, (c) halftoned with embedded data
array.

Channel Decoder With Circular Coding
The payload length B, the row-to-row shift D, the interleav-

ing phase period V , and a cropped portion of the data array are
given to the decoder, while the phase row first appears in the
cropped data array is unknown. The decoder then exhaustively
searches the highest possible position of the first phase row start.
To do this, we remove the assumed phase rows and examine the
remaining payload rows. If there is no error in the data array trans-
mission, then every bit will be repeated in its repeating position
and will yield a perfect consistency. However, if the assumption
ofthe position of the phase rows is incorrect, then the remaining
payload rows will contain both payload rows and phase rows. For
each bit and its repeating positions, it will contain the value of the
payload and phase, which will have a lower consistency. With a
certain bit error rate in transmission, it is usually the case that the
pure payload set will have higher consistentcy than the mixture
set. So we will try to find the set with highest consistency as the
pure payload set.

Once we find where are the payload rows, the remaining
phase rows are determined as well. By checking the major bit
value of the repeating bit positions of the payload rows, we can
find a shifted version of the payload P′. Similarly, by checking the
major bit value of the repeating bit positions of the phase rows,
we can find a shifted version U ′ of the phase. For every payload,
as we discussed before, we guarantee that the standard version is
unique, then there is a unique circular shift C that will shift from
the standard version S to the original payload P. We will find out
the standard version from P′, and figure out the circular shift C′

from P′ to S. It will be the same C′ that will shift the phase U ′ to
U .

Analyze the Bit Position Shift Structure
Find the bit position index of shifted locations

In the circular coding algorithm, the bit position index is cir-
cularly shifted row by row with a given number D. Given the bit
position index P(m,n) at location (m,n) in the circularly shifted
data array, we would like to know the shifted bit position index
P(m+∆m,n+∆n) at a shifted location (m+∆m,n+∆n).

Row shift
First, only the row shift is considered. If there are ∆m rows

shift down, and the row-to-row offset is D, then the total bit shift
from location P(m,n) to (m+∆m,n) can be denoted as f (∆m,0).

f (∆m,0) = ∆m ·D (3)

If we set the bit position at original position (m,n) to be 0,
then the bit position at the shifted position (m+∆m,n+∆n) is a
function of ∆m, the row-to-row shift D, and the payload bit length
B.

P(m+∆m,n) = mod( f (∆m,0)),B) = mod(∆m ·D,B) (4)

Now let us consider the bit position at original position (m,n)
as an arbitrary number from 0 to B−1, then the bit position at the
shifted position (m+∆m,n) is a function of ∆m, the row-to-row
shift D, payload bit length B, and the bit position at the original
location (m,n) can be expressed as

P(m+∆m,n) = P(m,n)−∆m ·D+Q, (5)

where Q =
⌈

∆m·B−P(m,n)
B

⌉
·B

Column shift
Then, the column shift is considered. Similarly, let us con-

sider the bit position index at original position (m,n) as an arbi-
trary number from 0 to B− 1, then the bit position at the shifted
position (m,n+∆n) is a function of ∆n, the row-to-row shift D,
the payload bit length B, and the bit position at the original loca-
tion (m,n). We found that

P(m,n+∆n) = mod(P(m,n)+∆n,B) (6)

Combine row shift and column shift
Now combining the column shift with row shift, we get

P(m+∆m,n+∆n)

= mod(P(m+∆m,n)+∆n,B)

= mod
(

P(m,n)−∆m ·D+

⌈
∆m ·B−P(m,n)

B

⌉
·B,B

) (7)

This equation shows that for given B,D and two locations
(m1,n1) and (m2,n2), if their bit position indices are the same,
i.e. P(m1,n1) =P(m2,n2), then for any shift (∆m,∆n) for these
two original locations, respectively, the shifted bit position indices
will also be the same; and vise versa.

This relationship can be written as

P(m1,n1) = P(m2,n2)

⇔P(m1 +∆m,n1 +∆n) = P(m2 +∆m,n2 +∆n)
(8)

Canonical Crop Window Location Set (CCWLS)
From Eq. (8) we can see that for a given crop window of

data cropped from a data array (with payload length B, row-to-
row shift D, and interleaving phase period V ), the entire set of bit
position indices of this cropped data is determined by the starting
bit position index at the upper left corner of the crop window.

