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Abstract
With advances in sensor technology, the availability of

multispectral cameras and their use are increasing. Hav-
ing more information compared to a three-channel camera
has its advantages but the data must be handled appro-
priately. In this work, we are interested in multispectral
camera characterization. We measure the camera char-
acterization performance by two methods, by linear map-
ping and through spectral reconstruction. Linear mapping
is used in 3-channel camera characterization and we use
the same method for a multispectral camera. We also in-
vestigate whether instead of linear mapping, spectral recon-
struction from the camera data improves the performance
of color reproduction. The recovery of reflectance spectra is
an under-determined problem and certain assumptions are
required for obtaining a unique solution. Linear methods
are generally used for spectral reconstruction from the cam-
era data and are based on training on known spectra. These
methods can perform well when the test data consists of a
subset of the training spectra, however, their performance is
significantly reduced when the test data is different. In this
paper, we also investigate the role of training spectra for
camera characterization. Five different spectral reflectance
datasets are used for training the camera characterization
models. Finally we provide a comparison between the linear
mapping and spectral reconstruction methods for multispec-
tral camera characterization and also test the camera char-
acterization framework on hyperspectral images of natural
scenes.

Introduction
A common procedure for obtaining device indepen-

dent color information from a digital camera is to char-
acterize the camera in terms of CIE tristimulus values
[1, 2, 3, 4, 5, 6]. Ideally, the spectral sensitivities of a
digital camera with three color channels would satisfy the
Luther condition, in which it is assumed that they are lin-
ear transformation of the CIE color matching function [7].
However, real cameras do not follow the Luther condition
because of manufacturing constraints and limitations in de-
sign. Because of this issue, device metamerism may occur,
where two surfaces with different spectral behavior produce
identical camera response when imaged under the same il-
lumination and hence provide the same XYZ values. Such
metamerism limits the colorimetric application of the imag-
ing device.

With advances in sensor technology, the use of mul-
tispectral imaging for indoor scene acquisition under con-
trolled conditions have also increased. The advantage of
multispectral imaging is the ability to acquire more spec-
tral information from a scene, which can be used for spec-
tral reflectance reconstruction [8, 9] of the object’s surfaces.
Most of the natural objects and surfaces have smooth spec-
tral properties which are helpful for multispectral imag-
ing [10]. With an effective spectral reconstruction from
the multispectral data, the device can be used as imag-
ing spectrophotometer and can enable the measurement
of device-independent and illuminant-independent image
data [11]. Use of multispectral imaging techniques have
been proposed for the characterization of imaging devices
[5, 12, 13]. The use of digital three channel color cameras
as colorimetric devices has been investigated extensively in
last decades [14], while multispectral cameras are mostly
used for extraction of spectral information. We are inter-
ested to also use the multispectral camera as a colorimet-
ric device and obtain the colorimetric information through
camera characterization.

Camera characterization involves finding a transform
between the camera input space and CIE XYZ color space.
Ideally, this transform should be linear and invertible. Such
a transform can be found by imaging the surfaces with
known spectral reflectance and colorimetric values.

One method for device characterization is to recover
the spectral properties of the surfaces being imaged and
then compute the tristimulus values from the reconstructed
spectral reflectances [5]. There are many methods pro-
posed in the literature for spectral reconstruction. Low di-
mensional linear models are used in spectral reconstruction
from multispectral data with the assumption of smoothness
of spectra [8]. The efficiency of a spectral reconstruction
system is dependent on the training data and performs
well if the test data consist of similar spectral properties.
In this work, we investigate the role of training dataset for
spectral reconstruction by using non-linear methods. The
rest of paper is organized as follows; In Section 2, we pro-
vide a brief review of the multispectral imaging system and
spectral reconstruction. In Section 3, we explain the ex-
perimental framework, discussion of results in Section 4,
and followed by conclusions and future aspects.

