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Abstract
Structured light depth sensors work by projecting a code-

word pattern, usually made up of NIR light, on a scene and mea-
suring distortions in the light received on an NIR camera to get
estimates of the camera-projector disparities. A well-known chal-
lenge associated with using structured light technology for depth
estimation is its sensitivity to NIR components in the ambient illu-
mination spectrum. While various methodologies are employed to
increase the codeword-to-ambient-light ratio – for instance, using
narrow-band NIR filters and selecting a spectral band for the NIR
laser where the interference from ambient light is expected to be
low – structured light setups usually do not work well outdoors
under direct sunlight. The standard deviation of shot noise in-
creases as the square root of the ambient-light intensity, reducing
the SNR of the received codeword pattern and making the decod-
ing process challenging.

One way to improve the SNR of the received structured light
pattern is to use codewords of larger spatial support for depth
sensing. While large codewords do improve the SNR of the re-
ceived pattern, the disadvantage is decreased spatial resolution
of the estimated disparity field. In this paper, we use a multi-
scale random field (MSRF) to model the codeword labels and use
a Bayesian framework, known as sequential MAP (SMAP) estima-
tion, developed originally for image segmentation, for developing
a novel multiscale matched filter for structured light decoding.
The proposed algorithm decodes codewords at different scales
and merges coarse-to-fine disparity estimates using the SMAP
framework. We present experimental results demonstrating that
our multiscale filter provides noise-robust decoding of the code-
word patterns, while preserving spatial resolution of the decoded
disparity maps.

Introduction
Structured light is a triangulation based active range find-

ing technique which solves the stereo correspondence problem by
transmitting a known pattern and comparing the received image
to the recorded template in order to calculate the local disparity
field [1].

The structured light transmission system usually comprises
a near infra red (NIR) laser transmitter and a diffractive optical
element (DOE). The laser light passes through the DOE, project-
ing a pattern of unique codewords on the scene. For our setup, the
transmitted codewords are 2D binary sequences. The codewords
reflected off the scene, and the unsolicited background image due
to ambient light, are received by an NIR camera. Due to channel
distortion, the received codewords on the sensor are no longer bi-
nary, but form a grayscale texture comprising dots and holes, with
each dot or hole occupying a region of P×P pixels on the sensor.
The schematic of a typical structured light setup and the received

codeword patterns is shown in Figure 1.

Decoding of the received light pattern enables immediate re-
covery of the camera-projector disparities without having to ex-
plicitly solve the stereo correspondence problem. The codeword
pattern acts as texture and hence disparities for texture-less ob-
jects in the scene can also be sensed. Once the disparity field is
estimated, the depth of the scene is determined through knowl-
edge of the NIR camera resolution, system baseline, and the re-
ceiver optics.

Since the projected pattern is made up of NIR light, the per-
formance of structured light depth sensing deteriorates if the am-
bient illumination produces a strong interference signal in the NIR
spectral band. Several methodologies are employed to increase
the gamut of ambient illuminations where structured light depth
sensing can work. For example, KinectToF and KinectSL both
make use of narrow band NIR filters to suppress the background
light out of the range of the laser illumination [2, 3]. For outdoor
depth sensing, it is a common practice to select a narrow wave-
length band around 940 nm for the laser illumination, the spectral
band where the radiant flux due to solar illumination is known to
be small [4].

The challenge in structured light decoding is to correctly
identify and label the received codeword pattern in the presence
of channel distortion and strong ambient interference, particularly
under direct sunlight. The standard deviation of shot noise in-
creases as the square root of the ambient-light intensity, reducing
the SNR of the received codeword pattern and making the decod-
ing process difficult [5]. In this paper, our focus is to improve
structured light decoding through algorithmic advancements.

We propose a novel multiscale matched filtering strategy
that decodes structured codewords at different scales and merges
coarse-to-fine disparity estimates using a Bayesian framework,
known as sequential MAP estimation [6], originally proposed for
segmenting multispectral images. We extend the SMAP theoreti-
cal framework for decoding structured-light patterns. We present
experimental results demonstrating that our proposed multiscale
filtering framework provides noise-robust decoding of the code-
word pattern, while preserving spatial resolution of the decoded
depth maps.

