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Abstract
In this paper, we show that a color image model we recently

proposed explains the existence of color lines and predicts that
they will have a slope of one. We present experimental results
verifying this on several image datasets by showing that images
segmented into blocks are often well-described by lines of slope
one, that pixels with similar local averages fall on a line of slope
one, and that, when all the pixels are normalized to have a local
average of zero, they all fall on a line of slope one. We also dis-
cuss the image formation models that lead to this prediction and
address some of the difficulties previously encountered in using
image formation models to explain color lines.

Introduction
It has been observed [5] that when the values of the pixels

of an image are plotted in RGB space, they tend to form discrete
groups that are approximately linear, as shown in Fig. 1. This ob-
servation has been used in applications such as segmentation [5]
and denoising [8]. However, to our knowledge, no satisfactory
physical explanation has been proposed for this phenomenon.

In this paper, we will show that a model we recently derived
from a physical image formation model [3, 4] predicts the exis-
tence of color lines. First, we will review the basic formulation of
that model. We will then use that model to make certain predic-
tions about the existence and properties of color lines, and we will
present experimental results verifying these predictions. Finally,
we will discuss the physical basis for our model in more detail and
address some of the specific difficulties previously encountered in
explaining color lines.

Our Model
In [3], we derived the following color image model from the

Lambertian image formation model:

R(x) = Ravg(x)+q(x) (1)

G(x) = Gavg(x)+q(x) (2)

B(x) = Bavg(x)+q(x) (3)

where R(x),G(x), and B(x) are the values of the red, green, and
blue channels at location x, Ravg(x),Gavg(x), and Bavg(x) are the
values of the local averages of the three color channels, and q(x)
is a color-independent residual.

What this model says is that the value of a pixel in a particu-
lar color channel can be written as the sum of the color-dependent
local average and a color-independent residual. Here, the local
average can be computed over any region that contains a single
material. In practice, we start with a square centered at the pixel
under consideration and use some basic edge-detection to remove

(a) Fragment of image 3 from the Kodak dataset.

(b) Pixel values plotted in RGB space.
Figure 1. Example of color lines.
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pixels that are likely from other materials. The method used here
is the same as that described in [3].

In [3] and [4], we presented experimental results show-
ing that this model accurately describes a database of images
collected with a Sigma DP1 camera, and a separate database
collected with a Pentax K-3 II, as well as the standard Kodak
dataset [1].

Predictions
If we consider only pixels within a single material, then the

local averages of (1)-(3) are no longer functions of position. In
this case, our model predicts that the values of the pixels will fall
on a line in RGB space. Furthermore, this line will have a slope
of one and will intercept the point (Ravg,Gavg,Bavg).

Unfortunately, this prediction is difficult to verify because
doing so requires segmenting the images into different materials,
which is itself a hard problem. Therefore, we will look at several
related predictions that are easier to verify.

First, if we segment the images into square blocks of rea-
sonable size, we expect some of these blocks to contain only one
material. The pixels within these blocks should fall on a line, and
the slope of that line should be one. Second, if we select only
pixels that have similar local averages, regardless of their spa-
tial locations, these pixels should also fall on a line of slope one.
Finally, if we subtract the local averages from the images, effec-
tively normalizing all pixels to have a local average of zero, then
all the pixels of all the images in the dataset should fall on a line
of slope one.

Experimental Results
In this section we will present results verifying the predic-

tions listed in the previous section on the images of the Sigma,
Pentax, and Kodak datasets.

First, we segmented the images into 16x16 pixel blocks. The
intent was that these blocks be large enough that the data within
them was meaningful, but small enough that they would gener-
ally contain only a single material. We then computed the line of
best fit to the pixel values and discarded those blocks that were
not well-described by a single line. We selected “well-described”
blocks by computing the error of the data to the best-fit line and
discarding those blocks where the error was too large. This was
necessary in order to discard those blocks that contained two or
more objects. We found that we retained 40% of the blocks in the
Sigma dataset, 65% of the blocks in the Pentax dataset, and 57%
of the blocks in the Kodak dataset. Since we intentionally selected
only blocks that were well-described by lines, these results cannot
be used to say that lines will form, although the fact that they did
in about half the blocks is encouraging. However, we can look at
the slopes of the lines that did form and verify that they are close
to one, as expected. In particular, the average slopes are shown in
Table 1.