IS&T International Symposium on Electronic Imaging 2018
Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications 221-1

https://doi.org/10.2352/ISSN.2470-1173.2018.16.COLOR-221
© 2018, Society for Imaging Science and Technology



Multispectral imaging system
In a simplified noiseless imaging model, formation of

an image depends on the spectral sensitivity of the imaging
sensorm(λ), the spectral reflectance of the surface r(λ) and
the spectral power distribution of the illuminant e(λ). This
formation for the visible wavelength spectrum ω is defined
as

f =
∫

ω

r(λ)e(λ)m(λ)dλ (1)

In practice, we can formulate an extended and discrete
version of Eq. 1 as F = REM. Considering the spec-
tral sampling of 10nm within the wavelength spectrum of
400nm to 720nm and K number of spectral channels, F is
S×N matrix (S is the number of spectral samples being
acquired across N wavelengths), R is S×N matrix of sur-
face reflectance, E is the diagonal matrix (N ×N) of the
scene illuminant and M is N×K matrix, consisting of the
spectral sensitivities of the channels.

Spectral reconstruction aims at estimating R from F.
If the term EM is known and invertible, then the solution
is a simple inverse as R̂ = WF, where W = E−1M−1 and
R̂ is the estimated spectra. Such a transformation does not
produce efficient results for spectral reconstruction and the
calibration matrix W is created through a set of measured
training spectra. There are many methods for creating W
by using linear methods. One of the methods is through
the pseudo inverse, proposed by Maloney and Wandell [10],
as;

W = RtFT
t (FtFT

t )−1 (2)

Here the subscript t represents training data, while the
superscript T represents the transpose of a matrix.

In most of the spectral reconstruction work, a linear
mapping is considered sufficient. There are many methods
for determining a linear transform. The idea for using such
a transformation is that a few basis functions are helpful in
representing the spectral reflectance [10][15]. To determine
the basis functions, Principal Component Analysis (PCA)
and Karhunen-Loeve transformation is mostly used over
a set of measured spectral samples. Imai and Berns [16]
proposed the use of principal component analysis over the
training data, before using it in Eq. 2. In the pseudo in-
verse methods proposed in [10, 16], the dimensionality of
the reflectance model is equal to or less than the number
of camera channels [17]. Shi and Healey [13] proposed the
use of the first three basis functions separately from the
remaining basis functions and trained the calibration ma-
trix W. Wiener estimation [18] is also an efficient linear
method for spectral reconstruction. It is defined as;

W = RtRT
t (ME)T ((ME)RtRT

t (ME)T +G)−1 (3)

Here, RtRT
t and G are the autocorrelation matrices of

training spectra and additive noise, respectively. G is in
the form of a diagonal matrix consisting of the variance of
noise σ2.

Linear mapping method is computationally efficient
and has been used successfully for color camera character-
ization. As in the analysis provided at [19], three sets of
training data were used separately in the training phase
and the characterization error is measured after transfor-
mation of input data. The three spectral datasets being
used for training were ISO-17321-2 [20], Image Engineer-
ing dataset and GretagMacbeth ColorChecker. The ISO
17321 data was used to test the characterization. As ex-
pected, the error is smallest when the representative data
for the test scene was used in the training phase. This sug-
gests that domain specific training data should be used for
specific applications. We use the same concept for charac-
terization of a multispectral camera and train the system
with different reflectance datasets for comparison of per-
formance and effect of training dataset. If X is the CIE
XYZ representation of a known spectra R, then the image
F can be transformed into its corresponding colorimetric
values through at transformation matrix Wx as;

X = WxF (4)

By using known reflectance spectra and their correspond-
ing colorimetric values, Eq. 4 can be used to find the trans-
formation matrix Wx through the pseudo inverse of F as;

Wx = XF+ (5)

