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Abstract
3D shape reconstruction is one of the most important topics

in computer vision and the foundation for a wide field of applica-
tion. Among various technologies, structured light is one of the
most reliable techniques. However, given the field of view of pro-
jectors and cameras available in the market, the working distance
needed for projectors is typically larger than that for cameras. To
reduce the working distance of the projectors while covering the
whole working platform, two projectors with their field of view
overlapping are used to cover the working area which holds ob-
jects to be scanned. We present a spectral analysis based model
for the projector-camera system, in order to find the most distin-
guishable colors for two projectors, and best separate the pro-
jected patterns from two projectors. The optimal values of the two
colors are determined by the pattern search method in the pres-
ence of noise, which is modeled as multivariate Gaussian noise,
and characterized for different input colors. The camera sensors’
responses to the projector are measured after linearization with
gray balance curves. After being properly calibrated, based on
one image shot of the object with binary M-array patterns pro-
jected on it, the system can reconstruct a 3D shape of the object
surface.

Introduction
3D object reconstruction is becoming an increasingly impor-

tant research area in both computer vision and image processing,
due to its wide application in various fields. Examples include
industrial part modeling and inspection, robot navigation, and 3D
map-building. Depending on whether the sensing system needs
to touch the object or not, there are two types of 3D capture tech-
nologies: contact methods and non-contact methods.

Contact 3D capture methods probe the subject through phys-
ical touch and record the shape data at the same time. The modern
coordinate-measuring machine (CMM) is an example. The ma-
chine records the displacement of a probe tip as it slides across
a solid surface. CMM is used in manufacturing most of the time
for its high accuracy in measurement. However, as with all other
products using contact methods, it may cause modifications or
even damage to the object, which we would not like to see in
some cases, such as when scanning historical artifacts. Another
disadvantage of such methods is the slow operation, since it needs
to get the shape information point by point.

On the other hand, as a large group of 3D capture techniques,
non-contact methods get the shape data of objects without phys-
ically touching them. They either rely entirely on ambient light
(passive methods) or emit certain controlled radiation or light and
detect its reflection (active methods) to probe an object or the en-
vironment. For active methods, there are various systems with

different radiation sources or philosophies of measurement, such
as time-of-flight, laser scanning, and structured light. On the other
hand, passive methods employ the theory of stereo vision, such as
stereoscopic systems. Our goal is to accurately capture the 3D
shape and color information of everyday small objects and docu-
ments at high speed, while using low-cost hardware, such as mo-
bile phone cameras.

Time-of-flight systems are well known for their video rate
processing speed. However, their low resolution and the random
noise of the sensor have impeded their application for everyday
small objects. Recently, an algorithm was proposed to obtain 3D
scans of reasonable quality with a sensor that produces low qual-
ity data [3]. This algorithm is based on a new combination of a
3D super-resolution method with a probabilistic scan alignment
approach that explicitly takes into account the noise characteris-
tics of the sensor. However, the algorithm fails to capture accurate
data for certain surface materials, such as highly specular objects.
Currently, the super-resolution step takes almost 95% of the run-
time, which is too much for low-cost consumer applications.

Figure 1: The triangulation principle of a structured light system.

Another large group of 3D-capture techniques is based on tri-
angulation [6], as shown in Fig. 1. Examples include stereoscopic
systems, laser scanning systems, and structured light systems [2].
Laser scanning methods shine a laser dot or line on the object and
exploit a camera to look for the location of the laser dot/line. In
the case of a laser dot, its location in the camera’s field of view
can be used to determine the 3D location of the point on the ob-
ject. In some sense, such single-point scanning methods can be
seen as the optical equivalent of coordinate measuring machines
(CMM), and just as with CMM, it is a painstakingly slow pro-
cess. With the development of low-cost, high-quality CCD arrays
in the 1980s, we can use a laser projector to create a single planar
sheet of light and sweep it across the surface of the object. The
depth is recovered by the intersection of this plane with the set of
lines passing through the 3D stripe on the surface and the cam-
era’s center of projection. Effectively removing one dimension of
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the raster scan, the swept-plane laser scanning remains a popu-
lar solution for rapid shape acquisition. A variety of commercial
products use such scanning method, such as the NextEngine 3D
Scanner 1 .

