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Abstract

This work focuses on the compensation of motion artefacts
that may occur during a line scan acquisition and can be detected
with our multi-line scan imaging system [10]. These artefacts are
caused by fluctuations of the transport velocity that are not cor-
rectly reflected by the camera trigger, and are especially visible
at high magnifications. We reduce such artefacts by analyzing the
light field acquired with our system. Specifically, we use a vari-
ational formulation to design a warping function, such that lines
that are acquired too early or too late are stretched or squeezed
appropriately. To this end, we exploit the information comprised
in the light field, i.e., control the estimation of the warping func-
tion by comparing light field views and enforce uniform spacing
between line acquisitions. The proposed approach enables our
system to perform the multi-line scan light field imaging at virtu-
ally any magnification independent from the transport and trigger
quality. We demonstrate the capabilities of our approach for var-
ious objects by comparing 3D reconstructions from unprocessed
acquisitions and our corrected acquisitions. Our approach signif-
icantly reduces artefacts in light fields and in 3D reconstructions
that are generated from them.

Introduction

Line scan imaging enables high-speed and high-resolution
image acquisition of continuously moving objects and, therefore,
is a popular choice when performing industrial quality inspection
tasks [3, 7]. However, when capturing moving objects motion
artefacts may arise when the movement (i.e. the transport veloc-
ity) of the object is not perfectly synchronized with the line scan
camera [3, 10, 12]. This becomes a serious issue especially when
line scanning is performed at high magnifications. If such motion
artefacts occur, the acquired line scan data would be subject to
spatial distortions that can hinder the visual quality inspection.

This paper focuses on the compensation of such motion arte-
facts or synchronization artefacts. While in conventional line
scanning (i.e., single line) such artefacts are not distinguishable
from the correct signal, they become visible in light fields ac-
quired with a multi-line scan system such as ours [1, 10]. Similar
to conventional systems, our multi-line system acquires objects
in motion, i.e., they are placed on a linear transport stage that is
(loosely) synchronized with a camera. The transport stage moves
with known direction past the multi-line camera (Figure 1, left).
Each line of the system’s camera captures the object under a dif-
ferent direction and, over time, contributes to a different view of
the object. These views compose a linear light field [2], which is
stored in an epipolar plane image (EP]) stack (Figure 1, right). As
mentioned in [10], the synchronization between line acquisitions
and the transport is crucial. If the linear transport stage is loosely
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Figure 1.  lllustration of our multi-line scan image acquisition setup [10]
(left). At each space instance a set of m lines is captured, then the object
is moved by a linear transport stage. Multi-line frames with position index x;
are acquired simultaneously. Each camera line captures the object under a
different viewing angle and, over the time, contributes to a different view of
the object. Each view v, consist of line acquisitions with indices x;. The views
compose a linear light field, which is stored in an epipolar plane image (EPI)
stack Vs (xi,ve) [2] (right). Figure taken from [10].
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synchronized with the camera or if there is some trigger jitter in
place, the system acquires sets of multiple lines at non-uniform
space instances. In this case, the captured views can contain
motion artefacts, i.e., incorrect resolution in the transport direc-
tion due to squeezed or stretched lines. When considering a slice
through all captured views, i.e., the EPI domain of the light field
(Figure 1, j-th EPI), the motion artefacts are visible as deformed
non-linear curves of corresponding object points (Figure 3, a) in-
stead of lines (Figure 3, b). Consequently, the motion artefacts
may also distort otherwise quite accurate 3D reconstructions (Fig-
ure 2, a) that can be generated from the light field. At high magni-
fications, this can be the case even when high-end hardware com-
ponents are used. Thus, motion artefacts put a strong limit on
magnifications that can be used a multi-line scan system.

Our proposed motion artefact compensation approach signif-
icantly reduces the mentioned artefacts in the light field views and
the 3D reconstructions that are generated from them. We achieve
this by leveraging the rich pixel information provided in the light
field that was acquired with our system [10]. Our proposed ap-
proach is based on a warping function that is computed by a vari-
ational optimization procedure (e.g., [4, 8]). The true transport
positions of the line acquisitions in the light field are recovered by
constraining them according to the information obtained by com-
paring multiple views and enforcing uniform spacing between its
line acquisitions. Subsequently, the undistorted views are com-
puted by warping the distorted views according to the determined
true positions of the line acquisitions. Hence, the proposed ap-
proach allows multi-line scan light field imaging at virtually any
magnification with correct resolution in the transport direction
(i.e., without squeezed or stretched pixels). It further enables pre-
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(a) Unprocessed: 3D reconstruction from unprocessed
(distorted) light field

(b) Result: 3D reconstruction from our undistorted light field

Figure 2. Visual comparison of 3D reconstructions generated from unprocessed (a) and our undistorted (b) light field acquisition of a coin with [10]. The motion
artefacts in the 3D reconstruction from the unprocessed light field (i.e., ripples in (a)) are significantly reduced in the 3D reconstruction from our undistorted light
field (b). Note that for this example we used a free running camera (no synchronization via camera trigger) in order to increase the visibility of motion artefacts.

@

|
(b) é

» X

Figure 3. Visual comparison of unprocessed (a) and our corrected (b) EPI
from an acquisition with our multi-line scan system. The motion artefacts
in the unprocessed distorted EPI are visible as deformed non-linear curves
which contain ripples (e.g. the ones highlighted red in (a)). These artefacts
are significantly reduced in our undistorted EPI.

cise 3D sensing using the multi-line scan light field approach not
only at high magnifications but also in any use case where trans-
port cannot be controlled with high precision.