The rest of the paper is arranged as follows. In Section ,
we develop a single-scale matched filter that uses features and
codeword dictionary elements of a fixed spatial support for struc-
tured light decoding. We shall look into limitations of such a fil-
ter and proceed to developing a multiscale matched filter, based
on SMAP estimation, in Section . The experimental results are
presented in Section , followed by the conclusions in Section .
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Matched Filter for Structured Light Decoding
Structured light depth sensing, as shown in Figure 1, works

by projecting a known codeword pattern on a scene and compar-
ing an L× L local patch in the received image to recorded tem-
plates in a dictionary of M codeword elements that are known
apriori. The objective of the decoding algorithm is to identify the
codeword label, x, for the given patch. Knowledge of the code-
word label enables immediate recovery of the camera-projector
disparity through a deterministic transformation [1].

Signal Model
The image captured on the NIR sensor, Y is modeled as a

linear combination of three components:

• Codeword image, G , formed by the NIR structured light re-
flected off the scene;

• Interference image, B formed by the ambient light reflected
off the scene; and

• Noise image, W .

Let ys, gs, bs, and ws denote pixel values in L×L patches of
images Y , G , B, and W , respectively, with their top-left corners
at pixel s. We shall assume the pixel values in the local patches are
arranged as L2 dimensional column vectors. The observed feature
ys is given by

ys = gs +bs +ws.

The laser light passing through the diffractive optical ele-
ment projects a binary dot pattern on the scene. Thus, the L×L
patch, gs, received at pixel s on the NIR sensor is a channel-
distorted version of an L

P ×
L
P transmitted binary sequence, rep-

resented by the label

x ∈ χ , {0,1, . . . ,M−1},

where P×P is the spatial support of a dot or hole received on the
NIR sensor (Figure 1) and M is the total number of unique L

P ×
L
P

binary codes projected by the transmitter.
The distortion function is difficult to model accurately, as

it depends on a number of factors including surface reflectance
properties of objects in the scene, the point spread function (PSF)
of the NIR camera lens, and the PSF of the NIR sensor. We shall
assume that the cumulative effect of the above distortions is sim-
ply:

• a spatially-dependent attenuation of the transmitted signal
and

• a spatially-invariant blurring operation, considered fixed re-
gardless of the scene content and camera capture conditions.

Thus, denoting by f (x) : χ → RL2
the blurred L× L code-

word dictionary elements corresponding to labels x ∈ χ , the re-
ceived codeword gs on the NIR sensor can be expressed as:

gs , as f (xs),

where xs denotes the codeword label and as > 0 denotes the code-
word attenuation at pixel s on the NIR sensor. Since the blurring
kernel is considered fixed, the dictionary elements f (xs) can be
computed apriori.

In our modeling, we shall further assume for simplicity that
for each x ∈ χ , the codeword pattern f (x) is de-meaned and
standard-deviation normalized, i.e.

∑
i

fi(k) = 0 and
1

L2 ∑
i

f 2
i (k) = 1 ∀k ∈ χ.

For structured light decoding, it is reasonable to assume that
the high-pass energy in the observed patch ys is primarily due to
noise or the received codeword. The interference image is treated
as locally constant, contributing only a dc offset, denoted by the
positive scalar bs, to the local patch. Thus, the L2 dimensional
vector bs can be simplified as:

bs , bs1L2 ,

where 1L2 represents an L2 dimensional column vector with all
1ś.

With these assumptions, the observation vector ys can be
modeled as:

ys = as f (xs)+bs1L2 +ws. (1)

Given the observation patches, ys for s ∈ S, where S denotes
the set of all pixels in the image, the objective in structured light
decoding is to estimate the codeword labels, xs. Knowing the
codeword labels, xs, allows us to uniquely determine the disparity
values, ds, through a deterministic transformation:

ds = h(s,xs) .