With the goal of capturing 3D data from one camera shot,
we build a low cost compact structured light system with two pro-
jectors and one camera, and project two M-array patterns to the
working platform at the same time [7]. Since the system is de-
signed to work with objects whose heights are no larger than 2
inches, and the area that each projector could cover gets smaller
as the height of object surface increases, the two projectors are
positioned such that their fields of view overlap on the working
platform at zero object height. If we use the same color for both
patterns, it is impossible to separate them in the overlapped re-
gion, since the symbols change their shape when overlapped with
each other.

Therefore, we propose to use two different colors for the two
patterns. Here comes the problem of choosing which colors we
should project so that they can be separated easier. Based on those
ideas, we build a color multiplexed camera-projector imaging sys-
tem model in the presence of multivariate Gaussian noise.

First of all, we measure the color and noise characteristics
of the camera-projector imaging system. For the color character-
ization, we gray balance the camera first, then the camera sensors
responses matrix A to the projector’s input are approximated by
linear regression on measurements of 27 colors. We assume the
noise has zero mean and is uniformly distributed across the cam-
era’s field of view. But the noise covariance matrix is color de-
pendent. Using the same 27 colors, we gray balance the camera’s
response to them first, then calculate the covariance matrix among
the red, green, and blue channels for each color. This provides us
with 27 noise covariance matrices. For colors other than the 27
we used, their noise covariance matrices are obtained by using tri-
linear interpolation of the known covariance matrices element by
element.

After obtaining system parameters for the model, we define
the optimization problem that will find the best input colors. The
goal of the optimization problem is to minimize the probability of
making a wrong decision about the color in the presence of noise,
with the maximum likelihood method being used for classifica-
tion. The cost function is calculated by numerical integration.
The pattern search method [5] is used to find the optimal solution.
A validation procedure is recommended to check the optimal so-
lution that has been obtained.

The rest of this paper is organized as follows. In the next sec-
tion, we describe the design of our dual-projector structured light
3D reconstruction system, followed by a section illustrating the
structure of the color multiplexed system model, and the spectral
analysis for the camera-projector imaging system. Then we show
the imaging system color and noise characterization process and
results, which provide parameters for the color multiplexed sys-
tem model. An optimization problem is then defined to solve for
the best input colors. And the procedures to validate a solution to
the optimization problem are also presented. At the end, we have
the conclusions and future work is summarized.

1NextEngine Inc. Santa Monica, CA 90401

Dual-projector Structured-light 3D Capture
System Design

Most of the 3D capture products currently in the market have
high accuracy, but also are too expensive for object capture of
home by hobbyists and small businesses. The goal of designing
a low-cost structured light 3D capture system is to maintain suffi-
cient accuracy while keeping the system cost within a range that
is suitable for home and small business use. A number of fac-
tors, such as resolution, light-level output, geometric distortion,
and working distances for the projector, need to be considered.

Figure 2: Illustration of throw ratio and throw distance [4].

Almost any digital projector can be used in a 3D structured
light system. At least a VGA projector (640× 480) is recom-
mended. The resolution of the camera should be higher than that
of the projector. The projector’s throw ratio is the ratio between
the throw distance and the width of the screen, where the throw
distance is the distance from the screen to the projector. Figure 2
illustrates the throw ratio and throw distance.

In this section, we will describe our prototype system built
with the HP TopShot LaserJet Pro M2752 and two 3M MPro 150
VGA (640×480) pocket projectors3.