In this work, we also use non-linear mapping for modelling
the mapping between the reflectance spectra and the cam-
era’s response. Non-linear methods have been used for
spectral reconstruction in previous literature. Ribés and
Schmitt [21] used mixture density networks and genetic
algorithms for the estimation of spectral reflectance recon-
struction of fine art paintings. Artificial neural network
is used by Mansouri et al. [22], where the authors for-
mulated the problem of spectral reflectance reconstruction
using hetro-associative memories. Yang and Stark [23] pro-
posed the projection onto convex sets, which is an itera-
tive algorithm that projects onto a sequence of constraint
sets and eventually produces a solution that satisfies the a-
priori constraints. Gómez et al. [24] used o a feed-forward
back propagation neural network for estimation of spec-
tra in oil paintings. Chane et al. [25] used a neural net-
work, which is trained by using the 15-band multispec-
tral luminescence acquisitions and the corresponding spot
spectroscopy luminescence data. Kandi [26] used a neu-
ral network to estimate the spectral information of printed
samples from camera response data under two illuminants
and to investigate the colorimetric characterization of cam-
era. Recently, Hajipour and Nateri [27] used tristimulous
values as input to a neural network for recovery of spectral
reconstruction. Radial basis functions (RBF) are also used
for spectral reconstruction [28, 29]. RBF is used to model
the spectral response of camera for the known spectra. In
the training phase, M number of clusters are formed by
RBF which aims at minimizing the distance between the
similar spectra through the linear least square method [30]
and weights ωi is assigned to each center ci. The distance
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being used is Euclidean distance and denoted by ||.||. A
dataset of measured spectra and the same samples being
captured by the given camera are used to train the model
M as;

M = ωo +
M∑

i=1
ωiφ(||f − ci||) (6)

Once the model is trained, it is used to estimate the spec-
tral reflectance of a surface r̂ from the camera input f as;

r̂ =M(f) (7)

In ISO 17321-2, a procedure for characterization of digital
cameras is defined which is achieved through spectral mea-
surements. Sensor spectral sensitivity of the camera and a
training set, comprising of measured spectral radiances are
used to compute a linear transform. This transform is used
to map the input data at the testing stage. In our work,
we use a linear method, and also RBF to create a reflection
model for a given camera and the training spectra. The re-
flectance model is used to estimate the reflectance of input
camera data and this reflectance is utilized in the measure-
ment of colorimetric characteristics of the camera. Details
of the procedure are explained in the following Section.

Experiments
In the experiments, we use the following spectral

datasets;

• ISO 17321 [20] – spectral radiance measurements of
14 natural objects.

• SFU reflectance data [31] – Spectral reflectance of
1995 surfaces.

• Skin colour reflectance database [32] – Spectral mea-
surement of 4392 skin samples taken from 960 people.

• Munsell color chips [33] – Spectral measurement of
1269 surfaces.

• GretagMacbeth ColorChecker – Spectral measure-
ment of 24 patches.

The data being used is in the range of 400 nm to 700 nm,
with 10 nm spectral sampling. For camera data acquisition,
we use spectral sensitivities of two multispectral cameras.
One camera is the spectral filter array (SFA) camera [34]
and the other is filter wheel multispectral camera from pix-
elteq [35]. Originally both SFA and pixelteq multispectral
cameras are of 8 channels, but since the reflectance data
that we have is limited in the spectral range of 400 nm
to 700 nm, we omit the filters in ultra-violet and infra-red
wavelength regions. The sensor sensitivities of the simu-
lated filters are shown in Fig. 1. Illuminant D65 is used
for creation of radiance data for both training and testing.

In the training phase, we use the simulated multispec-
tral cameras to acquire data from a particular reflectance
dataset, which is to be used as training data for camera
characterization. As mentioned in Section 2, we use two
methods for camera characterization; one is through a lin-
ear transform (Eq. 5) and other method is through non-
linear method (RBF). RBF is used to create the reflectance

Figure 1: Spectral sensitivities of SFA and filter wheel multi-
spectral cameras used in simulations.

Figure 2: The structure of RBF based network. Input consists
of a vector of sensor response (6 in this Fig.) and output is the
reconstructed spectrum, consisting of 31 elements. The weights
of the hidden layer at input side are adjusted in the training
phase till the minimum mean square error is achieved, or maxi-
mum number of epochs (300 in our experiments) is reached. The
hidden layer at output side consists of 31 nodes and provide the
estimation of spectrum for the input camera data.

model for a given set of training spectra and the camera re-
sponse over that spectra. In the training phase, the weights
of hidden layers are adjusted according to the output, until
the minimum mean square error is reached. The maximum
iterations (epochs) are set to 300 in our experiments. The-
oretically, the RBF network create clusters for the input
data and the training data by adjusting the weights of the
hidden layers. When the test data is given as the input
to already trained reflectance model, the output nodes are
assigned to the closest matching cluster. There are 31 out-
put nodes which collectively form the output as reflectance
spectra from 400nm to 700nm, with 10nm sampling. The
structure of RBF is shown in Fig. 2.

