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Abstract

Fast Radio Bursts (FRBs) are extra-galactic transient ra-
dio signals of great interest to astronomers. Due to their non-
repeating random nature and short time duration (much less than
one second), automatic and reliable detection of these events has
been a significant challenge, with only 25 published detections
since 2007. This research provides a toolset for simulation and
distributed detection of FRBs based on well-known image pro-
cessing techniques. Custom software was developed to simulate
FRB events with unprecedented granularity based upon the cur-
rently known population of pulses, and represents them as color-
mapped intensity images. These images are operated on directly
by a Generalized Hough transform approach, followed by pattern
recognition and machine learning steps, which yields a binary
classifier that is successful in detecting Fast Radio Burst pulse
profiles. When compared to the computationally expensive tradi-
tional process known as de-dispersion, our approach enjoys the
advantage of no need for iterative data transformation.

Introduction

Fast Radio Bursts have potentially enormous importance to
astrophysical scientific discovery. The theoretical foundation of
their usefulness was first laid in [20], 1973, decades before such
signals were anything more than theoretical. It wasn’t until 2007
that theory became reality with the first ever identified FRB [10].
If FRBs are extragalactic in origin, their future study and efficient
detection may be key to resolving longstanding mysteries of the
universe, such as:

o Efficient Particle Acceleration

Physics Beyond the Standard Model

Nature of Strong Field Gravity

The Nuclear Equation of State

Cosmological Star Formation History

Detection and Probing of Intervening Cosmological Media
The Possibility of ET Civilizations

[6]. Given such high potential payoff, it is unfortunate (and mo-
tivating) that only 25 such signals have been discovered to date.
This is because FRBs are notoriously hard to detect using tradi-
tional radio telescopes.

Physical Characteristics of FRBs

A salient identifying feature of Fast Radio Bursts is a disper-
sal curve evident when the signal is viewed in the time-frequency
plane. Electromagnetic waves propagating through an ionized
plasma experience a frequency dependant delay across the ob-
served frequency band analogous to light moving through a prism.
The difference in pulse arrival times, At, across an observed fre-
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quency band bounded by fpien and fioy for a given Dispersion
Measure DM is given by the cold-plasma dispersion law:

Slow - Shigh | " DM

At=4.148808ms[(522) — ()

[10]

This effect becomes visually apparent for cases of high SNR
when the radio telescope data is rendered into a time-frequency
image
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Figure 1. Plot of FRB010724, taken from [15]'s website, FRBCAT. The top
1-D line plot showing a single pulse represents the result of traditional de-
dispersion, where all pulse energy has been aligned to a single time slice
and then the image is integrated across the frequency axis (see “Traditional
Detection Methods” section). The dark red horizontal striping near the top
of the image indicates Radio Frequency Interference, and the color change
after the pulse is the result of receiver saturation due to the pulse’s high SNR

[10].

The appearance of a bright dispersed pulse, however, does
not necessarily indicate an FRB event. Many events, such as Ra-
dio Frequency Interference (RFI) can be recorded as a dispersed
pulse, with a supposed class of signals known as Perytons” being
a key example - searches revealed the signals to emanate not from
space but rather from the telescope compound’s own microwave
ovens [16]. For signals with high SNR, pulse shape can also be
used to distinguish a signal which has truly traveled through an ex-
traterrestrial cold plasma because the pulse exhibits an exponen-
tially shaped pulse tail after dedispersion [19]. In some surveys
the presence of the pulse in multiple beams of a phased array feed
also indicates a terrestrial origin and those false positives can be
discarded immediately [9].
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There are also classes of legitimate astronomical signals
which are subject to cold-plasma dispersion, such as Rotating Ra-
dio Transients (RRATS) and pulsars. Unlike (almost all) FRBs,
RRATSs and pulsars are periodically repeating in time [13]. Be-
cause they are repeating, pulsars can benefit from integration
gain when the pulse period is known or derived by folding mul-
tiple repeating pulse profiles on top of one another. Currently
known FRBs exhibit a higher DM than most pulsars and are non-
repeating events (with the exception of FRB121102 [18]), and
thus a high DM combined with context clues (such as telescope
pointing, estimated interstellar plasma densities in that direction,
etc.) allow astronomers to identify a FRB. Some of these key
context clues are:

Value of Dispersion Measure
Pulse Shape/Profile

Pulse Scintillation

Pulse Scattering (width)

This underscores the need to implement a nuanced emulator
which can capture and evaluate fine discerning pulse details when
developing or evaluating any detection methodology, and to the
author’s best knowledge this paper debuts the most subtle pulse
emulation tool to date.