In order to evaluate every possible cropped data arrange-
ment, we need to consider every unique starting bit position in-
dex of the crop window. There exists a minimum size rectangular
region of data that includes every unique starting position index
for the crop window, which is called the Canonical Crop Window
Location Set (CCWLS).
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How to find the CCWLS?
First, assuming there is no impact from the interleaving

phase period V . We have the parameters of payload length B
and row-to-row shift D. To cover every possible starting index,
we note that a rectangular region with size 1× B covers every
possible starting position index from 0 to B− 1. So we have the
CCWLS rectangular region size of 1×B.

Second, with the consideration of the interleaving phase pe-
riod V , there are parameters B,V , and D. In this case, the crop
window may consist of a combination of payload rows and phase
rows. These two sets of rows comprise difference data sets. So
every possible cropped data arrangement in these pairs of sets can
be evaluated.

In a rectangular region of data with starting row index m′,
the first phase row may be any one of the V rows with index 0 ≤
m′ ≤V −1. In any phase row, the phase code repeats with period
B. Thus, the CCWLS only need to contain a length B segment
of one phase row. This means that there are V different pairs of
payload and phase data sets. So we need to expand the CCWLS
rectangular region to size V ×B.

Note that during the halftone process, the screening array
T (m,n) that we used will produce the clusters where around half
of them will be all black or all white, without carrying any useful
information. So in a local region, we can approximate this texture
using a sub sampling mask M (m,n). It is a checkerboard pattern
defined by Eq. (9).

M (m,n) = mod(m+n,2) (9)

To avoid the case that all the repeating positions will fall into
the abstention region, in our system design, we always choose an
odd number for the length of the payload. So the sub-sampling
mask value at one position in any given row and the sub-sampling
mask value at the position B bits later in that row will be different.
Therefore, any consecutive set of 2B rows will include each of the
B unique bit position indices in an unmasked position.

The same argument applies when we consider the interleav-
ing phase period V . So we conclude that the CCWLS rectangular
region has size V ×2B.

An example of the CCWLS
Let the payload bit length B = 7, the bit index j = 0,1, ...,6.

The row-to-row shift D = 1, and the interleaving phase period
V = 3. Let index numbers written in red indicate a phase, and
index numbers written in black indicate a payload. Note that half
of the data is been masked to simulate the halftone process that
will cause half of the sub-cells to be abstentions.

In the example showb in Fig. 5, we can see that for a ran-
domly selected crop window W1, we will be able to find the re-
lated crop window W∗1 that starts within the CCWLS, and con-
tains the same bit indies for the entire crop window.

Requirement of Input Data for Recovery in a
Noise Free Channel

In a noise free channel, the minimum requirement of data
recovery is that every bit has at least one repeat. So we will find
a general formula to calculate the bit repeat count in a given crop
window size of the data array.

Figure 5: A example canonical crop window location set (CCWSL). pay-
load bit length B = 7, bit index j = 0,1, ...,6. The row to row shift D = 1,
and the interleaving phase period V = 3. The CCWLS has size of V ×2B.
Any crop window W has a related crop window W∗ that contains exactly
the same bit repeating positions, but starting within the CCWLS.

Let us denote by W a crop window with row index 0 ≤ h ≤
H− 1 and column index 0 ≤ w ≤W − 1. Without loss of gener-
ality, we assume that the bit position index j = 0 at the starting
position in W, where (h,w) = (0,0).

The calculation of the bit repeat count contains the following
steps:

1. Find out the column index q(h, j) in row h of the crop win-
dow W, where bit position index j first appears. Note that
q(h, j) will be inside the crop window, if q(h, j) ≤W − 1
and h≤ H−1; otherwise, q(h, j) will be outside of W.
By observing how the bit position index repeats with period
B, and is shifted by D from row to row, we find that

q(h, j) = mod( j+hD,B) (10)

2. For each row in the crop window, find the number of po-
sitions starting from the column index qh( j) to the end of
row h for bit position index j. Here h < H since only rows
within the crop window W are considered. This can be
split into two cases, either q(h, j) ≤W − 1 (inside of W),
or q(h, j)≥W (outside of W), and can be formulated as

Nn, j =

{
W −q(h, j), if q(h, j)<W
0, if q(h, j)≥W

(11)

The above two cases can be combined in the Eq. (12)

Nh, j =W −min(q(h, j),W ) (12)

3. Find the number of times that the bit position index j ap-
pears in row h, denoted as B(h, j;B,D,W ), in terms of Nh, j.
This simple relationship can be written as

Brow(h, j;B,D,W ) =
⌈
B̃row(h, j;B,D,W )

⌉
(13)

where

B̃row(h, j;B,D,W ) =
Nh, j

B
(14)
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4. To obtain the bit position repeat count for all the rows within
the crop window, we sum over the rows.