Given the dimensions of the TopShot unit shown in Fig. 3a,
for which the width of the platen is 13.5” and the height of the
arm containing the camera and light sources is 8.5” above the
platen, a projector that has throw ratio= 8.5”

13.5” ≈ 0.63 would be
required. Most projectors on the market are designed to have a
relatively large throw ratio. Therefore, given a desired projected
image size, the large throw ratio requires a large throw distance,
which makes the whole 3D capture system not compact. To solve
this issue, Dong [4] introduced a dual projector system, which
uses two relatively short-throw-ratio projectors to each cover half
of the platen. A model of this design is shown in Fig. 3b. Two
heavy-duty posts are used to hold the projectors and control their
movement. The final system that was built is shown in Fig. 4. One
potential application of this capture system is paper flattening [8].

The dual-projector design is used to reduce the working dis-
tance of the projectors while covering the whole working plat-
form, therefore makeing the system more compact. Two new M-
array patterns are designed for the two projectors. The strategy to
choose the most separable colors based on the characteristics of
the imaging system is illustrated in detail in the rest of this paper.

2HP Inc. Palo Alto, CA 94304
33M Company, Saint Paul, MN 55144
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(a)

(b)
Figure 3: (a) Required throw ratio given the dimensions of Top-
Shot if only one projector is used. (b) Conceptual design of the
dual-projector system built around TopShot. [4].

Color Multiplexed Imaging System Model
The block diagram in Fig. 5 summarizes the color multi-

plexed camera-projector imaging system model with multivari-
ate Gaussian noise. In this block diagram, the upper and lower
branches show the practical and ideal cases, respectively. At each
pixel, the projector’s input ~p could be one of the three following
colors: black ~p0 =~0, color 1 ~p1, and color 2 ~p2. After lineariza-
tion, the camera’s response vector~c to the projector’s input could
be modeled by a 3×3 matrix A, that is~c = A~p. The spectral anal-
ysis based method to calculate matrix A will be described later in
this section.

~c actually has four possible values at each pixel of the cam-
era. They are response to black~c0 =~0, response to input color 1
~c1, response to input color 2 ~c2, and response to the overlapped
region of color 1 and color 2 ~c3 =~c1 +~c2. For each pixel, we
need to make a decision among the four cases to determine which
pattern it belongs to. The maximum likelihood method is used for
the decision making process.

In practice, the imaging system has noise. We model it as
zero-mean multivariate Gaussian noise; and the covariance matrix
is color dependent. Therefore, the camera response we get is the
ideal response ~c plus the noise ~n~c. We call the actual data point
~c′ =~c+~n~c . Finally, the maximum likelihood method is used to
make the decision, and generate the output o.

(a) Side view of the current system.

(b) Top view of the current system.
Figure 4: Latest system setup [4].
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Figure 5: Block diagram for the projector-camera imaging system
model.

System Spectral Analysis
In this subsection, we illustrate the relationship between the

projector’s input and the camera’s response to the projector’s cor-
responding output [1].

Assuming we have the camera’s spectral response functions
QR(λ ), QG(λ ), and QB(λ ) for the red, green, and blue channels,
respectively, The camera’s response to a stimulus S(λ ) can be
calculated by Eqs. 1-3.

RS =
∫

S(λ )QR(λ )dλ . (1)

GS =
∫

S(λ )QG(λ )dλ . (2)

BS =
∫

S(λ )QB(λ )dλ . (3)

Given the projector’s spectral density functions PR(λ ),
PG(λ ), and PB(λ ), and the corresponding primary amounts sent
to the projector pR, pG, and pB, the projector’s output can be cal-
culated by Eq. 4.

P(λ ) = pRPR(λ )+ pGPG(λ )+ pBPB(λ ). (4)

In the camera-projector imaging system we have, the cam-
era’s response to the projector’s output can be calculated by Eqs.
5-7.

