
Recent advances in detection and healing of streaks caused by
dust in a sheetfed scanner
Daulet Kenzhebalin a, Ni Yan a, Peter Bauer b, Jerry Wagner b, Jan Allebach a

aSchool of Electrical and Computer Engineering, Purdue University; West Lafayette, IN
bHP Inc.; Boise, ID

Abstract
Sheetfed scanners are widely used for scanning stacks of

loose pages at high speed. The scanhead in the sheet-fed scan-
ners is stationary and the page is fed with an automatic document
feeder. When dust particles get stuck onto the scanner glass, they
reflect the incident light and cause vertical streaks in the scanned
images. These artifacts are known as dust streaks. We have de-
veloped a method for detecting dust streaks and the results were
published in our previous paper [1]. In this study, we have refined
our features for dust detection and added features for detecting
tables. In addition, we looked into two methods for healing de-
fective images: an exemplar based method and a diffusion based
method. We applied these methods to remove dust streaks, punch
holes, and torn corners from scanned images.

1. Introduction
Typically, document scanning is done in one of two modes.

In the first mode, the user puts the page to be scanned face down
on the glass platen and the scanhead moves and scans the page.
This is called flatbed scanning. In the second mode, the paper is
fed by a paper advance mechanism over the stationary scanhead.
This is called sheet-fed scanning. This mode is very convenient
for scanning stacks of pages, since the paper advance mechanism
feeds each paper sequentially without human interaction. How-
ever, if a dust particle sticks to the glass over the scanhead, then
it causes vertical streaks in the scanned images by reflecting the
incident light of the scanhead. An example of an image with dust
streak obtained using sheet-fed scanner is shown in Fig. 1.

This work builds on recent image quality work focused on
printer and scanner products that was conducted in our labora-
tory, and which addressed assessment of page non-uniformity [2]-
[7], fine-pitching banding [8]-[12], ghosting [13], local defects
[14],[15], fading [16],[17], scanner MTF [18], and scanner mo-
tion quality [19].

Rosario et al. proposed an algorithm for detecting streaks
in printed images [20]. However, they assume that the scanned
image does not have content in it. In our case, we are designing
an algorithm to work on any image.

When only a small part of the scan is available, some of the
dust streaks are very hard to distinguish from the content streaks.
We are designing an algorithm that processes an image in small
regions for computational reasons and currently cannot exactly
identify if the streak is caused by dust or if it is a part of content.
Therefore, the dust detection might make errors in prediction. We
categorize these errors into two types: misses and false alarms.
A miss occurs when the detection algorithm does not find a real
streak caused by dust. A false alarm occurs when the detection

Figure 1. Scan of an image with dust streak.

algorithm finds a line, which was not caused by dust. The aim is
to have a small number of false alarms while detecting most of
the real dust streaks.

After detecting dust streaks, we also want to heal the image.
Image healing is the process of replacing defective pixels in the
image with synthetic pixels so that the defect is no longer visible.
Image healing can be done by one of two approaches: a diffu-
sion based method or an exemplar based method. In the diffusion
based method the synthetic pixels are computed using partial dif-
ferential equations(PDE) [21]-[27]. In the exemplar based method
the synthetic pixels are taken from the image [28]-[34].

In this paper1, we propose a solution to finding vertical
streaks in the images that were caused by dust in the scanner
and healing the image to remove the defects such as dust streaks,
punch holes, and torn corners.

1Research supported by HP Inc.

IS&T International Symposium on Electronic Imaging 2018
Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

418-1

https://doi.org/10.2352/ISSN.2470-1173.2018.16.COLOR-418
© 2018, Society for Imaging Science and Technology

Section 2 will cover proposed procedure for detecting dust
streaks, Section 3 will cover healing methods, Section 4 will cover
text protection for healing, Section 5 will cover time optimization
for inpainting algorithm, Section 6 will cover results, and Section
7 will cover conclusion.

2. Dust detection procedure
2.1. Preprocessing

We start with an image in gamma corrected RGB color
space. We perform gamma uncorrection to get linear RGB color
space. Then, we convert the image to NIQ color space. NIQ is
an opponent color space, where N is the luminance channel, I and
Q are chroma channels. We descreen the image to smooth it and
remove halftones. The dust causes only vertical streaks. Hence,
in order to preserve these dust streaks, we use a vertical average
filter of size 9 for descreening. Figure 2a shows a zoom of the
original image and Fig. 2b shows a descreened zoom. Here is the
equation for descreening:

g(x,y,c) =
y+4

∑
k=y−4

f (x,k,c)
9

, (1)

where f (x,y,c) is an input image in NIQ color space, and g(x,y,c)
is a descreened image. Here c denotes the color channel N = 1,
I = 2, or Q = 3.

(a) Original image (b) Descreened image (c) Descreened image
with annotations

Figure 2. Crop of the image shown in Fig. 1.

Next, we compute ∆E ′ using Eqs. 2 and 3. We are using only
the luminance channel to compute ∆E ′ because the dust streaks
mainly affect the luminance channel.

baseline(x,y) =
x+5

∑
k=x−5

g(k,y,1)
11

, (2)

∆E ′(x,y) = g(x,y,1)−baseline(x,y), (3)

where g(x,y,1) is luminance value of the descreened image at
pixel (x,y).

2.2. Features
After computing ∆E ′, we split the image into vertical

columnstrips of width w = 13 pixels and an overlap of o = 6 pix-
els.

For each columnstrip row we find peaks and valleys. We
choose the index at which the peak or valley has the highest abso-
lute value in this columnstrip row, and we call it the peak location.
A peak is a data sample that is either larger than its two neighbor-
ing samples or larger than the left neighboring sample and equal
to the right neighboring sample. A valley is a data sample that
is either smaller than its two neighboring samples or smaller than
the left neighboring sample and equal to the other. The leftmost
and rightmost pixels of the columnstrip cannot be peak locations
because they don’t have two neighbors. In Fig. 3 the indices 2
and 7 are valleys, whereas the indices 6 and 9 are peaks. The
peak location is 6.

Figure 3. Example of a columnstrip row.

Figure 2c shows a crop of a descreened image with annota-
tions for one columnstrip. The green lines are the edges of the
columnstrip. The blue marks are the peak locations in each row.
In the areas where the background is smooth, the peak locations
form a vertical line due to presence of dust streak. In the area
where the dust streak goes through hair, the blue dots are not ver-
tically aligned due to the influence of the content.