Existing Detection Methods

Although dispersion is an important factor in identifying
FRBs, it is sub-optimal with respect to pulse detection because
the pulse’s energy is then distributed across time throughout the
image. The traditional approach to this is a process known as
incoherent dedispersion, which is the intentional application of
a time delay in the reverse dispersal direction. Because the pulse
dispersal pattern is generally well behaved, dedispersion can align
a pulse’s energy into a narrow vertical time slice. Once de-
dispersed, the signal is integrated across the measured frequency
band and reveals a one dimensional data vector with a strong sin-
gle pulse. However, the exact dispersion measure is never known
a-priori, so an entire family of dispersion measures must be tried
and evaluated. A family of boxcar filters for a set of candidate
pulse widths (to account for pulse scattering) are applied as well
as candidate DMs, so the solution space to be tried is computa-
tionally large [9],[13]. It is also possible to perform this operation
coherently (i.e. apply a frequency-dependant phase shift to the
Fourier Transform of the raw data used to generate the image).

This approach was initially designed for offline pulse
searches, and in general incoherent is preferred over coherent due
to computational concerns, despite the fact that coherent dedisper-
sion is overall the more sensitive of the two [22]. Later, improve-
ments were made for GPU parallelization of incoherent dedisper-
sion during blind surveys [5],[1] and then more recently still algo-
rithms based on data transform approaches harness the speed and
scalability of the Fast Fourier Transform to facilitate real-time de-
tection [22], [2]. It is entirely conceivable that those approaches
would be low enough in computational complexity to facilitate
citizen science with consumer-grade electronics, but the work pre-
sented here provides, in the worst case, an alternative tractable
method and a novel set of FRB tools.

2242

Motivation behind Our Approach

The number and localization of detected Fast Radio Bursts
would improve immensely under a spatially distributed collection
system. In the status-quo, a small number of specialized and ex-
pensive hardware installations observe the sky for FRB signals.
While many new instruments are under construction with the goal
of increasing FRB detection quantity and quality [14] [4], recent
advances in RF and computing hardware make it possible for or-
dinary citizens to have significant scientific impact in this area at
a relatively low cost. Systems made of many low-cost imagers
dispersed across a wide geographical region would provide ex-
cellent source localization when an FRB event is detected, and
localization is important in determining properties of the Inter-
Galactic Medium (IGM) as well as to localize position and de-
termine physical origin [12]. Additionally, distributed systems
could easily distinguish RFI (Radio Frequency Interference) from
true FRB detections by excluding sources that only influence a
small regional portion of the sensor network. The potential bene-
fits and drawbacks of such a citizen science project are theorized
in [12]. We set out to provide a computationally efficient alter-
native method designed to run on an average PC, Raspberry Pi,
Software Defined Radio program, or cell phone.

Proposed Emulation and Detection Methods
Matlab-based FRB Emulation

Due to the small number of FRB detections in the wild,
the design and analysis of any detection scheme is best facili-
tated using emulated data. This is an approach undertaken by
many related papers [2], [22], and while they indeed allow the
generation of dispersed radio data images, the distinguishing fac-
tors of pulse profile, scintillation, and scattering are largely unad-
dressed. Background noise is also modeled largely as a normal
random process. This paper’s emulation differentiates itself in
that it incorporates many of the above nuances neglected by other
approaches, but as the coherent form of de-dispersion is not ad-
dressed here, [22]’s emulator is more complete in the sense that
it is able to generate dispersed data from a coherent phase pro-
cess. As our detection algorithm is inspired by image processing
techniques, however, the emulation engine works directly in the
time-frequency domain and considers the data as a colormapped
intensity image rather than a processed data stream.