Rp =
∫
(pRPR(λ )+ pGPG(λ )+ pBPB(λ ))QR(λ )dλ . (5)

Gp =
∫
(pRPR(λ )+ pGPG(λ )+ pBPB(λ ))GG(λ )dλ . (6)

Bp =
∫
(pRPR(λ )+ pGPG(λ )+ pBPB(λ ))QB(λ )dλ . (7)

Let ~cp =
[
Rp,Gp,Bp

]T , ~p =
[
PR,PG,PB

]T represent the
camera’s RGB response values and the projector’s input RGB val-
ues, respectively. Their relationship can be determined as in Eq.
8.

~cp = A~p, (8)

where A =
[
ai j
]
, and ai j =

∫
Pj(λ )Qi(λ )dλ , i, j = R,G,B.

System Color and Noise Characterization
The color multiplexed imaging system model presented in

the previous section has two sets of parameters to be determined,
the camera’s response matrix to the projector, and the color de-
pendent covariance matrix for the multivariate Gaussian noise.
We refer to them as the system color and noise characteristics,
respectively.

For the color and noise measurements we do in this section,
the same camera exposure settings and image region are used
throughout the process. The camera exposure is set such that
when projecting white from both projectors, each RGB channel
won’t be over-saturated. That is, for each channel, there are fewer
than 1% of the pixels that have the value 255. A 50× 55 image
patch in the overlapped region is used for the measurements. The
measurement location is shown in Fig. 6.

Figure 6: The location of the image patch we measured are
marked by a black dot.

System Color Characterization

Camera Gray Balancing
The block diagram in Fig. 7 shows the concept of perform-

ing camera gray balancing. 20 different levels of gray images
are used for the measurement. The same gray image is projected
from both projectors at the same time. Each time we project a
different gray image, the Photo Research SpectraScan 705 is used
to measure the CIE XYZ values at the location shown in Fig. 6.
The CIE Y value is used as luminance value for the red, green,
and blue channels. At the same time, we capture an image with
the TopShot camera, and compute the average pixel value of the
same measured location for the red, green, and blue channel sep-
arately. In this way, we have 20 pairs of values for each channel.
They are shown as dots in the two-dimensional plots in Fig. 8.

Note that the camera’s response to different luminance levels
looks linear. This is because we are capturing the raw output form
the camera. So we fit those data points with a first order polyno-
mial Yi = aVi+b, i= R,G,B, where Yi is the CIE Y luminance and
Vi is the corresponding average pixel value of the camera image.
The camera gray balance curves and fitting parameters for the red,
green, and blue channels are shown in Fig. 8.
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Figure 7: Block diagram for the projector-camera imaging system
color characterization.

Measure the Camera’s Response Matrix to the Projector’s
Input

The block diagram in Fig. 9 shows the concept for measuring
the camera’s response matrix to the projector’s input.

For each projector’s input ~p, we have the camera’s raw out-
put ~craw. Using the gray balancing result in Fig. 8, we can get
the corrected camera’s output ~c. With one pair of ~p and ~c, we
have~c = A~p. If we have N pairs of ~p and~c, then C = AP, where
C = [~c1,~c2, ...,~cN ], and P = [~p1,~p2, ...,~pN ] are both 3×N matri-
ces. The least square solution to A is A =C(PT (PPT )−1).

The 27 solid color images shown in Fig. 10 are used to es-
timate the camera’s response matrix A to the projector’s input.
They are uniformly sampled in the RGB color space.

We project the same solid color image from both projectors
at the same time, and capture it with the camera under the
same settings as used for camera gray balancing. Then the
same 50× 55 image patch as used in camera gray balancing
is used. After we gray balance the camera’s raw output, the
least square solution to matrix A is calculated to estimate
the camera’s response to the projector. The result we got is

A =

 0.418 0.022 −0.016
0.031 0.381 0.010
0.017 0.143 0.263

.

Note that the element at row 1 column 3 of our estimate for
A is negative. This should not happen in a real imaging system.
The reason we get negative element is that the system is not com-
pletely linear. We will leave it this way since the negative value is
very close to 0.