We shall assume for the rest of our discussion that the func-
tion h(., .) is known.

Maximum Likelihood (ML) Estimation
Suppose that ws ∈RL2

in (1) is additive white Gaussian noise
with a probability distribution N

(
0,σ2IL2

)
, where IL2 is an L2×

L2 identity matrix. The conditional distribution of ys given xs, as,
bs, can then be written as:

p(ys|xs,as,bs)=
1(

2πσ2
)L2/2

exp
{
− 1

2σ2 ‖ys−as f (xs)−bs1L2‖2
2

}
.

(2)

Assuming that the observation vectors ys are conditionally
independent of the neighboring pixels given xs, as, and bs, the
log likelihood of the observed data can be written as a sum of
independent terms:

− log p(y|x,a,b) = ∑
s∈S

l(ys|xs) (3)

= ∑
s∈S

1
2σ2 ‖ys−as f (xs)−bs1L2‖2

2 +

L2

2
log(2π σ

2). (4)
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The ML estimates of xs, as, bs are computed through min-
imization of the negative log likelihood function (3). A straight
forward computation yields:

x̂s = argmax
k∈χ

yT
s f (k), (5)

âs =
1

L2 yT
s f (x̂s), and (6)

b̂s =
1

L2 yT
s 1L2 . (7)

Thus, the ML estimate of the codeword label xs is sim-
ply the index k ∈ χ for which the codeword dictionary ele-
ment f (k) is maximally correlated with the observation vector
ys. The per-pixel computation involved in determining this es-
timate is the multiplication of an M × L2 dimensional matrix,
F , [ f (0), . . . , f (M−1)]T , with an L2-dimensional vector ys.
These computations can be efficiently performed in a GPU, or
multi-threaded in a CPU, for real-time applications.

Outlier Rejection
To establish our confidence in the codeword labeling, x̂s,

computed using ML estimation, we compute the posterior proba-
bility that Xs = x̂s given the observation vector ys, the codeword
reflectance estimate âs, and the interference signal estimate b̂s, i.e.

p(x̂s|ys, âs, b̂s) =
p(ys|x̂s, âs, b̂s)

∑k∈χ p(ys|k, âs, b̂s)
. (8)

The above expression for the posterior probability is based on the
following two assumptions:

• All codewords are equally likely to occur in the coded im-
age, i.e. p(Xs = k) = 1

M ∀k ∈ χ , and
• Channel distortion and background signal are independent

of the transmitted codeword pattern, i.e. p(as,bs|xs) =
p(as,bs).

The codeword estimate x̂s is retained only if the posterior proba-
bility is above a pre-selected threshold, i.e.

p(x̂s|ys, âs, b̂s)> T.

Otherwise, the estimated codeword label x̂s is marked as invalid.

Limitations of ML Estimation
A major drawback of using the data model of (3) for code-

word labeling is that it disregards spatial interaction between class
labels of neighboring pixels. Thus, a small perturbation of fea-
tures ys, either due to noise or background, easily perturbs the
codeword labeling, leading to inconsistent disparity estimates in
a local neighborhood.

This is demonstrated in Figure 2. Figure 2 (a) shows an ex-
ample NIR structured light image. Figure 2 (b) shows the dis-
parity map estimated using 16× 16 (L = 16) features, ys, and
codeword dictionary elements, f (k), after outlier rejection. With
16×16 features, the estimated disparity map turns out to be noisy,
with neighboring pixels in same-depth regions being assigned in-
consistent disparity estimates. The outlier rejection algorithm re-
moves the noisy disparity estimates and labels them as invalid,
indicated by dark pixels in the figure.

Using overlapping features with larger spatial support is one
way to allow neighboring pixels to share more information with
each other and, hence, determine more consistent disparity esti-
mates in a local neighborhood. The disparity map estimated using
features of larger spatial support (28×28), after outlier rejection,
is shown in Figure 2 (c). The disparity map has few regions with
invalid depth, however, the disadvantage of using larger features
is decreased spatial resolution of the estimated disparity map.

