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Abstract
Though a color aperiodic, clustered-dot, halftoning (NPAC-

MS-MP-CLU-DBS) algorithm can overcome the visible moire and
rosette artifacts in conventional color halftoning methods, it still
has some disadvantages, such as the color mismatch caused by
the initial stage color management method, and texture artifacts
caused by the concentric-ring cluster structure. In this paper, first,
a new color gamut mapping method is used during the color man-
agement process, that is an image-dependent mapping method,
which can make the most use of the printer color gamut, in order
to reduce the color mismatch between the continuous-tone origi-
nal and printed halftone images. Secondly, a new color, clustered-
DBS halftoning algorithm with separated-cluster structure is de-
veloped. As a color halftoning method based on the clustered-
DBS algorithm, not only it can overcome the visible moire and
rosette artifacts, but also the separated-cluster structure is more
stable, compared with the concentric-ring cluster structure. It can
also reduce the texture artifacts significantly.

Introduction
Halftoning is the process of generating a pattern of pixels

with a limited number of colors that creates the illusion of a
continuous-tone image. However, color halftoning presents many
problems that are unique to color, mainly due to the interactions
between color planes. All color printers use a limited number
of colorants, typically three or four colorants. The methods for
digital color halftoning may be categorized into three groups ac-
cording to the computational complexity required to render the
continuous-tone image in halftone form, independent of the com-
putation required to design the halftoning algorithm: screening,
error diffusion, and iterative processes. Iterative techniques such
as least squares [1] and direct binary search (DBS) [2][3] have
also been applied to color halftoning. A major advantage of these
approaches is that they can support a relatively complex HVS
model.

For the conventional periodic clustered-dot halftoning
method [8], which use three screens corresponding to cyan (C),
magenta (M) and yellow (CMY) with different angles to halftone
a color image, we always get visible moire and rosettes. Aperi-
odic clustered-dot halftoning methods have the advantage of re-
sisting these artifacts: In 1990, Lau proposed the ”Green-Noise
Digital Halftoning” method [5][6]; In 2004, Damera Venkata pro-
posed the ”AM-FM Screen Design” method [7]; In 2013, Goyal
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proposed the CLU-DBS (clustered-dot Direct Binary Search) al-
gorithm [10]; In 2017, Xi proposed the ”Color Halftoning Based
on Multi-Stage, Multi-Pass, Clustered-DBS” algorithm, which is
the art-of-the-state. As much as we are aware, the only work that
compares the quality of aperiodic clustered-dot halftone images
generated by different methods is the 2010 Ph.D. dissertation of
Gupta [8] showing that the CLU-DBS algorithm always generated
the most smooth and homogeneous clustered-dot halftones.

In this paper, a new breed of color CLU-DBS halftoning al-
gorithm based on Neugebauer Primaries Area Coverage (NPAC)
[9] is introduced. Firstly, the background knowledge about MS-
MP-CLU-DBS and NPAC-MS-MP-CLU-DBS (Color Halftoning
Based on Multi-Stage, Multi-Pass, Clustered-DBS algorithm) will
be introduced. After that, the new color management pipeline
with an image-dependent color gamut mapping method based on
NPAC is introduced briefly. Thirdly, the new color clustered-DBS
algorithm is presented and also a comparison between the previ-
ous concentric-ring NPAC-CLU-DBS algorithm and the new sep-
arated color clustered-DBS algorithm is shown at the end of this
paper.