B( j;B,D,W ) =
H−1

∑
h=0

Brow(h, j,q;B,D,W ) (15)

5. Let us consider the sub-sampling mask M [m,n] defined in
Eq. (9). If we shift the position from (m,n) a number of
bits ∆m and ∆n, respectively, then the new mask value at the
shifted location can be shown to be

M [m+∆m,n+∆n] =

{
M (m,n), if mod(∆m+∆n,2) = 0
1−M (m,n), if mod(∆m+∆n,2) = 1

(16)

Let k ∈ {0,1} be the mask value at the upper left corner
of the crop window, then, to count the bit position repeat
count, we first need to apply the mask to every bit occur-
rence within the crop window.
There could be more than one occurrence of bit position j
in a given row of the crop window. Since B is always odd,
we know that if bit position j is masked in the first positions
of any row, then it will not be masked in its next occurrence
in that row, if there is one. This pattern of alternating ap-
pearances of bit position j, either masked or unmasked, will
repeat with period B until the end of the crop window row.
To account for this alternating pattern, we need to sepa-
rate the occurrences of bit position j in each row, accord-
ing to whether they occur in an even-numbered or an odd-
numbered B-length period in that row. Here we assume that
the B-length periods are numbered starting from zero.
In a given row, if the occurrences of bit position j occur in
even-numbered B-length periods, the first occurrence of bit
position j will be at bit location q(h, j). On the other hand,
if the occurrences of bit position j occur in odd-numbered
B-length periods, the first occurrence of bit position j will
be at bit location q(h, j)+B.
Then the total bit position occurrence count for bit position
j is summed over all the rows in the crop window:

B( j,k;B,D,W,H) =
H−1

∑
h=0

Brow(h, j,k;B,D,W,H) (17)

where now the bit repeat count for each row can be repre-
sented as:

Brow(h, j,q;B,D,W ) =

⌈
B̃row(h, j,q;B,D,W ) ·g(k,h,q)

2

⌉
+

⌈
B̃row(h, j,q+B;B,D,W ) ·g(k,h,q+B)

2

⌉
(18)

where B̃row(h, j,q;B,D,W ) =
W−min(q(h, j),W )

B , g(k,h,q) =
mod(k+h+q,2), and q(h, j) = mod( j+hD,B).

6. We consider the interleaving phase with period V . In this
case, the crop window W, which has size W ×H, may con-
sist of a combination of payload rows and phase rows.

We define the set of all the row indices in W as

H= {k : 0≤ k ≤ K−1} (19)

These rows will be divided into phase rows and payload
rows. There will be V possible partitions of H into the sets
of payload row indices denoted as Hpay and the set of phase
row indices denoted as Hpha, where

H= Hpay∪Hpha (20)

Let v denote the first index of the first phase row in the crop
window W. Then we can define the set of phase row indices
as:

Hpha =

{
v+ lV : l = 0,1, · · · ,

⌊
H
V

⌋
,v = 0,1, · · · ,V −1

}
Hpay = H−Hpha

(21)

To account for the role of the interleaving phase in our anal-
ysis of the bit repeating count, we separate the summation
over the rows and columns in our previous expression for
the bit repeating count according to this partition.

Note that the above illustrations are all based on the bit posi-
tion index j = 0. However, the formulas we derived are applicable
to any bit position j ∈ [0,B−1] within a single row h.

Result of bit repeat counts for given parameters
Using the formula developed in Eq. (17), and examining

every possible crop window starting position in the CCWLS, we
can calculate the bit repeat count for the payload and phase for
every bit position. Fig. 6 shows the calculation result.

Figure 6: Bit repeat count for payload. The min, max and mean values
are determined based on the population of all bits that start within the
CCWLS window.
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Requirement of Input Data for Recovery from
a Noisy Channel Based on Statistic Modeling

To simplify the calculation, we assume that the crop window
height H is an integer multiple of the interleaving phase period V .
Thus, among those H rows of data in the crop window, there are
H/V rows of phase, and H · (V −1)/V rows of payload. In addi-
tion, we assume that the number of columns W is also an integer
multiple of the payload length B. So for each row in the crop
window, there will be the same number of occurrences for each
value of the bit position index j. Note that for a given bit index j,
the number of occurrences of this bit position can be represented
as B( j;H,W,B,D), without considering the difference between
phase rows and payload rows.