Multiscale Matched Filtering Based on Se-
quential MAP Estimation

In the previous section, we saw that the spatial resolution
of disparity maps can be traded for reducing inconsistencies in
the local disparity estimates by using larger codewords with more
energy. Bayesian estimation provides an elegant framework for
providing the best compromise between these two opposing ob-
jectives. Selecting a prior model, p(x), P(X = x), for describing
the spatial interaction between codeword labels of neighboring
pixels, Bayesian estimators attempt to minimize the average cost
for an erroneous labeling.

In the following subsections, we shall use a multiscale ran-
dom field (MSRF) [6] to model the codeword labels and use
the sequential MAP [6] estimation framework, developed origi-
nally for image segmentation, for developing a novel multiscale
matched filter for structured light decoding.

Multiscale Signal Model
Suppose y(n)s denotes pixel values in an L(n)×L(n) local win-

dow at scale n and pixel s, arranged as an L(n)2 dimensional col-
umn vector. As before, we shall assume that s denotes the top-left
corner of the local window.

Let n = 0 denote the finest scale and n = N denote the coars-
est scale. The feature vector and codeword sizes for the (N + 1)
scales are ordered as:

L(0) < L(1) < · · ·< L(N).

Let x(n)s denote the codeword label at pixel s and scale n. The
set of possible values for the codeword labels at scale n is denoted
by χ(n) ,

{
0,1, . . . ,M(n)−1

}
. Notice that at each scale n, the

total number of unique L(n)×L(n) codeword dictionary elements
is different: M(n) 6= M( j) for n 6= j. Let f (n)(x) : χ(n)→RL(n)2

de-
note the de-meaned and standard-deviation normalized codeword
pattern corresponding to label x at scale n.

Finally, assuming that as, bs, and ws, respectively, represent
the codeword attenuation, signal component due to ambient light,
and L(n)2 dimensional noise vector at pixel s. The observation
vector y(n)s can be represented by the model:

y(n)s = as f (n)(x(n)s )+bs1L(n)2 +w(n)
s . (9)

Knowledge of the codeword label x(n)s at scale n and pixel
s, enables estimation of the disparity value through the following
deterministic transformation h(n)(., .):

ds = h(n)
(

s,x(n)s

)
.

We shall assume h(n)(., .) are known beforehand for all scales.

IS&T International Symposium on Electronic Imaging 2018
Computational Imaging XVI

473-3



Statistical Modeling for Bayesian Estimation
We shall model the codeword labels using a multiscale ran-

dom field X (n) that has a Markov structure in scale. Specifically,
the distribution of X (n) given all other coarser fields is assumed to
be depend only on X (n+1).

We shall denote by Y (n) the random field of observed fea-
tures at scale n. The behavior of the observed vectors Y (n) is as-
sumed to depend exclusively on the unobserved codeword labels
X (n) through the relationship in (9).

The model parameters a = {as}s∈S and b = {bs}s∈S are not
of direct interest to us, but must be determined to solve the in-
version. We shall make no assumptions about the values of these
parameters and treat them as unknown deterministic, rather than
random, quantities.

Forward Model
Let Y and X , respectively, denote the collection of obser-

vation vectors Y (n)
s and codeword labels X (n)

s ∀s ∈ S and ∀n ∈
{0,1, . . . ,N}. Assuming Y (n)

s are conditionally independent given
the class labels X (n)

s and the model parameters, the conditional
density of the observed feature vectors is given by

p(y|x,a,b) =
N

∏
n=0

p(y(n)|x(n),a,b) (10)

= ∏
s∈S

N

∏
n=0

p(y(n)s |x
(n)
s ,as,bs), (11)

where p(y(n)s |x
(n)
s ,as,bs) is a multivariate Gaussian distribution

defined by an expression similar to that in (2).

Prior Model
As mentioned above, the random field X (n) is assumed de-

pendent only on the previous coarser scale field X (n+1), giving
X (n) a Markov chain structure in the variable n. This structure
captures complex spatial dependencies in the codeword labels,
while allowing for efficient computational processing.