System Noise Characterization
The images shown in Fig. 10 and the data captured for the

previous subsection are used for noise characterization, as well.
First, camera gray balancing is performed, then the same image
patches used for the system color characterization are used here.

Assuming the imaging system is subject to additive zero-
mean multivariate Gaussian noise, the noise covariance matrices
Σ = [σ2

kl ] for the 27 measured colors are calculated separately.
Each element of the covariance matrix is calculated as in Eq. 9.

σ
2
kl =

1
MN

M−1

∑
m=0

N−1

∑
n=0

(
ck[m,n]−µk

)(
cl [m,n]−µl

)
,k, l = R,G,B,

(9)
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(a) Gray balance curve for the camera red channel.
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(b) Gray balance curve for the camera green channel.
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(c) Gray balance curve for the camera blue channel.
Figure 8: Camera gray balancing curves.
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Figure 9: Block diagram for measuring the camera’s response ma-

trix to the projector’s input.

where

μk =
1

MN

M−1

∑
m=0

N−1

∑
n=0

ck[m,n],k = R,G,B. (10)

Here, M, N are the number of rows and columns of the image

patch we used, respectively. In practice, we use M = 50 and N =
55.

From the measurement data, we get the noise covariance ma-

trices for the 27 uniformly sampled data points in the projector’s

input RGB space. For colors other than the 27 we measured, tri-

linear interpolation is used to calculate each element of their cor-

responding noise covariance matrices. Sampled at points 0, 128,

and 255 of each dimension, the 27 data points partition the pro-

jector’s RGB space into 8 cubes, as shown in Fig. 11. Given

a query color, it can be determined with a simple comparison at

each dimension to which cube the query color belongs among the

eight options. Each of the nine elements of its 3×3 noise covari-

ance matrix is computed by trilinear interpolation of the eight data

points that form the cube to which it belongs. Figure 12 illustrates

the concept of trilinear interpolation.

Let the coordinates of the unknown data point in the middle

of the cube be (xp,yp,zp), and the coordinates of the eight ver-

tices be (x0,y0,z0), (x0,y0,z1), (x0,y1,z0), (x0,y1,z1), (x1,y0,z0),
(x1,y0,z1), (x1,y1,z0), and (x1,y1,z1). The value p at the point

(xp,yp,zp) can be calculated by the eight value of the vertices

p000, p001, p010, p011, p100, p101, p110, and p111 according to

Eq. 11.

p = p000(1−Δx)(1−Δy)(1−Δz)+ p001(1−Δx)(1−Δy)Δz

+ p010(1−Δx)Δy(1−Δz)+ p011(1−Δx)ΔyΔz

+ p100Δx(1−Δy)(1−Δz)+ p101Δx(1−Δy)Δz

+ p110ΔxΔy(1−Δz)+ p111ΔxΔyΔz,

(11)

where

Δx =
xp − x0

x1 − x0
,Δy =

yp − y0

y1 − y0
,Δz =

zp − z0

z1 − z0
. (12)

Optimal Projector Input Colors
In the previous section, we have measured the system color

and noise characteristics. The remaining unknowns are the pro-

jectors’ inputs �p1, and �p2. In this section, we define an optimiza-

tion problem to determine the best input colors for the projectors

(1) (0, 0, 0). (2) (0, 0, 128). (3) (0, 0, 255).

(4) (0, 128, 0). (5) (0, 128, 128). (6) (0, 128, 255).

(7) (0, 255, 0). (8) (0, 255, 128). (9) (0, 255, 255).

(10) (128, 0, 0). (11) (128, 0, 128). (12) (128, 0, 255).

(13) (128, 128, 0). (14) (128, 128,
128).

(15) (128, 128,
255).

(16) (128, 255, 0). (17) (128, 255, 128). (18) (128, 255, 255).

(19) (255, 0, 0). (20) (255, 0, 128). (21) (255, 0, 255).