Evaluation
To measure the performance of camera characteriza-

tion, estimated colorimetric values from camera data are
compared with the ground truth data. In the linear trans-
form, the output is CIE XYZ values while for the output
from RBF, the reconstructed spectra is transformed into
XYZ by using the CIE 1931 2◦ Standard Observer and then
the XYZ values are converted into CIELAB color space
values. For measurement of color difference, we use the
CIEDE2000 [36] error metric (also denoted by ∆E00). We
use the white point of illuminant D65 in the calculation of
XYZ and CIELAB values from the spectra. For each result
of ∆E00, the mean, median, maximum and 95th percentile
of error is provided. Results are discussed in the following
Section.
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Results and Discussion
Tables 1-10 provide the colorimetric error in terms

of ∆E00. Each Table consist of results obtained by us-
ing 2 simulated multispectral cameras and a particular re-
flectance data for training. For each training reflectance
dataset, two methods of camera characterization are used;
one is the linear method and other is RFB. The odd num-
bered tables show results from the linear method while
even numbered tables contain results obtained from the
RBF method.

The ISO 17321 reflectance data consists of 14 spec-
tral reflectances, and the result of using this spectra as a
training set is shown in Tables 1 and 2. When the lin-
ear method is used, the mean colorimetric error is below
one for the skin reflectance dataset and the ISO 17321 re-
flectance itself, but the performance with SFU reflectance
is significantly reduced. The performance of SFA is better
than the filter wheel camera in terms of ∆E00. In the case
of RBF, Table 2 shows that when the same reflectance data
is used as testdata, the error is almost zero, however, when
the test data being used is different, then the error values
are large. The high values of ∆E00 shows that RBF is not
a good choice for camera characterization when the ISO
17321 reflectance data is used for training.

In Tables 3 and 4, SFU reflectance data is used for
training. By using the linear method, the mean of ∆E00
is below 2 for both simulated multispectral cameras. How-
ever, it can be seen that the maximum value of error is sig-
nificantly higher when the same SFU dataset is used as test
data. Nonetheless, system trained with the SFU dataset
is able to keep the ∆E00 fairly low for all the reflectance
datasets being used for testing. Using RBF, ∆E00 for SFU
data as test is reduced compared to the linear method and
mean error values for Munsell data as test are also below 2.
The reason for the lower error values for Munsell dataset
while using SFU reflectances as training is the presence of
Munsnell reflectances within the SFU dataset. This can
also be seen with the lower error values from ColorChecker
reflectances as they are also present in the SFU dataset.
However, the results are significantly degraded when ISO
17321 data is used for testing and error values are higher
with the RBF technique. The same trend can be seen when
skin reflectance data is used for training. Tables 5 and 6
show that with the linear method, there is a lower error of
the test spectra while ∆E00 is significantly reduced when
the same skin reflectance data is used for training and test-
ing in RBF. However, the error is high in the RBF tech-
nique when the test data is not related to training data.

Tables 7-8 consist of ∆E00 obtained when Munsell re-
flectance data is used for training. These results also follow
the same trend and the linear method provides smaller er-
rors compared to RBF. The result from RBF is the best
only when the same data is used for training and testing.
Tables 9 and 10 consist of results obtained by using Col-
orChecker reflectance data for training. Once again we see
that RBF does not perform better than the linear method,
unless the same data is used for training and testing. This
trend indicates that when the training data is small, the
∆E00 is near to zero when adequate training data is used.

However, this is a case of over-fitting and does not apply
to generic real world scenarios. Also, such small datasets
perform the worst when tested with different spectra. This
indicates that the training data should have more samples.
However, the training samples should have enough rele-
vance to the test spectra and simply increasing the number
of training samples do not provide an advantage.

The best result in terms of ∆E00 was obtained when
the SFU reflectance dataset was used for training. How-
ever, it should be noted that the SFU dataset already con-
sists of the 24 Macbeth color checker patches and 1269
Munsell chips. Additionally, it include reflectance spectra
of 120 Dupont paint chips , 170 natural objects , the 350
surfaces in Krinov data set and 57 additional measured
surface reflectances. Such a generalized reflectance data
is expected to perform well, compared to other datasets.
The model trained with SFU dataset is also able to get
good results for the ISO 17321 and skin reflectances. This
low error indicates that the linear method along with SFU
dataset being used for training provides efficient perfor-
mance, when tested with a simulated multispectral cam-
era.