Average slopes, images segmented into blocks
Sigma Pentax Kodak

Average Slope R vs G .9837 1.0252 .9252
R vs B .8834 1.1017 .8213
G vs B .8742 1.0442 .8516

Second, we segmented the images based on pixel values. In
particular, we computed the edge-sensitive local average of the
pixels in the three color channels and chose those pixels whose
local averages were similar. We used the global average of the
image as our reference point and took pixels whose local averages
were within ±1% of the dynamic range of the image of the global
average in each color channel to form the group. We found that
most of the images in the datasets had sufficiently many pixels in
this range for these groups to be meaningful, though we did have
to discard a few images that did not have enough pixels, and one
that had many small material edges that went undetected when
computing the local average.

Some examples are shown in Fig. 2. These figures take all
the pixels of the image whose local averages fall within the orange
square and plot the value of one color channel as a function of an-
other. The images used to generate these plots are shown in Fig. 3.
Although the length and tightness of the lines varied from image
to image within the datasets, these examples are representative.

The average slopes of the lines formed by the images in each
dataset are shown in Table 2. These results also support the idea
that color lines with a slope of one occur in images.

Average slopes, images segmented by local average
Sigma Pentax Kodak

Average Slope R vs G .8532 .9141 .9112
R vs B .7716 .9340 .8459
G vs B .8756 1.0244 .9329

As a final test, we subtracted the local average from the im-
age. This effectively normalizes the local average of all pixels
to zero, and so we can look at the values of all the pixels in an
image, and, indeed, in a dataset, on a single plot. Fig. 4 shows
the 2D histograms of the values of all the normalized pixels in the
three datasets. (The narrow horizontal and vertical lines visible
in the figures are not meaningful–they are only an effect of how
the plots were rendered.) Again, these results show that, once the
local averages have been removed, the pixels values tend to fall
on a line of slope one in RGB space.

These results verify the predictions of the previous section.
Taken together, they provide good evidence that the values of the
pixels of an image will fall on distinct lines of slope one, as ex-
pected.

Discussion
We note here that, although we are particularly interested in

the Lambertian image formation model, (1)-(3) could be derived
from any image formation model that is a separable function of
position and wavelength. This includes the simplified Oren-Nayer
model [6] and the Torrance-Sparrow model [7], assuming there
is only specular reflection and the Fresnel coefficient is approxi-
mately constant over angle in the region of interest [4].

We also note that when Omer and Werman proposed their
color-line model, they rejected the idea that it was explainable
by the Lambertian model [5]. This rejection was based on two
observations: First, the color “lines” were not actually straight
lines, and, second, that they did not intercept the origin, as the
Lambertian model would predict. Therefore, they required, on
average, six points to define the clusters of data they referred to as
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(a) Pixel values of image 28 from the Sigma dataset.

(b) Pixel values of image 12 from the Pentax dataset.

(c) Pixel values of image 5 from the Kodak dataset.
Figure 2. Examples showing the values of pixels with similar local averages.
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(a) Sigma image 28. (b) Pentax image 12. (c) Kodak image 5.
Figure 3. Images used to generate the examples in Fig. 2.

“lines.”
The results presented here indicate that color lines are in fact

straight lines in many instances. We believe the difference is due
to the nature of the datasets–Omer and Werman present results
for a dataset which they indicate had been compressed aggres-
sively, while our datasets were uncompressed. In the case of the
Sigma and Pentax datasets, we used the most raw images avail-
able from the camera. Therefore, it is reasonable to conclude that
the non-linear nature of the groups observed by Omer and Wer-
man is due primarily to camera post-processing and is not inherent
in the original images.

The notion that the Lambertian model requires the color lines
to pass through the origin is only correct if the camera is measur-
ing values that are linearly related to the scene irradiances. How-
ever, using the camera calibration function of Debevec and Ma-
lik [2], we found that both the Sigma and Pentax cameras were
reporting values related almost linearly to the logarithm of the
scene irradiances, and we assume the camera used to collect the
Kodak dataset was doing something similar. Once this transfor-
mation is accounted for, there is no longer any reason to expect
the color lines to intercept the origin; rather, as we have shown,
we should expect a slope of one.

Conclusion
In this paper, we have shown that the color image model we

presented previously leads to color lines with a slope of one. We
have presented experimental results from three different cameras
verifying this. These results show that the color lines model of
Omer and Werman is physically justified and that the complicated
nature of the lines they found is due primarily to post-processing
done in the camera, meaning a simpler model could potentially be
used when raw data is available.
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Figure 4. Plots of pixel values from the Sigma (top), Pentax (middle) and Kodak (bottom) datasets
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