(22) (255, 128, 0). (23) (255, 128,
128).

(24) (255, 128,
255).

(25) (255, 255, 0). (26) (255, 255,
128).

(27) (255, 255,
255).

Figure 10: Different solid color images used for system color and

noise characterization. The red, green, and blue channel values

for each color are labeled under the corresponding image.
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Figure 11: The 27 measurement points partition the RGB color
space into eight subcubes.

Figure 12: Illustration of the concept of the trilinear interpolation.

so that the probability of making mistakes while using the maxi-
mum likelihood decision method is the smallest.

Problem Definition
The objective of the optimization problem is to minimize the

cost function in Eq. 13, which is defined to be the probability of
making mistakes in the maximum likelihood decision process, in
the presence of multivariate Gaussian noise.

Φ(~ξ ) =
3

∑
i=0

3

∑
j=0, j 6=i

P
(
o = j|~c = ~ci

)
P
(
~c = ~ci

)
, (13)

where the variable

~ξ = (~p1, ~p2). (14)

The goal is to find the optimal ~̂ξ , such that

~̂ξ = argmin
~ξ

(Φ(~ξ )). (15)

subject to[
0,0,0

]T ≤ ~p1, ~p2 ≤
[
255,255,255

]T
. (16)

~p1 6= ~p2, ~p1 6= ~p0, ~p2 6= ~p0. (17)

Solve the Optimization Problem
The pattern search method [5] is used to solve this optimiza-

tion problem. First of all, we need to compute the cost function
defined in Eq. 13, including the priors and conditional probabili-
ties.

Estimating the priors for different cases
We project both M-array patterns onto the working platform.

Assuming the two patterns have the same coverage alone, the
probabilities for the other two cases are measured by counting
the number of pixels that belong to the following types of regions
respectively: black region and the overlapped region of color 1
and 2. The counting results are then divided by the total num-
ber of pixels in the image 8.082× 106(2464× 3280). We obtain
that the coverages of the black and overlapped regions are 65%
and 1%, respectively. Then, color 1 and color 2 each has half the
remaining percentage, that is 17%.

In summary, the priors we measured for the four types of
regions are listed as follows.

P(~c = ~c0) = 0.65,

P(~c = ~c1) = 0.17,

P(~c = ~c2) = 0.17,

P(~c = ~c3) = 0.01.

(18)

Calculate the conditional probabilities by numerical inte-
gration

Let~c
′

be the ideal camera output~ci with noise~n~ci . Then we
have ~c

′
= ~ci +~n~ci . Define ~n~ci to be the noise that corresponds to

color~ci, and Σ~n~ci
to be its covariance matrix. Let Ω j represent the

decision region where we would get the output o = j. Then we
have

P(o = j|~c = ~ci),

= P(~c
′
∈Ω j|~c = ~ci),

= P(~ci +~n~ci ∈Ω j|~c = ~ci),

=
∫

Ω j

f~n~ci
(~n+~ci)d~n,

=
∫

Ω j

( 1√
(2π)3|Σ~n~ci

|
e
− 1

2 (~n+~ci)
T Σ
−1
~n~ci

(~n+~ci))
d~n.

(19)

The covariance matrix Σ~n~ci
of~n~ci can be calculated using trilinear

interpolation as described in the previous section.
Numerical integration is used to calculate the conditional

probabilities. The probability density function f~n~ci
(~n +~ci) =

1√
(2π)3|Σ~n~ci

|
e
− 1

2 (~n+~ci)
T Σ
−1
~n~ci

(~n+~ci)
can then be calculated at each

given point in the decision space. We sampled it from −5σk to
5σk, k = 1,2,3, in each of the three dimensions, where σk =√

Σ~n~ci
(k,k). The sampling distance between adjacent two points
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in the same dimension is set to be 2, in order to reduce the com-
putation.