The bit value for each repeating bit position, if it is belongs to
a payload row, can be denoted as P( j); and if this bit is in a phase
row, then the bit value can be denoted as U( j). We assume that
the bit values of payload and phase are statistically independent.
That is, the probability that the payload bit value is the same as
phase bit value for a particular bit position index j is 0.5, which
is also the probability that payload bit value is different from the
phase bit value.

Model for the communication channel
There are different models for communication channels.

One simple model is the memory-less Binary Symmetric Channel
(BSC). The Binary Symmetric Channel has binary input and out-
put, with a probability of transmission error p, i.e. the probability
of switching values between 1 and 0. The probability of success
of transmission of one bit is P(S) = 1− p, and the probability of
failure of transmission of one bit is P(F) = p. We assume that the
errors at each position are independent and identically distributed.

Prediction of the decoding rate for pure payload
rows

For the subset of the cropped data that includes all the actual
payload, we can calculate the probability of the output value Yi,
given the value of input Xi. The probability that the detected bit
value is the same as the original bit value in the pure payload set is
the probability that fewer than half of the bits have a transmission
error. Thus, we can have up to K transmission errors, where

K =

⌈
B( j)−1

2

⌉
(22)

The probability that the decoded bit value for bit repeat position j
is the same as its original value is thus given by

P(Y j = 0|X j = 0) = P(Y j = 1|X j = 1)

=
K

∑
k=0

(
B( j)

k

)
(p)k(1− p)B( j)−k (23)

The probability that the decoded bit value for bit repeating posi-
tion j is the different from as its original value is the probability
that at least half of the bits changed their value.

P(Y j = 1|X j = 0) = P(Y j = 0|X j = 1)

=
B( j)

∑
k=K +1

(
B( j)

k

)
(p)k(1− p)B( j)−k

(24)

We also have that P(Y j = 1|X j = 0) = 1−P(Y j = 0|X j = 0) and
P(Y j = 0|X j = 1) = 1−P(Y j = 1|X j = 1). Thus, the probability
that the decoded bit value Y j is the same as the original bit value,
and can be calculated as follows:

P(Y j = X j) =P(Y j = 0|X j = 0)P(X j = 0)

+P(Y j = 1|X j = 1)P(X j = 1)
(25)

We assume that the bit value at each bit position index does not
depend on the bit position index, and the symbols 0 and 1 are
equally likely. Thus, we have P(X j = 0) = 0.5, and P(X j = 1) =
0.5, for all j. So the probability that every bit in the payload is
correctly decoded can be expressed as:

P(Y j = X j) =
K

∑
k=0

(
B( j)

k

)
(p)k(1− p)B( j)−k (26)

The probability that the entire payload is correctly decoded
is the joint probability that every bit in the payload is correctly
decoded. Recall that we model the transmission errors as being
identically and independently distributed at each bit position. So
the joint probability of successfully decoding the entire payload is
just the product of the probabilities of successfully decoding each
bit position, formulated as:

P(Y = X) =
B−1

∏
j=0

P(Y j = X j) (27)

Validation of the analytical results with experi-
mental results

By calculating the bit decoding rate with different probabil-
ity of transmission error p from 0 to 0.3, and the bit repeating
count B( j) from 1 to 40, the result is plotted in Fig. 7.

Figure 7: Validation of the analytical results with simulation results. The
simulation result is based on 1000 random noise sets.

Conclusion and Future Work
In this paper, we validated that the experimental payload de-

coding rates are consistent with their theoretical results, given par-
ticular parameters and with various cropped-window sizes (Fig.
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Figure 8: Analytical decoding rate prediction as a function of differ-
ent transmission error rate for different values of the minimum bit repeat
count.

7). Therefore, given required decoding rate and anticipated trans-
mission error, we can compute the minimum requirement for the
number of repeats (Fig. 8) or the corresponding cropped-window
size (Fig. 6). The work has assumed that the phase information
is known. In the future, we will repeat a similar simulation and
analysis accounting for the impact of phase.
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