In addition to peak location, we will define the peak edge.
The peak edges show the width of the peak. We define the peak
edge as the index closest to the peak index, where the value drops
below 25% of the peak value. In Fig. 3 the indices 4 and 7 are left
peak edge and right peak edge indices, respectively.

In some cases, the peak location is not vertically aligned even
though there is no content interfering with the streak. This hap-
pens when the dust streak is wider than 1 pixel and has multiple
columns with similar ∆E ′ values. We want the peak location to be
vertically aligned across multiple rows for detecting dust streaks.
Therefore, we adjusted the peak location based on two conditions
and called it the augmented peak location (APL). The first con-
dition is that the difference between the index of the current row
center and the index of the APL of the preceding row is less than
2. The second condition is that the APL of the preceding row is
between the left and right peak edges of the current row. If both
of the conditions are satisfied, then we assign the APL value of
the preceding row to the APL of the current row.

418-2
IS&T International Symposium on Electronic Imaging 2018

Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

2.2.1. Feature 1. Minimum locally summed augmented
peak location derivative magnitude (MLSAPLDM)

MLSAPLDM is the primary feature that we will use to find
vertical streaks. We will compute the augmented peak location
derivative magnitude according to Eq. 4. Then we will sum the
augmented peak location derivative magnitude for a window of
size 20 according to Eq. 5. Then we will find the minimum of
two adjacent windows and use that value as the MLSAPLDM ac-
cording to Eq. 6. A low MLSAPLDM value implies that there
may be a vertical streak in the image.

apldm(x,y) = |apl(x,y)−apl(x,y+1)|, (4)

lsapldm(x,y) =
y+19

∑
k=y

apldm(x,k), (5)

f1(x,y) = min
(
lsapldm(x,y), lsapldm(x,y−20)

)
, (6)

where apl(x,y) is the augmented peak location in columnstrip
x and row y, apldm is the augmented peak location derivative
magnitude, lsapldm is the locally summed augmented peak loca-
tion derivative magnitude, and f1 is the minimum locally summed
augmented peak location derivative magnitude.

2.2.2. Feature 2. Peaking factor (PF)
The PF computes the strength of the peak. We use the true

area under the curve. PF is computed according to Eq. 7.

f2(x,y) =
rpe(x,y)−1

∑
k=l pe(x,y)+1

|∆E ′(k,y)|, (7)

where l pe(x,y) and rpe(x,y) are left peak edge and right peak
edges in columnstrip x and row y, respectively.

2.2.3. Feature 3. Side difference (SD)
The edges of the content such as edges of pictures will also

have a low MLSAPLDM value. However, these are not dust
streaks. To remove these false alarms, we use the SD. The SD
is a color difference between the two sides of the peak location.
We take the average of 3 pixels following the peak edge on both
sides according to Eqs. 8-9. We call the average value of the
left side and the average value of the right side colorl and colorr,
respectively. The SD is computed using Eq. 10:

colorl(x,y,c) =
1
3

l pe(x,y)

∑
k=l pe(x,y)−2

g(k,y,c), (8)

colorr(x,y,c) =
1
3

rpe(x,y)

∑
k=rpe(x,y)−2

g(k,y,c), (9)

f3(x,y) =

√√√√ 2

∑
c=0

(colorl(x,y,c)− colorr(x,y,c))2, (10)

where x is the columnstrip index, y is the row index, c is the chan-
nel index, g(x,y,c) is the descreened image, l pe is the left peak
edge, and colorl and colorr are the average colors of the left and
right sides of the peak.

2.2.4. Feature 4. Columnstrip derivative (CD)
Table lines cause false alarms since they look like vertical

streaks. We developed this feature to capture most of the table
lines. The Columnstrip derivative is computed for each column-
strip row according to Eq. 11. The CD computes the luminance
difference between two columnstrip rows that are two rows apart,
averaged over 13 consecutive columns. Note that this feature is
computed on the original image before descreening.

f4(x,y) =
1
13

xc+13

∑
k=xc
| f (k,y,0)− f (k,y+2,0)|, (11)

where f (k,y,0) is luminance value in column y, row k, and xc is
the leftmost column of columnstrip x.

2.3. Thresholding and obtaining defective mask
After computing the features defined in Sections 2.2.1-2.2.4,

we can obtain an initial defective mask mask1. We mark a
columnstrip row as nondefective if it doesn’t satisfy a condition
for a defective pixel and mark it as defective if it does satisfy such
a condition. Equation 12 describes the initial mask where 1 is de-
fective and 0 is nondefective. We obtain another mask for tables
masktable using the same procedure but with different thresholds.
Since most table lines are stronger than dust streaks the threshold
for the PF will be higher for table lines. In addition, the table lines
can have a skew depending on the page alignment, and the ML-
SAPLDM threshold is less conservative, that is higher, for table
lines mask.

mask1(x,y) =

{
1 if f1(x,y)< T1 and f2(x,y)> T2min

0 otherwise
(12)

After obtaining two masks for table lines and dust streaks,
we will use table line detection algorithm to refine the table lines
mask. This is described in Section 2.4. Then, we will mark ta-
ble lines and adjacent columnstrips as nondefective on the dust
streaks mask.

We will use PF and SD to remove the remaining false alarms.
Equation 13 describes how we obtain mask2(x,y).

mask2(x,y) =

1 if mask1(x,y) = 1, f3(x,y)< T3,

f2(x,y)< T2max

0 otherwise

(13)

2.4. Table line detection
Vertical lines of tables cause false alarms. We need to detect

them and mark as not a dust streak. Most tables have a rectan-
gle box around them. That means that vertical table lines start
and end with horizontal line intersections. We already have a pro-
cedure for detecting vertical lines, so we use the feature CD for
detecting horizontal lines. The algorithm for detecting table lines
is provided in Algorithm 1.