Using this Markovian structure, the probability mass func-
tion of the random field X can be written as

p(x) , P
(

X (n) = x(n) n≥ 0
)

=
N

∏
n=0

P
(

X (n) = x(n)|X (l) = x(l) l > n
)

=
N

∏
n=0

P
(

X (n) = x(n)|X (n+1) = x(n+1)
)

=
N

∏
n=0

p
(

x(n)|x(n+1)
)
, (12)

where we assume p
(

x(N)|x(N+1)
)

equals p
(

x(N)
)

.
We shall further assume that the class label of a pixel s at

scale n, X (n)
s , depends only on the class labels of pixels ∂ s at the

next coarser scale (n+ 1), X (n+1)
∂ s , where ∂ s denotes the set of

neighbors of pixel s. With this assumption, the prior distribution
of X can be written as:

p(x) = ∏
s∈S

N

∏
n=0

p
(

x(n)s |x
(n+1)
∂ s

)
.

Joint Distribution
Using (10) and (12), the joint distribution function of Y and

X can be written as

p(y,x|a,b) = ∏
s∈S

N

∏
n=0

p
(

y(n)s |x
(n)
s ,as,bs

)
p
(

x(n)s |x
(n+1)
∂ s

)
. (13)

Sequential MAP Estimate
For disparity estimation, we need to determine the codeword

labels X given the observation features Y . Bayesian MAP estima-
tion achieves this by finding x that maximizes the posterior dis-
tribution p(x|y,a,b). However, there are two limitations of MAP
estimation:

1. It assigns equal cost to erroneous labeling in both fine and
coarse scales, which is not suitable for multiscale class la-
beling. Course scale errors are usually considered more se-
rious as they result in mislabeling of a larger group of pixels
[6].

2. MAP estimation requires computationally expensive itera-
tive methods that are not suitable for real-time implementa-
tion [6].

The sequential MAP cost functional [6], proposed by
Bouman and Shapiro, overcomes the limitations of MAP estima-
tion by progressively assigning increasing cost to mislabeling at
coarser scales. Specifically, the SMAP cost of estimating a true
labeling X with the approximate labeling x is given by

CSMAP (X ,x) =
N

∑
n=0

α
nCn (X ,x) , (14)

where we assume α > 1 and

Cn (X ,x) = 1−
N

∏
i=n

δ

(
X (i)− x(i)

)
. (15)

Thus, if K is the coarsest scale where the first mislabeling occurs
then CSMAP (X ,x) = ∑

K
n=0 αn.

The SMAP estimate of X is computed by performing the fol-
lowing minimization:

x̂ = argmin
x

E [CSMAP (X ,x) |y,a,b] . (16)

Using a proof similar to the one given in previous work [6], we can
show that for our data model (13), performing the minimization
in (16) results in the following coarse-to-fine recursive equations
for computing the SMAP estimate at each pixel:

x̂(n)s = argmax
k(n)∈χ(n)

{
log p

(
y(n)s |k(n),as,bs

)
+ log p

(
k(n)|x̂(n+1)

∂ s

)}
.

(17)

Computation of SMAP Estimate
In this section, we will first present the specific form of the

data term in (17) for the structured light decoding problem. We
will then closely examine the structure of the codewords in our
multiscale framework and develop a mathematical expression for
the transitional probabilities in (17). Finally, we will present our
multiscale matched filtering algorithm for recursively optimizing
(17) to determine the SMAP estimates of the codeword labels.
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Data Term for the SMAP Estimate
The data term in (17) is the log of the conditional probability

of the observed feature Y (n)
s given the class label X (n)

s = k(n) and
the model parameters. Using the signal model in (9), the data term
is given by

− log p(y(n)s |k(n),as,bs) , l(n)s (y(n)s |k(n),as,bs) (18)

=
1

2σ2 ‖y
(n)
s −as f (n)(k(n))−bs1L(n)2‖2

2

+
L(n)2

2
log(2π σ

2), (19)

where k(n) ∈ χ(n) denotes a codeword label at scale n.