In order to provide the most realistic emulation, data-driven
processes were extensively used in image formation. Data-driven
elements are derived from data made publicly available on FRB-
CAT [15], an online repository maintained by Swinburne of all
published FRB detections to date. Data (where available) was
downloaded in the PSRCHIVE file format (*.ar) [7]. Transform-
ing this data into time-frequency image data did not seem trivial
for new users and requires a software learning curve. To facilitate
this process for new researchers, the author is proud to provide
a virtual machine image which includes the properly installed
PSRCHIVE software and its related libraries, presented without
guarantee on GITHUB. Running PSRCHIVE tools on *.ar files
produces an integrated 2D time-frequency image representation
of the data, which can be piped to an ASCII text file. The ASCII
text file is then moved from the virtual machine and loaded into
MATLAB, where the data is saved as a .mat file for further anal-
ysis.

As mentioned previously, dispersed burst events occurring
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in more than one beam of a phased array feed dish are considered
RFI and are thus excluded from detection. For this reason, for
each FRB event logged on FRBCAT, there exist multiple .ar files,
and only 1 will produce an image with a detectable pulse when
rendered in PSRCHIVE. The image data information for the re-
maining no-pulse files were used to evaluate and reproduce back-
ground noise in the emulator. A non-parametric statistical model
of each frequency channel within the no-pulse data was generated
(i.e. each image row is treated as an independent distribution),
and then used as the kernel for random number generation within
the emulator. This has the added benefit of faithfully representing
channels which have been routinely excluded due to RFI, as can
be seen by the rectangular region near the top of Figure 2 (rows 0
- 200) where values appear uniform.
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Figure 2. Empirically Accurate Background Noise Generation, a frequency
versus time artificial image.

In addition to generating data-representative background
noise, the emulator can specify scintillation, DM, signal strength,
and pulse width/shape with individual frequency channel gran-
ularity. A sample of one such generated image can be seen in
Figure 3, side-by-side with a real image generated in PSRCHIVE
for FRB110220 (who’s pulse properties it emulates). In order to
generate the population of emulated FRBs with which to test and
develop the classifier, FRBCAT [15] was an invaluable resource in
cataloguing known distributions of these key parameters. Based
on how the key parameters were reported in FRBCAT, the sim-
ulated population was distributed comparably, and this family of
emulated images serves as input to the Hough Transform pulse
detection step.

Hough Transform based FRB Detection

The Generalized Hough Transform is a well established
method in the image processing community which allows the de-
tection of arbitrary shapes in an image. Inspired by the concept
of R-table laid out in [3], we sought to represent a family of em-
ulated FRB events in the Hough transform space and use it as a
feature to enable efficient classification decisions. An implemen-
tation of the Generalized Hough Transform operation is readily
available in Matlab using command “hough”, which was utilized
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in prototyping the operational mechanics of the method.

In general, the detection methodology proceeded based upon
the ability of a binary classifier to learn boundaries in Hough
space which distinguish an FRB with a believable DM (and other
pulse features) from a burst detection with features that lie out-
side the scope of known detection parameters. It was found that
the transformation operation was successful for cases where the
FRB of interest exhibited an SNR large enough to be discerned
visually on the color mapped intensity image. The figure below
illustrates the changes a difference in DM makes when the image
is converted to Hough space - the right image shows the Hough
space transform of a pulse event with believable DM, while the
left image shows the Hough space of a pulse event with DM be-
yond the realm of probability for an FRB.