The results being obtained by using different training
spectra provide interesting information about the behav-
ior of a reflectance estimation system. When the training
data is highly correlated with the surfaces being tested, the
colorimetric characterization can be performed efficiently.
This suggests that we can create reflectance data with as
many samples as are available. This can avoid the prob-
lem of overfitting and underfitting. It is yet to be investi-
gated how much accuracy is required for computer vision
applications, which rely on the combination of spectral and
colorimetric information.

In order to investigate the camera characterization re-
sults on natural scenes, we use SFA for simulation of multi-
spectral image capture on the Foster hyperspectral dataset
of natural scenes [37]. These hyperspectral images consist
of eight natural scenes from 400 to 720 nm, but we use the
data from 400 to 700 nm since reflectance data for training
is available in this region. The reason for using the SFA
multispectral camera in simulations is that it is able to pro-
vide better results for ∆E00 compared to the filter wheel
camera, except in a few cases. Also, we note that since the
SFU reflectance data provide better results compared to
the other five datasets used for training, we use the SFU
data for training the linear model. This model is used
to obtain colorimetric information from the multispectral
images taken with simulated SFA camera. D65 illumina-
tion is used in the simulations. Table 11 show ∆E00 for
each image in the Foster dataset. Although mean ∆E00
for these images is relatively low, except for image 1, the
maximum and 95 percentile error values are high. The rea-
son for this error is the absence of relevant spectra in the
training dataset. Therefore, if the training spectra consists
of a representative spectra and as close to the test images
as possible, the error in ∆E00 can be reduced significantly.
Nonetheless, the results from Table 11 shows that using
linear methods, a multispectral camera can be efficiently
characterized for obtaining colorimetric information.
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Table 1: ∆E00 results from simulated SFA and filter wheel cameras on 5 different reflectance datasets. Camera characterization is
done through linear transformation of input values and reflectance data from ISO 17321 is used for training.

Spectral Filter Array Filterwheel multispectral camera
Test data∆E00

ISO 17321 SFU Skin Refl. Munsell ColorChecker ISO 17321 SFU Skin Refl. Munsell ColorChecker
Mean 0.7194 3.5423 0.946 2.6786 3.3893 0.9883 4.196 2.0603 3.7516 5.0281

Median 0.3213 2.7606 0.822 2.3474 2.6463 0.4337 3.7645 1.9961 3.7541 3.5608
Max 2.4943 20.0891 3.2796 15.0928 8.5842 6.1738 30.8002 5.922 27.993 15.1954
95% 2.4502 10.9307 1.8843 6.132 8.4703 5.3738 10.0045 3.5481 7.7155 13.3755

Table 2: ∆E00 results from simulated SFA and filter wheel cameras on 5 different reflectance datasets. Colorimetric values from
camera input are obtained after spectral reconstruction through RBF, and reflectance data from ISO 17321 is used for training.

Spectral Filter Array Filterwheel multispectral camera
Test data∆E00

ISO 17321 SFU Skin Refl. Munsell ColorChecker ISO 17321 SFU Skin Refl. Munsell ColorChecker
Mean 0.0001 25.2965 16.4351 29.7926 23.0418 0.0001 36.6186 63.2236 40.3671 37.0267

Median 0.0001 19.7864 10.8621 23.6507 18.108 0.0001 32.8391 70.8413 37.4879 33.6008
Max 0.0001 92.9274 58.0097 99.7072 50.2504 0.0001 141.0209 105.3386 149.0721 93.1658
95% 0.0001 59.4169 38.551 72.0706 44.9412 0.0001 79.3924 86.5554 84.9848 71.3004

Table 3: ∆E00 results from simulated SFA and filter wheel cameras on 5 different reflectance datasets. Camera characterization is
done through linear transformation of input values and SFU reflectance data is used for training.