Prior Term for the SMAP Estimate
The prior model term in (17) requires knowledge of the con-

ditional probability that X (n)
s = k(n), where k(n) ∈ χ(n), given es-

timates of the codeword labels X̂ (n+1)
∂ s ∈ χ(n+1) in the neighbor-

hood of s at the next coarser scale.
In order to determine these conditional probabilities, we re-

fer to Figure 3, that shows an example L(n+1) × L(n+1) code-
word with label X̂ (n+1)

s = m(n+1), estimated at scale (n+1). The
schematic shows each codeword dot (“1”) or hole (“0”) occupy-
ing a single pixel on the sensor; however, in general, each of these
dots or holes has a spatial support of P×P pixels. We see that
the coarse scale codeword yields four L(n)×L(n) child codewords
at pixel locations s, s+P · (0,1), s+P · (1,0), and s+P · (1,1),
with L(n) = L(n+1)−P, at the next finer scale n. The labels of
these child codewords shall be denoted by ci

(
m(n+1)

)
, where i∈

{0,1,2,3}. The spatial locations of the four child codewords rel-
ative to pixel s are also shown in Figure 3.

Given the estimates of the coarse scale codeword labels
X̂ (n+1)

∂ s , it is possible to improve the prediction of X (n)
s . Specif-

ically, we shall assume a neighborhood ∂ s that comprises the fol-
lowing four pixels: s0 = s, s1 = s+P ·(0,−1), s2 = s+P ·(−1,0),
and s3 = s+P · (−1,−1). Also, let us assume the coarse scale la-
bel estimates at the four pixel locations are:

X̂ (n+1)
si = m(n+1)

i for i ∈ {0,1,2,3},

where m(n+1)
i ∈ χ(n+1). Vectorially, the above relationship can be

written as

X̂ (n+1)
∂ s ,

[
X̂ (n+1)

s0 , · · · , X̂ (n+1)
s3

]T

= [m(n+1)
0 , · · · ,m(n+1)

3 ]T

= m(n+1).

We observe from Figure 4 that each of the four coarse scale
codewords, m(n+1)

i , has an L(n)×L(n) child with label ci

(
m(n+1)

i

)
that is more likely to be observed at the next finer scale n than the
rest of the codewords in the set χ(n). Thus, if θ0 and θ1 denote
two positive numbers with θ1 > θ0, we compute the conditional
probability that X (n)

s = k(n) given the coarse scale label estimates

X̂ (n+1)
∂ s = m(n+1) as follows:

p
(

k(n)|m(n+1)
)

, P
(

X (n)
s = k(n)|X̂ (n+1)

∂ s = m(n+1)
)

= γθ1ω

(
k(n)|m(n+1)

)
+ γθ0

(
1−ω

(
k(n)|m(n+1)

))
, (20)

where

ω

(
k(n)|m(n+1)

)
, 1−

3

∏
i=0

δ

(
k(n) 6= ci

(
m(n+1)

i

))
. (21)

Thus, p
(

k(n)|m(n+1)
)
= γθ1 if k(n) ∈

{
ci

(
m(n+1)

i

)}
and

γθ0 otherwise. Expressed in words, the codewords at scale n have
an increased probability of detection if they are the children of
codewords estimated at the courser scale (n+1) in the neighbor-
hood of a given pixel.

The variable γ is a normalization factor that ensures
∑k∈χ(n) p(k|m(n+1)) = 1 and is given by:

γ ,
1

θ0M(n)+(θ1−θ0)∑k∈χ(n) ω
(
k,m(n+1)

) . (22)

Multiscale Matched Filtering Algorithm
Having determined the specific forms of the data (18) and

prior model (20) terms in (17), the SMAP estimate of the code-
word labels can be computed efficiently using a sequence of
coarse-to-fine scale optimization steps. The pseudo code for the
multiscale matched filtering algorithm that performs this opti-
mization is shown in Algorithm 1.