Preliminaries
A. MS-MP-CLU-DBS Algorithm

MS-MP-CLU-DBS [10] is a variant of the monochrome
DBS algorithm, which uses a dual-filter-based cost metric to
generate clustered-dot textures. We use f and g to denote the
grayscale and binary images, respectively, and let e represent the
error image which stands for the difference between the halftone
and gray scale images. So we have e[m] = g[m]− f [m], where
[m] = [m,n]T represents the discrete spatial coordinate. The cost
metric is computed as

θ = θhomog−θclust , (1)

where

θhomog = ∑
m

e[m]cu
p̃p̃[m], (2)

θclust = 2∑
m

e[m]∆cp̃ẽ0 [m], (3)

cu
p̃ẽ[m] = ∑

n
e[n]cu

p̃p̃[m−n], (4)

∆cp̃ẽ0 [m] = ∑
n

e0[n]∆cp̃ p̃[m−n]. (5)

Here e0[n] is the initial halftone error at pixel n, and ∆cp̃ẽ0 [m] is
initialized by e0[m]. In this cost metric, θhomog encourages the
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formation of homogeneous texture and θclust encourages the for-
mation of dot-clusters. The term θhomog is computed by filtering
the error image e[m] with the updated filter cu

p̃p̃[m] (Eq. (4)), and
then forming the inner product of this filter output with e[m] (Eq.
(2)). The processing of the term θclust is similar (Eqs. (3) and
(5)), except that the filter ∆cp̃ p̃[m] is computed from the differ-
ence between the initialization and update filters, and the filtering
is performed on the initial error e0[m].

For the MS-MP-CLU-DBS algorithm, two kinds of refine-
ment operations: Multi-Stage process and Multi-Pass process,
are added, since experience shows that the structure of the ini-
tial halftone strongly affects the cluster distribution in the halftone
image.

B. NPAC-MS-MP-CLU-DBS Algorithm
Different from the MS-MP-CLU-DBS algorithm, NPAC-

MS-MP-CLU-DBS, as a color halftoning algorithm [11][12], can
halftone color images and represent the halftone result with a
selected set of Neugebauer Primaries (NPs). Here we consider
only the case of the 8 NPs, corresponding to the three colorants
Cyan (C), Magenta (M), and Yellow (Y). In order to extend the
monochrome MS-MP-CLU-DBS algorithm to color, we process
the NPs one-by-one in a default sequence order, which is shown
in Fig. 1.

Figure 1. Block diagram of NPAC-MS-MP-CLU-DBS.

Similar to the MS-MP-CLU-DBS algorithm, NPAC-MS-
MP-CLU-DBS still needs to generate the seed-halftone in the first
place. Each dot in the seed-halftone should be the center of a dot-
cluster for a sequence of NPs arranged in concentric rings. Sec-
ondly, we set the default NP order as: CMY, CM, MY, M, CY,
C, Y, W, which follows the luminance values from the lowest to
the highest. Then the 8 accumulation NPAC images are gener-
ated based on the percentage of each NP. Through these steps,
the color halftoning problem can be transfered to 8 monochrome
halftoning steps. For each pixel in the i-th accumulation image,
the gray value is calculated as

gi[m]
=

i

∑
j=1

pNPj[m]
, (6)

where gi[m]
is the gray value of pixel in the ith NP with spatial co-

ordinate [m,n], pNPj[m]
is the percentage of the jth NP at spatial

coordinate [m,n]. Figure 2 shows an example illustrating the pro-
cess of generating a halftone image using the previously proposed
concentric ring NPAC-MS-MP-CLU-DBS algorithm.

Figure 2. Example: halftone result for the concentric-ring cluster NPAC-

MS-MP-CLU-DBS algorithm

Separated-Cluster Halftoning Algorithm
Although the NPAC-MS-MP-CLU-DBS can overcome the

visible moire and rosette artifacts, the concentric-ring structure is
still not stable enough and may increase the texture artifacts, as
we can see in Fig. 2. For the new clustered-dot halftoning method
proposed in this paper, we develop a separate-cluster structure for
the color cluster halftoning, instead of the concentric-ring struc-
ture.

Figure 3. Pipeline for color management.

The new color aperiodic separated-clustered halftoning al-
gorithm, which based on the clustered direct binary search (CLU-
DBS), contains two main parts. The first part is the color manage-
ment. Through color space transformation, color gamut mapping
and tetrahedral interpolation, the percentage of each Neugebauer
Primary (NP) can be calculated to get the NP images for every
color continuous-tone image. The pipeline of the color manage-
ment is shown in Fig. 3. The second part is the halftoning process
based on the NPAC data that we can get from color management.
The detailed information about these two parts is introduced in
the next two subsections.