The integration region Ω j represents that a point in this re-
gion would lead to a decision of o = j among all the possible four
outcomes. We use the maximum likelihood method to determine
the integration region. Taking the logarithm of the multivariate
Gaussian probability density function, we have

ln f (~x;~µ,Σ) =−n
2

ln(2π)− 1
2

ln |Σ|− 1
2
(~x−~µ)T

Σ
−1(~x−~µ).

(20)

Define

gi(~x) =−
1
2
(~x−~µi)

T
Σ
−1
i (~x−~µi)−

1
2

ln |Σ|i, (21)

where i = 0, ...,3.
For each sample point ~x0, when making the decision we com-

pute gi(~x0), i = 0, ...,3, and find

K = argmax
i
(gi(~x0)). (22)

Then this sample point ~x0 falls into the integration region ΩK . For
example, if there are only two possible outcomes~c0 and~c1,

~x0 ∈Ω0⇔ g0(~x0)≥ g1(~x0). (23)

The Optimal Solution
When searching for optimal solutions, we magnify all the

noise covariance matrices that are measured by a factor of 25 to
make the difference of the cost function larger for the different
variables.

We generated 100 random starting points based on a uniform
distribution between [0,0,0]T and [255,255,255]T . The smallest
cost function value we obtained after running the pattern search
method on all starting points was 2.89×10−6. The corresponding
optimal solution is shown in Eq. 24.

~̂p1 =

 255
13
255

 ,~̂p2 =

 8
255
255

 . (24)

The corresponding colored M-array patterns are shown in Fig. 13.

Validation of the System Model
After getting the optimal solution from the pattern search

method, we recommend to calculate its classification accuracy for
each of the four classes. The result can also be examined visually.
The maximum likelihood decision method should be used as de-
fined in the system model.

In practice, we should generate the two M-array patterns
with corresponding colors, and project them from two projec-
tors at the same time. The camera’s exposure setting should be
adjusted according to the two new colors, so that fewer than 1
percent of the pixels are saturated for each red, green, and blue
channel. In the exposure adjustment, two solid new color patterns
should be projected. Since the exposure adjustment is a linear
process, it will not change the characteristics of the imaging sys-
tem. Then we capture an image of the M-array patterns with the
camera’s new exposure setting.

(a) M-array pattern for the left projector according to ~̂p1.

(b) M-array pattern for the right projector according to ~̂p2.
Figure 13: M-array pattern for the two projectors according to the
optimal solution ~̂p1, ~̂p2.
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For each pixel, we take its camera RGB value and gray
balance them first. On the other hand, the ideal value for each
case ~ci, i = 0, ...,3, is obtained by A~p. The maximum likelihood
method is then used to compare the actual ~c

′
and nominal ~ci to

make the decision.
To validate the solution to the optimization problem, we can

compare the optimal solution with a naive solution. For example,
using red and green for the projectors’ inputs. Under this condi-
tion, the cost function value is 5.00×10−4.

~p1,naive =

 255
0
0

 ,~p2,naive =

 0
255

0

 . (25)

Conclusions
In this paper, we propose a color multiplexed camera-

projector imaging system model, and perform the spectral anal-
ysis for it. The system color and noise characterization processes
and results are described as well. The characterization results pro-
vide parameters for the color multiplexed system model. An opti-
mization problem is defined to determine the best input colors for
the system. The optimal solution we get from 100 different start-
ing points for the pattern search method is presented. A procedure
to validate a solution to the optimization problem is described at
the end.

This color multiplexed system model is not limited to our
imaging system, and can be applied to other multichannel prob-
lem as well.

There are more things we can do to make the system more
accurate. First of all, we use the overlapped region of the two pro-
jectors to characterize the imaging system. But the two projectors
are not exactly the same. It might be better to characterize the
two projectors and the overlapped region separately. Secondly,
the noise is assumed to be the same across the camera’s field of
view. Further measurements can be done to characterize the spa-
tial dependence of the noise.
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