Examples of table detection are shown in Figs. 4 and 5. Ma-
genta means that there is a table line, and red means that there is
dust streak based on our algorithm result. From the image in Fig.
4b one can see that table detection has identified almost all of the

IS&T International Symposium on Electronic Imaging 2018
Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

418-3

Algorithm 1 Table line detection.
Find all rows which have at least 14 consecutive columnstrips
where f4(x,y)> 70
for each columnstrip x do

if columnstrip x has two or more horizontal lines then
if vertical line was detected in more than half of rows be-
tween two consecutive horizontal lines (y1 and y2) and
less than 9 of 20 rows above y1 then

y← y1
while y 6= y2 do

masktable(x,y)← 1
y← y+1

end while
else

y← y1
while y 6= y2 do

masktable(x,y)← 0
y← y+1

end while
end if

else
y← 0
while y 6= height do

masktable(x,y)← 0
y← y+1

end while
end if

end for

table lines and a dust streak correctly. The small segment that was
not detected is due to the fact the the vertical line is skewed, and
was not detected in that area. However, in some cases the table
line detection algorithm doesn’t find all table lines. An example
where our algorithm doesn’t find all table lines is shown in Fig.
5b. This image has a table with a background of various colors.
The table lines are all black and the contrast between background
and table line varies a lot. Varying contrast is a reason for not de-
tected table lines. Based on these and other results we have seen,
the table line detection finds most table lines. But it doesn’t work
when the table line has a low contrast to background.

2.5. Postprocessing
Our procedure needs a cleanup routine to connect defective

segments that are close and to remove defective segments if they
are too short. We call a run of consecutive defective rows in a
columnstrip a defective segment. Connecting two defective seg-
ments means that the rows between two segments will be marked
as defective. Removing a defective segment means that the seg-
ment will be marked as nondefective. Postprocessing consists of
two steps. The first step removes very short streaks, and connects
streaks if the gap between them is very small. In the second step,
we search for regions of 250 pixels in the columnstrip that have at
least 150 defective rows. We chose the number 150 based on our
scanner resolution of 300 dpi, and the requirement for streaks to
be no less than 0.5 in. in length, which is 150 pixels.

In the first step, we will connect small segments if the gap
between them is smaller than 5 pixels. After connecting all small
segments that are close together, we will check their length, and

(a) Original image (b) Image with annotations
Figure 4. Example 1 of table detection. Table lines detected by our al-

gorithm are shown in magenta. Dust streaks detected by our algorithm are

shown in red.

(a) Original image (b) Image with annotations
Figure 5. Example 2 of table detection. Table lines detected by our al-

gorithm are shown in magenta. Dust streaks detected by our algorithm are

shown in red.

remove segments that are shorter than 40 pixels.
In the second step, we will look at a sliding window of 250

pixels with a step size of 50 pixels. In each window we will com-
pute the following statistics: first defective row (y1), last defective
row (y2), longest gap (maxgap), and total number of defective
rows (m). We will create a new mask to store the final results of
the postprocessing. We will mark the region from y1 to y2 as de-
fective if (y2− y1) > 150, maxgap < 50, and m > 120. If any of
these conditions are not satisfied, then we don’t mark anything.

2.6. Finding exact locations of dust streaks
The defective mask that we have found does not contain in-

formation about where in the columnstrip the dust streak is lo-
cated. Healing the entire columnstrip does not look good, be-
cause only a couple of pixels in the columnstrip have been dis-
torted by the dust streak. We can use the left peak edge (l pe(x,y))
and the right peak edge (rpe(x,y)) to find the actual defective
pixels. However, sometimes the columnstrip row might con-
tain other content, which has a higher |∆E ′| value; and l pe(x,y)

418-4
IS&T International Symposium on Electronic Imaging 2018

Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

and rpe(x,y) will not accurately indicate the location of the dust
streak. So, we need to refine the results.

To refine the defective pixels, we will find columns in the
columnstrip that have been affected by dust. Dust particles gener-
ally don’t move. So the defective pixels should stay in the same
columns. For each defective columnstrip row, we will mark the
pixels between l pe(x,y) and rpe(x,y) as defective pixels. We will
only keep the columns that belong to at least half of the defec-
tive rows of the columnstrip. All other columns will be marked as
nondefective.

3. Healing methods
Image healing can be done done by a diffusion based method

or an exemplar based method. We will apply these methods to
heal dust streaks. We will also apply the exemplar based method
to heal torn corners and punch holes, which are common problems
for scanned documents.

The advantage of the diffusion based healing method is low
computation. Each row is healed separately by replacing the de-
fective region with synthetic pixels. The synthetic pixels will be
interpolated from the surrounding 2-4 pixels around the defective
region depending on the PDE being used. The disadvantage of
this approach is that if the region being healed is large, it will
look blurry.

The advantage of the exemplar based method is that it does
not cause blurriness. A major disadvantage is the computation
time. Since the synthetic region is a patch from the image, a
search algorithm is needed. An exhaustive search for the best
patch requires a lot of computation.

3.1 Healing using exemplar based method
For our exemplar based method, we followed the work by A.

Criminisi et al., which presented a novel algorithm for removing
large objects from images in a visually plausible way [30]. Here
are the terminologies that we will use in this Section: target area
(Ω), source area (Φ), fill-front (∇Ω) and patch (ψ) [30]. The tar-
get area (Ω) is the area that we need to synthesize. The source
area (Φ) is the rest of the image, the known part. The fill-front
(∇Ω) is the intersection between Ω and Φ. A patch (ψ) is a com-
putation unit, which is a square with side w. Given a fixed w, a
patch is determined by its center pixel p. A target patch lays par-
tially or completely in Ω. A source patch always lays completely
in Φ, i.e. none of its pixels are missing. A graphical illustration
of these terminologies is given in Fig. 6.

The goal of their work was to search for the best patch that
is fully in the source area to fill the unknown pixels of a patch that
is in the target area. The similarity is measured by the function
given in Eq. 15.

I(i) =

{
1 if i ∈Φ

0 if i ∈Ω,
(14)

where i is a pixel coordinate.

ε = ∑
i∈ψp1

I(ψp1(i))× (ψp1(i)−ψp2(i))
2, (15)

where ψp1 and ψp2 are patches with centers at p1 and p2 respec-
tively. I(i) is the indicator function defined in Eq. 14.

Figure 6. Graphical illustration of terminologies.

The key to proper healing is the patch priority P(ψp). The
patches with higher priority are healed first [30]. This feature
pushes the patches with more information, or with stronger struc-
ture, to be filled earlier. We used the priority queue to control the
order of filling. Each defective patch is partially replaced by its
nearest neighbor patch from the source area based on the similar-
ity measure defined by Eq. 15.