An emulation set consisting of 100,000 images was gener-
ated. Of these, 5,000 images contain a “realistic” FRB pulse
based on the parameters laid out in [15]. The 95,000 remain-
ing images contain either no pulse at all (background noise only),
or a pulse which is inconsistent with the set of currently known
FRBs, or an artifically generated RFI signal. This uneven dis-
tribution was chosen to reflect the rarity of a true FRB event in
a field of candidates, which is a condition commonly encoun-
tered by astronomers searching for FRBs. Next, a binary clas-
sifier step is used to interpret the resulting Hough transform after
being trained in a supervised manner on the 100,000 emulated
images. The real FRBs for which we have successfully recov-
ered data (010724, 110220, 110626, 110703, 120127), along with
several plausible and implausible emulated fakes are generated
exclusively for validation, for a total validation set size of 500 im-
ages. A Convolutional Neural Net (CNN) binary classifier was
trained using the MatConvNet library [21], using that package’s
boilerplate example network architecture, with slight modifica-
tions in order to report False Negative and False Positive rates as

= fgnt - 0 x |@em - o x
B B e T Debes Sinsew ik o B f e b Tk Dee e e
Dada k[R5 49EL-[A[0@(=0 Dada R[A5G9EL-[A[0@(=0

wm 00
E 2m

u u

an an

s s
a0 oo
i w0
oo oo
w0 w00

1000 1000

W oam am am w0 @0 WO am wm w0 WO am am am w0 @0 WO am wo 0w

Figure 3. Real FRB image 110220 (left) as generated in PSRCHIVE using
telescope data, and emulated FRB data (right) generated by the emulator
with specified burst parameters as reported in FRBCAT for FRB110220 [15]

gt T o x @ o x
B Bt Ver et ook Qcop Windon e | Bie gt Vo it Took Desdop Window e
EEEDIDRESE T P EICE] FEEEDDRESE L P A=)

0 6 40 20

2 o © &
0

2 0 @ @

w0 6 40 20 0
0

Figure 4.  Burst image transform with unrealistic DM (left) and transform
with realistic FRB pulse profile parameters (right)

224-3



the network trained. Its detection results are promising (Figure 5).

In the validation stage of training (red data points in the neu-
ral network training graphic), the binary classifier was tested on
a set of images which it had never before seen. Included in this
validation set were the actual FRB images generated for 010724,
110220, 110626, 110703, and 120127. Overall, the validation
set’s detection performance improved over time, to the point that
it was exhibiting less than 1% error overall. Importantly, however,
the detection performance when evaluated on just the published
FRB images, it was able to successfully detect a pulse for FRBs
110220, 010724, and 110703. This is to be expected, because the
basis of Hough transform begins with edge detection. For FRBs
without SNR high enough to visually distinguish a pulse profile
(110626, 120127), the transform is insufficient.
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Figure 5.  Results of FRB detection training and validation run over 200

epochs. From left to right: false negative rate, false positive rate, training
objective value (neural net, not FRB specific), and overall classification error
rate ("topTerr’). Results on training set (blue) as well as validation set (red)
are shown. Overall, the plot demonstrates that the NN is capable of learning
to differentiate realistic pulses from non-realistic ones by exploiting features
in Hough space

In terms of overall detection performance, the classic dedis-
persion approach is better because detection is possible for pulses
which do not substantially exceed the noise floor. In terms of
computation, however, a transform based approach such as this or
[22], [2] excels because the scalability of the problem does not
increase as the number of dispersion measures to be tested in-
creases. In this case, the computational complexity of the evalua-
tion of a neural network binary classifier is linear, and the Hough
transform is O(Pn) or O(P + n), where P is the number of pro-
jections that the transform operates across (i.e. the size of Hough
space generated) [8]. Traditional de-dispersion on the other hand
has time complexity of roughly O(N?)[11].

Conclusion

A classifier was trained in the subtleties of differentiating
true FRBs from imposter signals, with an intervening step of sig-
nal transformation into Hough space. It is successful in detecting
pulses with sufficiently high SNR to be seen by the naked eye
in its dispersed form, as the nature of the transform algorithms
are derived from image processing. This is a loss of detection
performance with respect to conventional methods, and not all
FRBs in the population are strong enough to appear within the
Hough space. However, the most recent estimate puts the daily
occurrence of FRBs on the order of 11,000 per day over the en-
tire sky [17]. This means that some missed detections in favor of
the strongest burst strength should be satisfactory. An additional
useful product of the research is a nuanced data-driven FRB emu-
lation tool which treats more factors than are currently considered
in other developed detectors, and the performance of the classifier
suggests that including these features in a machine learning pro-
cess has potential to reduce false positive rates and consequently
astronomer workload.
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