A. Color Management
Both the previous concentric-ring cluster NPAC-CLU-DBS

algorithm and the new separated-cluster NPAC-CLU-DBS al-
gorithm contain a color management process [13][14], which
can calculate the NPAC data for each color. Compared with
the color management in the concentric ring cluster algorithm,
which is an image-independent color management method, the
separated-cluster algorithm uses an image-dependent color man-
agement method, which can use the printer color gamut more ef-
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ficiently and reduce the color mismatch. The new color gamut
mapping method contains three steps: color space alignment,
image-dependent compression, and image-independent compres-
sion. The block diagram of this process is shown in Fig. 4. Ei-
ther color management scheme – that proposed previously for the
concentric ring cluster algorithm and that proposed for the new
separated cluster algorithm could be used with either halftoning
algorithm. Presumably, the new color management scheme would
yield improved image quality for the concentric ring cluster algo-
rithm compared to that proposed previously.

Figure 4. Block diagram of color gamut mapping.

Step I. Color Space Alignment
The source gamut is the sRGB color gamut; and the desti-

nation gamut is the Indigo printer color gamut, respectively. The
prerequisite color mapping step is to transfer both source and des-
tination color gamuts into the Y yCxCz color space[15]. The co-
ordinates of the NPs in the source and destination color gamuts
are shown in Table 1 and Table 2, respectively. As we can see,
the destination white (W) and black (CMY) NPs are not perfectly
neutral colors, while they are supposed to have the same coordi-
nates with the source W and CMY NPs. Thus, the very first step
of gamut mapping is to conduct color space alignment. Firstly, we
translate the destination color gamut so that the destination CMY
NP coordinate is (0,0,0) in Y yCxCz color space, which is same as
the source black (CMY) NP; Secondly, we rotate the destination
color gamut about the CMY NP coordinate. After this step, the W
and CMY NPs in both the source and destination color gamuts are
collinear. The method for calculating the rotation matrix is illus-
trated as follows: We regard the W-CMY line in both the source
and destination color gamuts as two 3D-vectors, so that we have

v1 = Y yCxCzWdest −Y yCxCzCMYdest , (7)

v2 = Y yCxCzWsource −Y yCxCzCMYsource , (8)

where Y yCxCzWdest and Y yCxCzCMYdest are the Y yCxCz coordi-
nates of destination W and CMY NPs; and Y yCxCzWsource and
Y yCxCzCMYsource are the Y yCxCz coordinates of the source W and
CMY NPs. Then, the rotation vector and angle from v1 to v2 can
be calculated using a cross product and a dot product

x =

x1
x2
x3

=
v1× v2

‖v1× v2‖
, (9)

θ = cos−1(
v1 · v2

‖v1‖ · ‖v2‖
), (10)

x is the rotation vector, and θ is the rotation angle. Based on these
values, the rotation matrix R can be calculated using exponential
map

R = eAθ = I + sin(θ) ·A+(1− cos(θ)) ·A2, (11)

where I is the identity matrix and A is the skew-symmetric matrix
corresponding to x, which can be expressed as

A = [x]× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (12)

After the translation and rotation operations, all the coordinates in
destination color gamut are changed as follows

Y yCxCzdestupdate = R · (Y yCxCzdest −Y yCxCzCMYdest ). (13)

The updated NP coordinates of the destination color gamut are
shown in Table 3.