3.2 Healing using cubic interpolation
Cubic interpolation is one of the diffusion based methods.

Image healing using cubic interpolation heals each row separately.
The dust streaks cause vertical streaks of varying width from 1 to
5 pixels. For each row with defective pixels we will use four
nearest neighbor pixels of the defective region: two pixels on the
left side and two pixels on the right side. Using these pixel values,
we can find the coefficients of a polynomial. We used Catmull-
Rom spline interpolation [36]. The coefficient equations are given
in Eqs. 16-20:

f (x) = ax3 +bx2 + cx+d, (16)

a =−1
2

q0 +
3
2

q1−
3
2

q2 +
1
2

q3, (17)

b = q0−
5
2

q1 +2q2−
1
2

q3, (18)

c =−1
2

q0 +
1
2

q2, (19)

d = q1, (20)

where qo and q1 are pixels to the left of the region, and q2 and q3
are pixels to the right of the region.

4. Text protection
Healing text areas is undesirable because the text can be al-

tered and it is very hard to decide if the stroke was created by
the dust streak, or if the stroke was there as a part of a character.
Therefore, we don’t want to alter the text, and we will not heal the
regions where there is text. Only small font size text can be altered
by healing because dust streaks are very narrow. For this reason,
we have developed a procedure to protect text by removing the
text areas with small font size from detection.

IS&T International Symposium on Electronic Imaging 2018
Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

418-5

Since the purpose of this project is hardware application, we
decided to use the data that we have already computed for text
detection. The data that we will use is ∆E ′, which is the difference
between the average baseline luminance and the luminance at an
individual pixel. The character height that could be destroyed by
healing is up to 25 pixels. The largest width of these characters is
approximately 30 pixels. Based on that, we decided to compute
a sum of |∆E ′| for 5 nonoverlapping columnstrips of width 13
pixels to cover at least 2 characters. This is captured in Eq. 21.

DeltaESum(x,y) =
xl+38

∑
k=xl−26

|∆E ′(k,y)|, (21)

where x is a columnstrip index, y is a row index, and xl is the
index of the leftmost column of columnstrip x.

We will then decide whether the row contains the text or not
based on this feature. If the DeltaESum(x,y) is higher than 450,
then we decide that this row has a text, and we will not heal this
row.

Figure 7 shows a comparison of two healed results using the
cubic interpolation method. Figure 7c shows an example of an
image that was healed without using text protection. As a result,
the text was damaged. The letter ”u” in ”sauteed” and ”our” was
severely altered. Figure 7e shows an example of an image that
was healed with text protection. The letters have been protected
and not altered. In addition to protecting both letters ”u”, the
streak that is between ”L” and ”U” was also protected. This is
undesirable in this example. But in general, it is better to be safe
in the areas close to text.

(a) (b) (c) (d) (e)
Figure 7. Comparison of healing using cubic interpolation with and without

text protection: (a) original image; (b) image with defective mask without text

protection; (c) healed image without text protection; (d) image with defective

mask with text protection; (e) healed image with text protection.

5. Decreasing time complexity for exemplar
based healing method (inpainting)

For healing using the inpainting method, an exhaustive
search has a high computational cost. It requires looking for a
best patch among all source patches. Many computer vision, and
machine learning applications involve searching similar vectors in
very large databases [38]-[40]. It is usually referred as a nearest
neighbor (NN) problem.

Many algorithms for NN problems suffer from high dimen-
sionality of the search vector [41]-[43]. Our approach is an ex-
tension of KD trees [25], which belong to the partition tree tech-
niques. The partition tree techniques divide the search space into
subspaces. The KD tree algorithm uses one of the k dimensions
as a hyperplane at each tree node to divide the space. To deal with
high dimensionality and decrease time complexity, we decided to
sacrifice the precision of the result.

The KD tree is a generalization of the binary tree. At the root
node, the data is split into two groups along dimension i, where
i ∈ [0,k− 1]. Data points with smaller values than the root are
put into the left subtree, the remaining data points are put into the
right subtree. The split is usually made at the median of the data
in dimension i. The i is called a discriminator. The discriminator
is carefully chosen at each node. First, we calculate the variance
along all k dimensions among the data points that belong to this
node. The dimension with the highest variance is chosen as the
discriminator. Then we do the same thing for the left child node
and the right child node.

The database of vectors is constructed from source region.
By using a sliding window with the same size as the patch size,
we can move this window one pixel at a time and get all the source
vectors. Using these vectors we will then construct a KD tree.

When a query is made for a vector x, we compare the value
of the query at dimension i, which corresponds to the root node.
If the query is smaller, then we continue the search in the left
subtree, otherwise we continue the search in the right subtree.

The immediate problem that we need to address is the incom-
plete target vectors. That is, we cannot use the missing pixels in
the target vector that we want to heal. Therefore, we will have to
continue the search in both subtrees when the discriminator value
is missing in the target vector. This problem can be easily solved
for the dust streaks. Since dust streaks are narrow and long, the
dimensions where the target patches are missing values will not
be used as discriminators. We cannot apply this to torn corners
and punch holes since the target vectors have missing pixels at
different dimensions.

We traverse the tree until we find a leaf node. The leaf node is
not always the nearest neighbor to the query vector. Then we need
to backtrack the search path and compare the distances. Also,
at each node we need to check if we need to traverse the other
subtree.

To save time, we will limit the amount of backtracking and
sacrifice the accuracy of finding the true nearest neighbor. To
compensate for accuracy, we will decrease the probability of fail-
ure by constructing multiple KD trees. Assuming the probability
of failure of finding the true nearest neighbor is Pf , and it is inde-
pendent and identically distributed among all the trees, then our
failure rate for m trees is Pm

f .
We will use randomness to build different trees. For the com-

putation of variance for all dimensions, we will use only a small
subset of data, for example 100 data points. These points are cho-
sen uniformly at random. Next, instead of choosing the top vari-
ance as the discriminator, we will choose uniformly one of the top
m discriminators. The probability of getting the same discrimina-
tor at two nodes is less than m(−2). For m = 5 the probability of
getting same three nodes at the top of two trees is less than 25−3.
This is a satisfactorily small number, and hence we will use 5 in
our application.

418-6
IS&T International Symposium on Electronic Imaging 2018

Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

The multiple KD trees pipeline is summarized in Fig. 8.

Figure 8. Pipeline for optimizing image healing using inpainting.

6. Results
6.1. Results of dust detection procedure

We used the same training procedure as reported in [1]. This
time, however, we focused more on decreasing the false alarm
rate. As a result, we increased the allowed miss rate to 30%. We
achieved false alarm rate of 0.03%. That is, 22,179 false alarm
columnstrip rows and 28,418 missed columnstrip rows.