We begin at the coarsest scale, n = N. For this scale, we
assume that the prior term (20) is simply a uniform distribution,
i.e.

p(k(N)|m(N+1)) = p(k(N)) =
1

M(N)
∀k(N) ∈ χ

(N).

With this assumption, the codeword labels, X (N)
s , and the

model parameters, a(N)
s and b(N)

s , can be estimated using a set of
equations similar to the one used for ML estimation in Section .
The ML estimation of parameters at the coarsest scale is shown in
lines (1)-(5) of the pseudo code.

After the estimates for the coarsest level have been deter-
mined, the SMAP estimates for the rest of the (N−1) scales are
computed recursively using lines (6) to (17) of the pseudo code.

Our final estimates for the codeword labels and the model
parameters are the estimates computed at the finest scale, i.e., x̂(0)s ,
â(0)s , and b̂(0)s . Finally, as in Section , to establish our confidence in
the codeword labeling, x̂(0)s , we compute the posterior probability
that Xs = x̂(0)s given the observation vector y(0)s and the model
parameter estimates at the finest scale:

p(x̂(0)s |y
(0)
s , â(0)s , b̂(0)s ) =

p(y(0)s |x̂
(0)
s , â(0)s , b̂(0)s )

∑k∈χ(0) p(y(0)s |k, â
(0)
s , b̂(0)s )

. (23)

The codeword estimate x̂(0)s is retained only if the posterior prob-
ability is above a pre-selected threshold, i.e.

p(x̂(0)s |y
(0)
s , â(0)s , b̂(0)s )> T.
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Algorithm 1 Multiscale Matched Filter Based on SMAP Estima-
tion

1: n← N
2: c← 1

L(n)2

3: x̂(n)s ← argmax
k∈χ(n)

y(n)Ts f (n)(k)

4: â(n)s ← cy(n)Ts f (n)(x̂(n)s )

5: b̂(n)s ← cy(n)Ts 1L(n)2

6: for n = (N−1) to 0 do
7: c← 1

L(n)2

8: for s ∈ S do
9: for k ∈ χ(n) do

10: a(k) = cy(n)Ts f (n) (k)
11: end for
12: m← x̂(n+1)

∂ s

13: x̂(n)s = argmax
k∈χ(n)

a(k)2 +2cσ2 log p(k|m)

14: â(n)s ← a
(

x̂(n)s

)
15: b̂(n)s ← cy(n)Ts 1L(n)2

16: end for
17: end for

Otherwise, the estimated codeword label x̂(0)s is marked as invalid.

EXPERIMENTAL RESULTS
The multiscale matched filtering algorithm used for gener-

ating results for this paper has a total of four scales N = 3. The
finest scale is denoted by n = 0 and the coarsest scale is denoted
by n = N.

Each codeword dot (“1”) or hole (“0”) in our setup has a
spatial support of 4×4 pixels on the NIR sensor; thus, P = 4.

The feature vector sizes for fine to coarse scales are selected
as: L(0) = 16, L(1) = 20, L(2) = 24, and L(3) = 28. Since each
dot or hole in our codewords occupies a region of P×P pixels,
we notice that the underlying 2D binary sequence corresponding
to an L(n)×L(n) codeword pattern is L(n)

P ×
L(n)

P .
The number of unique L(n)×L(n) codeword dictionary ele-

ments, f (n)(.), at the various scales, n, are: M(0) = 405, M(1) =
420, M(2) = 424, and M(3) = 428.

The parameters for the data and prior model terms for the
SMAP estimation are selected as: σ = 2.5, θ0 = 1, and θ1 = 5.

Finally, the parameter T for thresholding the posterior prob-
ability for outlier rejection is selected as T = 0.1.