Spectral Filter Array Filterwheel multispectral camera
Test data∆E00

ISO 17321 SFU Skin Refl. Munsell ColorChecker ISO 17321 SFU Skin Refl. Munsell ColorChecker
Mean 1.7584 1.1919 0.9249 0.8282 0.9957 1.7431 1.2836 0.4329 0.9254 0.958

Median 1.6313 0.832 0.9177 0.7382 0.9537 1.8697 0.9392 0.3338 0.8432 0.8008
Max 3.8625 11.3672 2.0604 4.028 2.6986 2.9034 14.8269 2.7687 7.079 2.7164
95% 3.6899 3.8758 1.3144 1.69 2.4889 2.8989 3.6974 1.0873 1.8486 2.2451

Table 4: ∆E00 results from simulated SFA and filter wheel cameras on 5 different reflectance datasets. Colorimetric values from
camera input are obtained after spectral reconstruction through RBF, and SFU reflectance data is used for training.

Spectral Filter Array Filterwheel multispectral camera
Test data∆E00

ISO 17321 SFU Skin Refl. Munsell ColorChecker ISO 17321 SFU Skin Refl. Munsell ColorChecker
Mean 20.3457 0.4943 5.8507 1.4383 2.224 16.2154 0.585 6.904 1.8177 1.6987

Median 12.6682 0.2839 4.7344 1.3454 1.2189 6.8432 0.3148 5.0181 1.755 1.4933
Max 72.5969 10.3802 38.6426 7.9147 17.0861 111.5009 13.781 44.2994 4.5246 4.8049
95% 69.8636 1.5687 11.3124 1.9207 9.4372 95.7351 2.1196 17.7355 2.2121 3.8698

Table 5: ∆E00 results from simulated SFA and filter wheel cameras on 5 different reflectance datasets. Camera characterization is
done through linear transformation of input values and skin reflectance dataset is used for training.

Spectral Filter Array Filterwheel multispectral camera
Test data∆E00

ISO 17321 SFU Skin Refl. Munsell ColorChecker ISO 17321 SFU Skin Refl. Munsell ColorChecker
Mean 2.1332 1.8638 0.1564 1.1973 1.4295 2.189 1.9801 0.2592 1.3363 1.7026

Median 1.9484 1.2062 0.1298 1.0235 1.103 2.3253 1.3586 0.2128 1.1818 1.4986
Max 7.2685 13.5945 1.3601 5.1716 4.8582 5.2003 21.4672 2.26 8.4396 3.9487
95% 6.4475 7.1785 0.3684 2.5389 4.1924 5.0175 6.2132 0.6132 2.8947 3.6536

Table 6: ∆E00 results from simulated SFA and filter wheel cameras on 5 different reflectance datasets. Colorimetric values from
camera input are obtained after spectral reconstruction through RBF, and skin reflectance dataset is used for training.

Spectral Filter Array Filterwheel multispectral camera
Test data∆E00

ISO 17321 SFU Skin Refl. Munsell ColorChecker ISO 17321 SFU Skin Refl. Munsell ColorChecker
Mean 19.1457 10.6788 0.1257 11.4708 17.4727 14.8275 19.4485 0.2013 19.8317 23.2347

Median 11.6453 7.096 0.1033 7.7014 14.4252 5.7423 13.0797 0.1617 13.2395 16.1735
Max 72.6046 112.8374 0.7225 69.1411 33.0798 77.0516 171.6711 1.0909 168.5628 103.2295
95% 66.613 29.3613 0.3024 31.4903 32.5279 67.9785 54.0677 0.4997 55.8913 89.5829

Table 7: ∆E00 results from simulated SFA and filter wheel cameras on 5 different reflectance datasets. Camera characterization is
done through linear transformation of input values and munsell reflectance dataset is used for training.

Spectral Filter Array Filterwheel multispectral camera
Test data∆E00

ISO 17321 SFU Skin Refl. Munsell ColorChecker ISO 17321 SFU Skin Refl. Munsell ColorChecker
Mean 2.145 1.3519 2.0956 0.7224 0.9969 1.8357 1.5966 0.6957 0.8778 1.0108

Median 2.0369 0.7722 2.0932 0.6355 0.6841 1.7431 0.8409 0.6622 0.7276 0.6461
Max 4.1234 12.0243 3.9997 3.7152 2.7537 4.1763 25.4742 2.9312 11.4406 3.1553
95% 3.9508 5.2581 2.7588 1.5458 2.5626 3.8847 6.2594 1.0421 1.9906 2.5951
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Table 8: ∆E00 results from simulated SFA and filter wheel cameras on 5 different reflectance datasets. Colorimetric values from
camera input are obtained after spectral reconstruction through RBF, and munsell reflectance dataset is used for training.