Examples of the detection and healing algorithms are pro-
vided in Figs. 9-11. In these examples, we are showing the results
of healing using cubic interpolation since it is a preferred method
of healing for dust streaks due to its low computation time. Figure
9a shows an original image, Fig. 9b shows an algorithm result su-
perimposed on the original image, and Fig. 9c shows a healed im-
age. The detection result is color coded to show ground truth and
algorithm results on the same image. The color codes are sum-
marized in Table 1. In Fig. 9, the three longest dust streaks were
found by the algorithm. Small parts of the streaks were missed
due to noise in the image. In Fig. 10, all of the dust streak was de-
tected and healed. In Fig. 11, the dust streak on the far left side of
the image was detected correctly and healed, but there were also
table lines detected as dust streaks and healed incorrectly. In this
example, the table lines have a low contrast to the background and
are hard to distinguish from dust streaks. As a result of this wrong
detection, the table lines are removed from the image in Fig. 11c.

Table 1: Color code for annotations based on ground truth and
dust detection algorithm.

Annotated
in ground
truth with
high score

Annotated
in ground
truth with
low score

Not anno-
tated

Detected by
the algo-
rithm

green yellow red

Not de-
tected by
the algo-
rithm

blue cyan no annota-
tion

(a) Original image

(b) Image with dust detection result superimposed

(c) Healed image using cubic interpolation
Figure 9. Example 1 of algorithm detection and healing. It is recommended

that the reader zoom into these images in order to see the dust streaks, the

detection algorithm results, and the healed results.

6.2 Applications of exemplar based healing for
scanned documents

We used the method described in Section 3.1 to heal dust
streaks, punch holes, and torn corners. In order to have ideal heal-
ing, the patch size is a very important factor. It has to match up
with the document texton size [37]. Examples of the effect of

IS&T International Symposium on Electronic Imaging 2018
Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

418-7

(a) Original image

(b) Image with dust detection result superimposed

(c) Healed image using cubic interpolation
Figure 10. Example 2 of algorithm detection and healing. It is recom-

mended that the reader zoom into these images in order to see the dust

streaks, the detection algorithm results, and the healed results.

different patch sizes on healing are provided in Figs. 12 and 13.
For a smooth background, the tolerance to changes in patch size
is much larger as the texture blends easily. However, if the line
goes across a high frequency content area, either a too small or
a too big size patch can cause visible defects. The medium sized
patches usually work best for most of dust streaks. In Fig. 12,

(a) Original image

(b) Image with dust detection result superimposed

(c) Healed image using cubic interpolation
Figure 11. Example 3 of algorithm detection and healing. It is recom-

mended that the reader zoom into these images in order to see the dust

streaks, the detection algorithm results, and the healed results.

other than patch sizes 3 and 5, the rest of the patch sizes yield a
good healing result. The most difficult case occurs when the dust
line goes across a text area. In Fig. 13, letters of different font
sizes are affected by a dust streak. Bigger letters such as the letter
”O” at the top of the image show more tolerance to changes in
patch size than the numeral ”8” at the bottom. The overall best

418-8
IS&T International Symposium on Electronic Imaging 2018

Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

result appears to be achieved with a patch size 11.

Figure 12. Example 1 of different patch sizes used to heal a dust streak.

Leftmost is a zoom-in from the original image, the rest are healing with patch

sizes 3, 5, 7, 9, 11, 13, 15, respectively. The original image is scanned at

300 dpi, and these images are of size 141 ×41 pixels.

Figure 13. Example 2 of different patch sizes used to heal dust streak.

Leftmost is a zoom-in from the original image, the rest are healing with patch

sizes 3, 5, 7, 9, 11, 13, 15, respectively. The original image is scanned at

300 dpi, and these images are of size 141×41 pixels.

Of course, when the missing area is much bigger, such as
that in a punch hole, or a torn corner, we have to do much more
guessing. If there is text content, we have to take the risk and cre-
ate something meaningful using the background. In these cases,
we care more about the visual continuity than the correctness,
since we don’t have information of the latter. Examples of healing
punch holes are given in Figs. 14 and 15. Examples of healing
torn corners are given in Figs. 16 and 17.

The punch holes in Fig. 14 are healed well using patches
of sizes 13, 17, 19, 21, 23, 25, and 27. Using patches with a
smaller size yields visible artifacts. Torn corners are even harder
to heal since the missing part is on the edge of the image. On all of
the healed images of the torn corner, the background is replicated
very nicely and matches the off-white background of the image.

Figure 14. Example 1 of different patch sizes used to heal punch holes.

Leftmost is a zoom-in from the original image, the rest have been healed

with patch sizes 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, respectively. Each

zoom-in is 271×271 pixels, the radius of the punch hole is about 40 pixels.

This method yields good results with the correct patch size
for dust streak healing. It can replicate the background for torn
corners and punch holes. However, it doesn’t work as well for

Figure 15. Example 2 of different patch sizes used to heal punch holes.

Leftmost is a zoom-in from the original image, the rest have been healed

with patch sizes 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, respectively. Each

zoom-in is 191×191 pixels, the radius of the punch hole is about 40 pixels.

Figure 16. Example 1 of different patch sizes used to heal a torn corner.

Leftmost is a zoom-in from the original image, the rest have been healed with

patch sizes 11, 13, 15, 17, 19, 21, 23, 25, 27, respectively. Each zoom-in is

600×350 pixels.

Figure 17. Example 2 of different patch sizes used to heal a torn corner.

Leftmost is a zoom-in from the original image, the rest have been healed with

patch sizes 11, 13, 15, 17, 19, 21, 23, 25, 27, respectively. Each zoom-in is

600×350 pixels.

cases with content cropped out due to a torn corner or punch hole.
The main disadvantage is that it has a high computational cost.

6.3 Results of applying cubic interpolation to heal-
ing dust streaks

Examples of using cubic interpolation are shown in Figs. 18-
20. The examples show that narrow streaks are healed very well.
Since most of the dust streaks are 1-3 pixels wide, this method
works well for healing dust streaks. However, for wider streaks
this method is not as good. An example of wide streak healing
is given in Fig. 20. Figure 20a shows an original image with a
dust streak; Fig. 20b shows the image with defective mask; and
Fig. 20c shows the healed image with the new synthetic pixels
in place of defective pixels. When healing wide streaks some of
the defective pixels are being used for interpolation because the
defective mask does not cover all of defective pixels. Increasing
the width of the defective mask will help in this case, but it might
interfere with content in other cases and cause significant changes
to the image.