The performance gains with our proposed multiscale
matched filtering algorithm are shown in Figures 5 and 6. Fig-
ures 5 (a) and 6 (a) show examples of two structured light NIR
images. The corresponding disparity maps for the two example
NIR images estimated using single scale matched filtering algo-
rithm of Section with L = 16 are shown in Figures 5 (b) and 6
(b). The estimated disparity maps estimated using the 16× 16
feature elements are very noisy. Removal of the noisy regions us-
ing the outlier rejection scheme of Section results in invalidation
of large areas of the estimated disparity. Figures 5 (c) and 6 (c)
show the disparity maps estimated using the single scale matched
filter with features of larger, 28× 28 (L = 28), spatial support.

With larger feature vectors, the depth of the low-frequency back-
ground is correctly estimated, but the high-spatial-frequency re-
gions of the foreground objects cannot be resolved. Finally, Fig-
ures 5 (d) and 6 (d) show the disparity maps estimated using the
multiscale matched filter algorithm based on SMAP estimation
developed in Section . As evident from the results, the multiscale
algorithm provides a good compromise between noise suppres-
sion and preservation of spatial resolution for disparity estimation
from structured light images.

CONCLUSIONS
We developed a multiscale matched filtering algorithm based

on Bayesian sequential MAP estimation framework, originally
proposed for segmenting multispectral images. The proposed al-
gorithm can easily be parallelized for efficient implementation
in software. The experimental results convincingly demonstrate
that the proposed multiscale algorithm outperforms single-scale
matched filtering strategies for structured light depth sensing.
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Figure 1. Structured light setup for depth sensing. The NIR transmitter projects a pattern of 2D binary codewords on the scene. The codeword patterns are

reflected off the scene and received by an NIR camera. The received patterns after channel distortion are no longer binary. The decoding algorithm compares a

local L×L patch in the received image to recorded templates in a dictionary of codeword elements and returns the label x ∈ {0, . . . ,M−1} of the closest matching

template.

(a) (b) (c)

Figure 2. (a) Example structured light image captured on the NIR sensor. (b) Disparity map estimated using 16×16 (L = 16) features and codeword dictionary

elements. The dark areas in the disparity map are high-noise regions, marked as invalid by the outlier rejection algorithm. (c) Disparity map estimated using

28×28 (L = 28) features and codeword dictionary elements. Using features of larger spatial support reduces noise (i.e., few areas in the background are marked

as invalid), however, the disadvantage is decreased spatial resolution of high-frequency regions in the scene.
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Figure 3. An example coarse-scale codeword with label X̂ (n+1)
s = m(n+1) at scale (n+ 1) and its four children ci

(
m(n+1)

)
, where i ∈ {0,1,2,3}, at the next finer

scale n. The parent codeword has a spatial support of L(n+1) ×L(n+1) pixels and its top-left corner is located at pixel s. The children codewords have spatial

supports of L(n)×L(n) and are located at s, s+P · (0,1), s+P · (1,0), and s+P · (1,1). For the schematic shown, P = 1, and L(n) = L(n+1)−P, where P denotes the

spatial support of each codeword dot (“1”) or hole (“0”).

Figure 4. The top row shows example codewords, m(n+1)
i , at scale (n+ 1) in the neighborhood of pixel s. The neighborhood ∂ s comprises four pixels: s0 = s,

s1 = s+P · (0,−1), s2 = s+P · (−1,0), and s3 = s+P · (−1,−1), where P = 1 for the example schematic. Each L(n+1)×L(n+1) codeword at the coarse scale has a

smaller L(n)×L(n) subset or child, denoted by ci

(
m(n+1)

i

)
, that shapes our prior knowledge about codeword labels at the next finer scale n at pixel location s.
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(a) (b)

(c) (d)

Figure 5. (a) Example structured light image captured on the NIR sensor. (b) Disparity map estimated using single scale matched filter with L = 16. (c) Disparity

map estimated using single scale matched filter with L = 28. (d) Depth map estimated using proposed multiscale matched filter.

(a) (b)

(c) (d)

Figure 6. (a) Example structured light image captured on the NIR sensor. (b) Disparity map estimated using single scale matched filter with L = 16. (c) Disparity

map estimated using single scale matched filter with L = 28. (d) Depth map estimated using proposed multiscale matched filter.
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