Step II. Image-Dependent Compression
The following is the basic idea of image-dependent compres-

sion: Instead of the sRGB color gamut, we regard the smallest
cylinder which contains all the colors in the color image as our
source color gamut. In order to implement the compression, we
scale the luminance values of sRGB colors in the first place. Let
Y yM represents the max luminance value of all the luminance val-
ues in the source color image, and YW represent Y yWdestupdate

, which
in short is the updated destination W. We don’t compress the lu-
minance of source image colors if Y yM ≤Y . We should compress
the lumiance of source image colors as follows, only if Y yM < Y

Y y0 =

{
(1−λ ) · YW

Y yM Y yi +λY yi i f 0≤ Y yi < YW

(1−λ ) · YW
Y yM Y yi +λYW i f YW ≤ Y yi ≤ Y yM ,

(14)

where Y yi represents the luminance value of a color in the source
color image.

Next, we keep the hue of each color unchanged by dividing
the whole color gamut into 360 hue sectors uniformly by differ-
ent hue angles within in each hue sector, we scale the chroma
linearly so that the chroma of all colors in the source color image
within that hue sector are inside the smallest convex polygon in
the Cx−Cz plane that is formed by the chroma values of the 8 up-
dated destination NPs. Figure 5 is an example to show the trans-
formation of coordinates before and after the image-dependent
compression. Each red star in Fig. 5 represents a color in the
continuous-tone color image. The 8 updated destination NPs are
also shown in the Cx−Cz plane. Since, the chroma values of W
and CMY NPs are 0 and the chromaticity of the CM NP is too
small to compose a convex polygon, we can only focus on the
other 5 NPs: C, M, Y , CY , and MY , and scale all the colors into
the convex polygon composed by these 5 NPs (shown in Fig. 5)
based on the formula

c0 =

{
cM

0
cM

i
ci i f cM

0 < cM
i

ci otherwise
. (15)
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Table 1: YyCxCz coordinates of source NPs

NPs W C M Y CM CY MY CMY
Yy 116 90.190 32.842 108.968 7.032 83.158 25.811 0
Cx 0 -114.876 158.762 -43.886 43.886 -158.762 114.876 0
Cz 0 -41.124 -119.841 160.965 -160.965 119.841 41.124 0

Table 2: YyCxCz coordinates of destination NPs

NPs W C M Y CM CY MY CMY
Yy 98.480 26.524 20.353 84.922 2.851 19.784 19.458 2.176
Cx 0.0 -36.830 90.901 -12.296 7.809 -49.832 82.719 1.229
Cz 0 -77.928 3.294 130.052 -22.565 21.001 29.505 -0.183

(a) top view of original
image colors

(b) profile map of orig-
inal image colors

(c) top view of step II
mapping result

(d) profile map of step
II mapping result

Figure 5. Image dependent compression. Each red star represents a color

in the color image: (a) is the top view of the original image colors; (b) is the

profile map of the original image sliced at the green line; (c) is the top view

of the image colors after the step II compression; (d) is the profile map of

image colors after step II compression sliced at the green line.

where, ci and c0 represent the chroma values of each color before
and after the image-dependent compression, respectively; cM

0 rep-
resents the maximum chroma value of destination color gamut in
i-th component (one of the 360 components); and cM

i represents
the maximum chroma value of the source colors in the i-th com-
ponent.

Image-dependent compression can utilize the destination
color gamut more effectively and reduce the color mismatch. It
has a remarkable effect for the color image, that the colors only
cover a small part of the sRGB source color gamut.

Step III. Image-Independent Compression
Since, we have already compressed the image colors into the

smallest convex cylinder in the Cx−Cz plane composed of the
destination NPs, in this step we only need to soft compress the
chroma for each color. This step looks like Step II but it is a to-
tally different process since it is an image-independent compres-
sion. The compression scale only depends on the updated source
color gamut obtained from Step II and the destination color gamut
obtained from Step I, and not on the Y yCxCz coordinates or the

color gamut of the image colors. Similar to what we did for Step
II, we also need to divide the Cx−Cz plane into 360 hue sectors,
and compress the colors as follow

c0 =

 (1−λ )
GM

0
GM

i
ci +λci i f 0≤ ci < GM

0

(1−λ )
GM

0
GM

i
ci +λGM

0 i f GM
0 ≤ ci ≤ GM

i

(16)

where ci and c0 represent the color chroma values before and af-
ter the image-independent compression; GM

0 represents the maxi-
mum chroma value of updated destination color gamut in i-th hue
sector; and GM

i represents the maximum chroma value of updated
source color gamut, which is formed by the destination NPs in i-
th hue sector. The parameter λ = 1

3 in our experiment. After this
step, the YCxCz coordinates of all the image colors are inside the
updated destination color gamut, which means we can now use
the 8 destination NPs to reproduce any colors in the color image.