6.3 Results of using multiple KD trees with exem-
plar based image healing

Since the data in missing pixels such as punch holes is miss-
ing, there is no real ground truth. We will use result of exhaustive
search image healing as the ground truth and compare the result
of using multiple KD trees to that. The error metric we used is

IS&T International Symposium on Electronic Imaging 2018
Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

418-9

(a) Original image (b) Image with defec-
tive mask

(c) Healed image

Figure 18. Example 1 of healed image.

(a) Original image (b) Image with defec-
tive mask

(c) Healed image

Figure 19. Example 2 of healed image.

∆E:

∆E =
1
N ∑

i
(1− I(i)) (22)√

(re(i)− ro(i))2 +(ge(i)−go(i))2 +(be(i)−bo(i))2,

where I(i) is an indicator function for the pixels in the target re-
gion, re(i) is a pixel value of the red channel in the exhaustive
search result image, ro(i) is a pixel value of the red channel in the
optimized search result image, and N = ∑ I(i) is the number of
missing pixels.

Considering the randomness in the algorithm, for the same
parameters, the output can vary. Thus for the data collection, we
run the algorithm 10 times for each parameter set. The results
that are presented here are the averages. We will look at how the
limit on number of leaf nodes visited and the number of trees built
impact the results.

(a) Original image (b) Image with defec-
tive mask

(c) Healed image

Figure 20. Example 3 of healed image when the streak is wide.

First, we compare how the number of trees we use affects
the performance of the algorithm. Figures 21 and 22 show quality
and time performance with three settings. In each setting, each
tree can visit only a fixed number of leaves, while the number
of trees linearly increases. As we can see, the mean ∆E drops
significantly when more than 2 trees are used. But if the number
of leaves is not too small, it does not decrease significantly as the
number of trees used increases further. Increasing the number of
leaves from 50 to 400 significantly decreases the error for each
number of trees used. However, further increasing the number
of leaves beyond 400 does not significantly further decrease the
error. Looking at time performance, we see that the exhaustive
search takes a lot more time than the multiple KD trees approach.

Figure 21. Impact on ∆E of number of trees built.

Figures 23 and 24 show the effect of the number of leaf nodes
each tree is allowed to visit. Increasing the number of leaves vis-
ited generally gives an incremental increase in the quality of heal-
ing for a setting with 1 tree, and almost no improvement for the
other two settings. This is because using 6 or more trees already
gives an increase in quality; and the limit on number of leaf nodes
is compensated by the higher number of trees used. The computa-

418-10
IS&T International Symposium on Electronic Imaging 2018

Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

Figure 22. Impact on time performance of number of trees built.

tional time goes up linearly as we increase the limit on the number
of leaf nodes visited.

Figure 23. Impact on ∆E of the limit on number leaf nodes visited.

Figure 24. Impact on time performance of the limit on number leaf nodes

visited.

The images comparing the results obtained using exhaustive

search and using multiple KD trees are given in Figs. 25 and 26.
The results show that using multiple KD trees provides reasonably
good results compared to exhaustive search healing.

(a) (b) (c)
Figure 25. Comparison of healing punch hole with exhaustive search and

with multiple KD trees. Only crops of punch holes are shown: a) original

image, b) healed image with exhaustive search and patch size 21, c) healed

image with multiple KD trees, patch size 21, 4 trees, 400 leaf node visits limit.

(a) (b) (c)
Figure 26. Comparison of healing torn corner with exhaustive search and

with multiple KD trees. Only crops of torn corner are shown: a) original

image, b) healed image with exhaustive search and patch size 19, c) healed

image with multiple KD trees, patch size 19, 4 trees, 400 leaf node visits limit.

5. Conclusion
In conclusion, we continued our work on dust detection by

adding more features, such as table line detection and text pro-
tection, and refining our existing features. We investigated two
different methods for healing dust streaks. The results show that
the cubic interpolation method performs well for narrow and well-
defined dust streaks, which is the common case for dust streaks.

IS&T International Symposium on Electronic Imaging 2018
Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

418-11

The exemplar based method also performs well, but at a much
higher computational cost. The exemplar based method was used
to heal punch holes and torn corners. It was found that patch size
plays a crucial role for getting best results. We also proposed a
method for finding the nearest neighbor in exemplar based heal-
ing using multiple KD trees. The results show that using multiple
KD trees and limiting the number of leaf nodes visited in each
tree provides similar healing results as using exhaustive search
and saves time. In the future, the table line detection could be im-
proved to include a wider range of tables with varying background
contrast.

References
[1] D. Kenzhebalin, X. Liu, N. Yan, P. Bauer, J. Wagner, and J. P. Alle-

bach, ”Detection of streaks caused by dust in the sheetfed scanners,”
Image Quality and System Performance XIV, (Part of IS&T Elec-
tronic Imaging 2017), R. Jenkin, and E. Jin, Eds., Burlingame, CA,
29 January-2 February 2017.

[2] X. Jing, S. Astling, R. Jessome, E. Maggard, T. Nelson, M. Q. Shaw,
and J. P. Allebach, ”A General Approach for Assessment of Print
Quality,” Image Quality and System Performance X, (Part of IS&T
and SPIE Electronic Imaging 2013), Vol. 8653, P. D. Burns and S.
Triantaphillidou, Eds. San Francisco, CA, 3-7 February 2013.

[3] X. Liu, G. Overall, T. Riggs, R. Silveston-Keith, J. Whitney, G. T.
C. Chiu, and J. P. Allebach, ”Wavelet-Based Figure of Merit for
Macrouniformity,” Image Quality and System Performance X, (Part
of IS&T and SPIE Electronic Imaging 2013), Vol. 8653, P. D. Burns
and S. Triantaphillidou, Eds. San Francisco, CA, 3-7 February 2013.

[4] W. Wang, G. Overall, T. Riggs, R. Silveston-Keith, J. Whitney, G.
T. C. Chiu, and J. P. Allebach, ”Figure of Merit for Macrounifor-
mity Based on Image Quality Ruler Evaluation and Machine Learn-
ing Framework,” Image Quality and System Performance X, (Part of
IS&T and SPIE Electronic Imaging 2013), Vol. 8653, P. D. Burns and
S. Triantaphillidou, Eds. San Francisco, CA, 3-7 February 2013.