Spectral Filter Array Filterwheel multispectral camera
Test data∆E00

ISO 17321 SFU Skin Refl. Munsell ColorChecker ISO 17321 SFU Skin Refl. Munsell ColorChecker
Mean 24.0039 2.9209 9.3015 0.1884 2.1101 15.5738 5.1576 11.7369 0.2483 1.9564

Median 14.5737 1.3599 8.448 0.1334 1.2064 8.6756 1.7684 10.8623 0.1651 1.2751
Max 110.9224 76.2363 34.1916 2.9005 8.2254 80.9067 99.7878 41.0444 1.9762 8.6787
95% 98.0849 8.8584 15.3718 0.5308 7.9414 70.9825 24.3242 19.2322 0.7876 6.7308

Table 9: ∆E00 results from simulated SFA and filter wheel cameras on 5 different reflectance datasets. Camera characterization is
done through linear transformation of input values, and reflectance data from 24 patches of ColorChecker is used for training.

Spectral Filter Array Filterwheel multispectral camera
Test data∆E00

ISO 17321 SFU Skin Refl. Munsell ColorChecker ISO 17321 SFU Skin Refl. Munsell ColorChecker
Mean 1.7404 1.6828 1.0393 1.2164 1.0956 2.204 2.197 0.6699 1.7178 1.1093

Median 1.7835 1.142 1.0493 1.0405 0.7157 2.2295 1.5898 0.5744 1.4805 0.9898
Max 3.3151 12.749 2.4795 4.2034 3.2838 3.8507 19.9727 3.8322 11.5692 3.0324
95% 3.2561 5.7123 1.5598 2.6905 2.4682 3.7146 6.5214 1.5944 3.74 2.6195

One of the limitations of the proposed spectral recon-
struction framework is that the camera data should be
taken in the same illumination under which the system
is trained. This condition can be fulfilled when the data
acquisition is performed in controlled conditions and the il-
lumination is measured during the experiments. However,
measurement of illumination by a telespectroradiometer in
outdoor scenes is not always feasible. In the case of a
change in illumination, the system should be trained again
with the new illumination, and it must be made sure that
the same illumination was present during the test image ac-
quisition as well. To overcome this limitation, the concept
of multispectral constancy was recently proposed [38]. In
this method, the estimation of illumination in multispectral
images [39] is performed after the acquisition, and the ef-
fect of illumination is removed from the multispectral data.
The spectral reconstruction system is trained/calibrated
with the training data acquired with the same camera un-
der a canonical illuminant. The acquired image is also
transformed into a canonical representation and then is
provided as input to the spectral reconstruction system.
With an efficient multispectral constancy and spectral re-
construction system, use of the multispectral camera can
be increased widely for imaging in uncontrolled environ-
ments.

Conclusion
In this paper, we analyse the role of training data

for obtaining colorimetric information from two simulated
multispectral cameras. We use a linear method for direct
conversion from multispectral data into colorimetric data,
and a spectral reconstruction method whereby the spec-
tral estimation is performed first and this information is
subsequently used to obtain colorimetric data. For spec-
tral reconstruction, a Radial basis function based network
is trained to create a model of reflectance and the input
data from the multispectral camera is used to obtain the
spectral reconstruction. The training data plays an impor-
tant role in defining the efficiency of the camera charac-
terization. We investigated the reflectance models created
with reflectance spectra from ISO 17321, GretagMacbeth

ColorChecker, Skin reflectance, Munsell chips and SFU
dataset. The SFU dataset consists of reflectance spectra
from a number of objects including paints, natural objects,
color patches and dyes. The generic nature of this dataset
makes it a good training data for the spectral reflectance
reconstruction system. We found that by using a linear
method, efficient colorimetric information can be obtained
and the results outperform the non-linear method being
tested. The results obtained are promising and now fur-
ther work is required to validate these findings by using
the real camera and imaging environment.
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