Reproduction Image Comparison
In this section, we propose the method to do the image re-

production. The process is shown in Fig. 6. Based on the image
reproduction method, we can generate the reproduction images
for both color management methods – that proposed previously
for the concentric ring cluster algorithm and that proposed for the
new separated cluster algorithm in this paper. Figure 7 contains an
illustration to compare the two color management methods. Fig-
ure 7(a) is a continuous-tone color image; Fig. 7(b) is the repro-
duction image based on the color management method proposed
in this paper; and Fig. 7(c) is the reproduction image based on
the color management method proposed previously for the con-
centric ring cluster algorithm. As one can see, the reproduction
image in Fig. 7(b) has a better color match to the continuous-tone
original image. As a result of that, the printed image quality can
be improved significantly.

Figure 6. Block diagram of generating reproduction image.
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Table 3: Updated YyCxCz coordinates of destination NPs

NPs CMY CM MY M CY C Y W
Yy 0 0.5483 16.2968 17.0369 18.2991 24.6837 83.1596 96.3120
Cx 0 6.5868 81.7039 89.8964 -50.8319 -37.7467 -12.4661 0
Cz 0 -22.3827 29.6565 3.4432 21.1498 -77.7910 130.0776 0

(a) original continuous image (b) reproduction image based on the
new color management method intro-
duced in this paper

(c) reproduction image based on the
color management method in [11]

Figure 7. Comparison between the color management methods in this paper and in paper [11].

Separated-Cluster NPAC-CLU-DBS Algorithm
Though the previous concentric-ring NPAC-MS-MP-CLU-

DBS algorithm can overcome the visible moire and rosette arti-
facts effectively, its concentric-ring cluster structure may increase
the texture artifacts and be less stable for printing. In this paper,
we propose a separated-cluster NPAC-MS-MP-CLU-DBS algo-
rithm, which has a separated-cluster texture, to overcome the dis-
advantage of the concentric-ring texture. The separated-cluster
halftoning algorithm contains two main parts: 1). Generate and
color the seed-halftone; 2). Generate the separated-cluster color
halftone image based on the NPAC data.

Step I: Generate and Color the Seed-Halftone
Similar to the concentric-ring NPAC-MS-MP-CLU-DBS al-

gorithm, we also need to generate a seed-halftone pattern at
the first place. However, instead of generating the whole seed-
halftone at the same time, we generate 4 groups of uniformly dis-
tributed seed-halftone dots. This idea comes from the tetrahedral
interpolation step of color management. According to the tetrahe-
dral interpolation, each sRGB color can be reproduced by at most
4 NPs, so that we only need to generate 4 groups of seed-halftone
dots corresponding to 4 NPs instead of 8 NPs in all. In order to
generate 4 groups uniformly interleaved halftone dots, swap-only
standard DBS is used. The 8 NPs are labeled from 1 to 8, which
is shown in Fig. 8; Let ρ represent the desired halftone frequency,
R(d pi) represent the printer resolution, then the seed-halftone ab-
sorptance of each group can be calculated as δ = (ρ/R)2/4.

Figure 8. NP order.