[5] M. Q. Nguyen, S. Astling, R. Jessome, E. Maggard, T. Nelson, M.
Q. Shaw, and J. P. Allebach, ”Perceptual Metrics and Visualization
Tools for Evaluation of Page Uniformity,” Image Quality and System
Performance XI, (Part of IS&T and SPIE Electronic Imaging 2014),
Vol. 9016, S. Triantaphillidou and M.-C. Larabi, Eds. San Francisco,
CA, 3-5 February 2014.

[6] M. Q. Nguyen and J. P. Allebach, ”Controlling Misses and False
Alarms in a Machine Learning Framework,” Image Quality and Sys-
tem Performance XII, (Part of IS&T and SPIE Electronic Imaging
2015), Vol. 9396, M.-C. Larabi and S. Triantaphillidou, Eds. San
Francisco, CA, 8- 12 February 2015.

[7] W. Wang, Y. Guo, and J. P. Allebach, ”Image Quality Evaluation Us-
ing Image Quality Ruler and Graphical Model,” IEEE International
Conference on Image Processing 2015, Quebec City, Canada, 27-30
September 2015.

[8] S. Hu, H. Nachlieli, D. Shaked, S. Shiffman, and J. P. Allebach,
”Color-Dependent Banding Characterization and Simulation on Nat-
ural Document Images,” Color Imaging XVII: Displaying, Process-
ing, Hardcopy, and Applications, (Part of IS&T and SPIE Electronic
Imaging 2012), Vol. 8292, R. Eschbach, G. Marcu, and A. Rizzi, Eds.,
San Francisco, CA, 23-26 January 2012.

[9] X. Jing, H. Nachlieli, D. Shaked, S. Shiffman, and J. P. Allebach,
”Masking Mediated Print Defect Visibility Predictor,” Image Qual-
ity and System Performance IX, (Part of IS&T and SPIE Electronic
Imaging 2012) Vol. 8293, F. Gaykema and P. D. Burns, Eds, San

Francisco, CA, 23-26 January 2012.
[10] J. Zhang, H. Nachlieli, D. Shaked, S. Shiffman, and J. P. Allebach,

”Psychophysical Evaluation of Banding Visibility in the Presence of
Print Content,” Image Quality and System Performance IX, (Part of
IS&T and SPIE Electronic Imaging 2012), Vol. 8293, F. Gaykema
and P. D. Burns, Eds, San Francisco, CA, 23-26 January 2012.

[11] J. Zhang, S. Astling, R. Jessome, E. Maggard, T. Nelson, M. Q.
Shaw, and J. P. Allebach, ”Assessment of Presence of Isolated Peri-
odic and Aperiodic Bands in Laser Electrophotographic Printer Out-
put,” Image Quality and System Performance X, (Part of IS&T and
SPIE Electronic Imaging 2013), Vol. 8653, P. D. Burns and S. Tri-
antaphillidou, Eds. San Francisco, CA, 3-7 February 2013.

[12] J. Zhang and J. P. Allebach, ”Estimation of Repetitive Interval of
Periodic Bands in Laser Electrophotographic Printer Output,” Image
Quality and System Performance XII, (Part of IS&T and SPIE Elec-
tronic Imaging 2015), Vol. 9396, M.-C. Larabi and S. Triantaphilli-
dou, Eds. San Francisco, CA, 8-12 February 2015.

[13] X. Jing, S. Astling, R. Jessome, E. Maggard, T. Nelson, M. Shaw,
and J. P. Allebach, ”Electrophotographic Ghosting Detection and
Evaluation,” NIP-31 IS&T 2015 Conference on Digital Fabrication
and Digital Printing, Portland, OR, 27 September-1 October 2015.

[14] J. Wang, T. Nelson, R. Jessome, S. Astling, E. Maggard, M. Shaw,
and J. Allebach, ”Local Defect Detection and Print Quality Assess-
ment,” International Congress of Imaging Science (ICIS), Tel Aviv,
Israel, 12-14 May 2014.

[15] J. Wang, T. Nelson, R. Jessome, S. Astling, E. Maggard, M. Q.
Shaw, and J. P. Allebach, ”Local Defect Detection and Print Qual-
ity Assessment,” Image Quality and System Performance XIII (Part
of IS&T Electronic Imaging 2016), R. Jenkin and M.-C. Larabi, Eds.
San Francisco, CA, 14-18 February 2016.

[16] N. Yan, E. Maggard, R. Fothergill, R. J. Jessome, and J. P. Alle-
bach, ”Autonomous Detection of ISO Fade Point with Color Laser
Printers,” Image Quality and System Performance XII, (Part of IS&T
and SPIE Electronic Imaging 2015), Vol. 9396, M.-C. Larabi and S.
Triantaphillidou, Eds. San Francisco, CA, 8-12 February 2015.

[17] Y. Ju, E. Maggard, R. J. Jessome, and J. P. Allebach, ”Autonomous
Detection of Text Fade Point with Color Laser Printers,” Image Qual-
ity and System Performance XII, (Part of IS&T and SPIE Electronic
Imaging 2015), Vol. 9396, M.-C. Larabi and S. Triantaphillidou, Eds.
San Francisco, CA, 8-12 February 2015.

[18] W. Wang, P. Bauer, J. K. Wagner, and J. P. Allebach, ”MFP Scan-
ner Diagnostics Using Self-Printed Target to Measure the Modula-
tion Transfer Function,” Image Quality and System Performance XI,
(Part of IS&T and SPIE Electronic Imaging 2014), Vol. 9016, S. Tri-
antaphillidou and M.- C. Larabi, Eds. San Francisco, CA, 3-5 Febru-
ary 2014.

[19] M. Kim, J. P. Allebach, P. Bauer, and J. K. Wagner, ”MFP Scan-
ner Motion Characterization Using Self-Printed Target,” Image Qual-
ity and System Performance XII, (Part of IS&T and SPIE Electronic
Imaging 2015), Vol. 9396, M.-C. Larabi and S. Triantaphillidou, Eds.
San Francisco, CA, 8-12 February 2015.

[20] H. S. Rosario, E. Saber, W. Wu, and K. Chandu, ”Streak Detection
in Mottled and Noisy Images,” Journal of Electronic Imaging 2007,
Vol. 16, 1 October 2007.

[21] C. Guillemot and O. Le Meur, ”Image Inpainting: Overview and
Recent Advances,” IEEE Signal Processing Magazine 2014, Vol. 31,
pp. 127-144, 2014.

[22] J. Weickert, ”Theoretical Foundations of Anisotropic Diffusion in
Image Processing,”, in Theoretical Foundations of Computer Vision,

418-12
IS&T International Symposium on Electronic Imaging 2018

Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

Springer, pp. 221-236, 2000.
[23] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, ”Image In-

painting,” in Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM Press/Addison-
Wesley Publishing Co., pp. 417-424, 2000.

[24] M. Bertalmio, A. L. Bertozzi, and G. Sapiro, ”Navier-Stokes, Fluid
Dynamics, and Image and Video Inpainting,” IEEE Computer Society
Conference on Computer Vision and Pattern Recognition , Kauai, HI,
8-14 December, 2001.

[25] A. Telea, ”An Image Inpainting Technique Based on the Fast March-
ing Method,” Journal of graphics tools, Vol. 9, pp. 23-34, 2004.

[26] D. Tschumperl, ”Fast Anisotropic Smoothing of Multi-Valued Im-
ages Using Curvature Preserving PDE’s,” International Journal of
Computer Vision, Vol. 68, pp. 65-82, 2006.

[27] A. Levin, A. Zomet, and Y. Weiss, ”Learning How to Inpaint From
Global Image Statistics.” International Conference on Computer Vi-
sion, pp. 305-312, 2003.

[28] L.-Y. Wei and M. Levoy, ”Fast Texture Synthesis Using Tree-
Structured Vector Quantization,”, Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques,
ACMPress/Addison-Wesley Publishing Co., pp. 479-488, 2000.

[29] A. Bugeau, M. Bertalmio, V. Caselles, and G. Sapiro, ”A Compre-
hensive Framework for Image Inpainting,” IEEE Transactions on Im-
age Processing, Vol. 19, no. 10, pp. 2634-2645, 2010.

[30] A. Criminisi, P. Perez, and K. Toyama, ”Object Removal by
Exemplar-Based Inpainting,” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Vol. 2, 2003.

[31] Z. Xu and J. Sun, ”Image Inpainting by Patch Propagation Using
Patch Sparsity,” IEEE Transactions on Image Processing, Vol. 19,
no. 5, pp. 1153-1165, 2010.

[32] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, ”Simultaneous
Cartoon and Texture Image Inpainting Using Morphological Compo-
nent Analysis (MCA),” Applied and Computational Harmonic Anal-
ysis, Vol. 19, no. 3, pp. 340-358, 2005.

[33] O. LeMeur, J. Gautier, and C. Guillemot, ”Examplar-Based Inpaint-
ing Based on Local Geometry,”, IEEE International Conference on
Image Processing 2011, pp. 3401-3404, Brussels, Belgium, 11-14
September 2011.

[34] I. Ram, M. Elad, and I. Cohen, ”Image Processing Using Smooth
Ordering of Its Patches,” IEEE Transactions on Image Processing,
Vol. 22, no. 7, pp. 2764-2774, 2013.

[35] S. Di Zenzo, ”A Note on the Gradient of a Multi-Image,” Computer
Vision, Graphics, and Image Processing, Vol. 33, no. 1, pp. 116-125,
1986.

[36] E. Catmull and R. Rom, ”A Class of Local Interpolating Splines,”
Computer Aided Geometric Design , R. E. Barnhill and R. F. Riesen-
feld, Eds. New York: Academic, pp. 317-326, 1974.

[37] B. Julesz, ”Textons, the Elements of Texture Perception, and Their
Interactions,” Nature, Vol. 290, no. 5802, pp. 91-97, 1981.

[38] D. G. Lowe, ”Distinctive Image Features from Scale-Invariant Key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91-110, 2004.

[39] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman ,”Ob-
ject Retrieval with Large Vocabularies and Fast Spatial Matching,”
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition , 2007.

[40] J. Sivic, A. Zisserman et al., ”Video Google: a Text Retrieval Ap-
proach to Object Matching in Videos.”, International Conference on
Computer Vision, vol. 2, no. 1470, pp. 1470-1477, 2003.

[41] M. Muja and D. G. Lowe, ”Fast Approximate Nearest Neighbors
with Automatic Algorithm Configuration,”, VISSAPP 2009, pp. 331-
340, 2009.

[42] A. Beygelzimer, S. Kakade, and J. Langford, ”Cover Trees for Near-
est Neighbor,” Proceedings of the 23rd International Conference on
Machine Learning pp. 97-104, 2006.

[43] B. Leibe, K. Mikolajczyk, and B. Schiele, ”Efficient Clustering and
Matching for Object Class Recognition.” BMVC 2006, pp. 789-798,
2006.

Author Biography
Daulet Kenzhebalin received his BS in computer engineering from

Purdue University (2015). Currently he is pursuing PhD in electrical en-
gineering at Purdue University. His primary area of research has been
image processing.

Ni Yan received her PhD degree in Electrical and Computer Engi-
neering from Purdue University, West Lafayette IN, USA (2017), and her
BE in Electrical and Computer Engineering from Beijing University of
Posts and Telecommunications, Beijing, China (2012). Her research has
mainly focused on image quality assessment, and machine learning. Now
she is working as a research scientist in Datavisor Inc, Mountain View
CA, USA.

Jerry Wagner received his BS and MS in Electrical Engineering from
Pennsylvania State University (1978 and 1980) and his MS in Computer
Science from Rochester Institute of Technology (1992). He has worked
in the Research Division at Eastman Kodak Company, and he has been
employed in product development by HP Inc. for the last 17 years. His
work has focused on image processing for scanners and multi-function
peripherals.

Peter Bauer received his Diplom-Ingenieur (FH) in Computer Sci-
ence from the University of Applied Sciences in Rosenheim Germany. He
has worked in Hewlett Packard Research Laboratories in Bristol for 4
years. For the last 20 years he has worked for HP Inc. in product devel-
opment focused on image processing for embedded systems.

Jan P. Allebach is Hewlett-Packard Distinguished Professor of Elec-
trical and Computer Engineering at Purdue University. Allebach is a
Fellow of the IEEE, the National Academy of Inventors, the Society for
Imaging Science and Technology (IS&T), and SPIE. He was named Elec-
tronic Imaging Scientist of the Year by IS&T and SPIE, and was named
Honorary Member of IS&T, the highest award that IS&T bestows. He has
received the IEEE Daniel E. Noble Award and the IS&T/OSA Edwin Land
Medal, and is a member of the National Academy of Engineering.

IS&T International Symposium on Electronic Imaging 2018
Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

418-13