Figure 9 shows an example result of the 4 groups of inter-
leaved seed-halftone pattern. The detailed steps of using swap-
only standard DBS algorithm to generate 4 groups of seed-
halftone dots are discussed as follows. Firstly, we generate a uni-

form gray halftone pattern with gray level 4δ by the standard DBS
algorithm. Then all the dots are equally divided into two groups;
and the swap operation is processed between these two groups ac-
cording to swap-only standard DBS until the algorithm converges
to the smallest error between either group and the uniform pattern
of gray level of 2δ to achieve two groups of interleaved seed-
halftones. We repeat this process by dividing each group into two
subgroups and similarly doing the swap-only step. After that we
can get 4 groups of interleaved seed-halftone patterns, as shown
in Fig. 9.

Figure 9. Seed halftone generation.

Then, we should color the dots in the seed-halftone patterns.
Since each pixel can be reproduced by 4 NPs, we set the default
color of a dot to be the i-th NP label of the current pixel, where
i-th means the current dot belongs to the ith seed-halftone group.
As shown for example in Fig. 10, we assume one uniform pattern
whose color can be reproduced by 25% CMY, 25% C, 25% M
and 25% Y, so that for each pixel, the 4 labels corresponding to
the colors are 1, 4, 6, and 7 according to Fig. 8. Then, for a dot in
the first seed halftone group, it corresponds to the NP label 1 so
that it will be colored by CMY; Similarly, for a dot in the second
seed halftone group, it corresponds to the NP label 4 so that it will
be colored by M, and so on.

Step II: Generate the Separated-Cluster Color Halftone
Image

Based on the seed-halftone pattern, we perform the
MP-CLU-DBS algorithm for each NP in sequence. Un-
like the concentric-ring NPAC-MS-MP-CLU-DBS algorithm,
which should generate the accumulation NPAC images, the
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separated-cluster NPAC-MS-MP-CLU-DBS algorithm performs
the halftoning process only according to each NP percentage. As
shown in Fig. 11, in each stage and pass, we halftone each NPAC
image by the CLU-DBS algorithm, then iterate to do the Multi-
Stage and Multi-Pass processes. Specifically, the algorithm fol-
lows the criteria below:
1. We process each NP separately. We only consider the halftone
dots corresponding to the current NP in each iteration and process
the 8 NPs in sequence iteratively.
2. One pixel can only be colored by one NP, repeatedly depositing
different NPs at the same pixel is not allowed.

Following this algorithm, we obtain the halftone results
shown in Fig. 12. Compare with the previous concentric-
ring NPAC-MS-MP-CLU-DBS algorithm and the PARAWACS-
MS-MP-CLU-DBS algorithm [17], the halftone result of the
separated-cluster halftoning algorithm has a better cluster texture,
each NP in the halftone pattern has its own separated cluster and
is not mixed with other NPs.

Conclusion
In this paper, we develop a new color management method

that can reduce color mismatch effectively. In addition, the new
separated-cluster NPAC-MS-MP-CLU-DBS algorithm can over-
come the shortage of concentric-ring NPAC-MS-MP-CLU-DBS
algorithm to yield a more stable halftone image. As a result of
the new color management and separated-cluster halftoning algo-
rithm, we can obtain higher image quality with inherently unsta-
ble marking processes, such as laser electrophotography.

Figure 10. Coloring the seed-halftone pattern according to the 4 NP files

and NP order in Fig. 8. Two rows of halftone patterns are shown in this

figure. The first row of patterns is randomly colored, which is only used to

distinguish the dots in different groups. The second row is colored seed-

halftone patterns according to the 4 NP files and NP order in Fig. 8.

Figure 11. Process to generate the separated-cluster halftone image.
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(a) concentric-ring structure (b) separate-cluster structure (c) PARAWACS

Figure 12. Halftone Methods Comparison: We assume a uniform pattern can be reproduced by 25% CMY, 25% C, 25% M and 25% Y. (a) is the halftone

result of the concentric-ring NPAC-MS-MP-CLU-DBS algorithm, which has a concentric-ring structure; (b) is the halftone result of the separated-cluster NPAC-

MS-MP-CLU-DBS algorithm, which has a separated-cluster structure; (c) is the halftone result of the PARAWACS-MS-MP-CLU-DBS algorithm [17] which also

has the concentric-ring structure.
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