The standard solution to motion artefacts or synchroniza-
tion artefacts in line scan imaging, is to use high-end hard-
ware components, such as high-precision transport stages and
motion sensors [3]. However, we have observed that despite
such hardware, acquisitions might sill suffer from motion arte-
facts. While the importance of compensating for motion artefacts
was already stressed by existing line scan imaging approaches
(e.g., [3, 10, 12]), to the best of our knowledge, a warping-based
motion artefact compensation approach for improving integrity of
multi-line scan light field data did not exist before.

More related research efforts can be found outside the realm
of line scanning (e.g., in [4, 5, 6, 8, 11]. In some similarity to
our work, in [11] motion is compensated in context of a 3D scan-
ning system. It reconstructs the scene using a stereo phase shift
method, which requires the successive projection of structured
light patterns on a dynamic scene, e.g. on a moving object. Since
the object’s motion affects the projected pattern, the 3D recon-
struction suffers from motion artefacts, i.e. an additional motion-
caused phase shift that has to be distinguished from structure-
caused one. Based on the assumption of uniform object motion,
the motion-caused phase shift was estimated in a Taylor series and
explicitly considered in their 3D reconstruction. In [5] a light field
representation is generated from a video that was captured with a
horizontal-moving smartphone camera. To this end, a subset of
equally spaced frames is identified according to an additionally
recorded control pattern, i.e., by selecting them according to cer-
tain control points. In [6] spectral inferograms that are affected
by trigger jitter are aligned to reference inferograms in order to
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improve the precision of phase measurement from swept source
optical coherence tomography systems. For this purpose inter-
nal reflections in such a system were used as reference for the
alignment. In some relation to our work, visual media retarget-
ing techniques determine new pixel positions (and thus, squeeze
/ stretch pixels) to adapt the given media to a different resolution
and aspect ratio. These techniques are typically based on varia-
tional formulations, which are similar to ours, to determine the
new pixel positions. Unlike to our approach, these variational for-
mulations focus on content-aware scaling according to a saliency
measure (e.g., [8]). Another related approach often used in stereo
vision is the bundle adjustment [4]. This method seeks to opti-
mize a subset of camera model parameters (e.g., camera position
and rotation) along with 3D coordinates of the scene in one joint
process in order to get the most consistent 3D reconstruction. Our
approach can be seen as a simplified version of bundle adjustment
tailored to the line scan scenario that attempts to find the most
plausible sequence of virtual camera positions along the transport
that minimize artifacts observed in the acquired light field data.

This paper is organized as follows: The next section de-
scribes two versions of the proposed motion artefact compensa-
tion approach. Then we compare these versions on light fields
acquired with our multi-line scan system in order to evaluate the
proposed artefact compensation algorithms. Since motion arte-
facts are especially visible in 3D data, we show disparity maps
in the experimental result section. Finally, we conclude the paper
with the discussion about obtained results.

Algorithm Description

Given a light field that is stored in an EPI stack V € R™"*"*"
(e.g., Figure 1), where V (x;,v,y;) with 1 <i<n, 1 <k<m
and 1 < j < r, our motion artefact compensation problem can
be described as follows. If the transport velocity is not perfectly
synchronized with the multi-line scan camera (e.g., loose trigger),
the gap between successive acquired lines is not constant. This
leads to axis-aligned spatial distortions of the assumed integer in-
dices x;, i.e., squeezed and stretched pixels and, thus, true sub-
pixel indices ;. To compensate for such motion artefacts, i.e., the
discrepancy between x; and X;, we first determine X; in a varia-
tional formulation, and then unwarp (i.e., stretch / squeeze) pix-
els in V accordingly. In this manner, we want to generate a new
EPI stack, with uniform gaps between its position indices x;.
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Our proposed approach is based on the observation that mo-
tion artefacts become visible in 3D reconstructions (e.g., Fig-
ure 2, a), such as disparity maps that are generated from light
fields acquired with our multi-line scan system [10]. In these light
fields the same object point is captured in different views at dif-
ferent indices x;, whereas the disparity is defined as the difference
of these indices. In this context, an object point and an entire
multi-line frame associated with x; that was performed too early
or too late, causes a smaller or larger disparity than expected. In
order to determine a true index £j, i.e., a new position label X;
for the i-th multi-line frame that was originally associated with x;,
we use previously estimated disparities to locate corresponding
multi-line frames in different views. We then adjust the position
of the i-th mutli-line frame from x; to X; by keeping the positions
of its found corresponding frames fixed and in a manner that com-
pensates for motion artefacts. More precisely, to find the true sub-
pixel indices X;, that correspond to each observed index x;, we
formulate an energy function consisting of a disparity term E, in-
corporating the observation mentioned above, an identity term E,,
which enforces a monotonous and stable solution, and a smooth-
ness term Ej that preserves a smooth and consistent indexing:

1 . A . A .
min 2 [ Ea(9)|+ S E(DIP + 21,5 P M)

Here, A; and A, are used to balance the energy terms. The L-2
penalization of the disparity term E; can be generalized and ex-
changed with an L-1 penalization to better handle sparse errors of
the disparity estimates. Below, we will discuss each energy term
in more detail. For the disparity term we introduce two versions.

Version 1: Constant background disparity (Figure 4, a). Dis-
parities that are computed in a flat fronto-parallel back-
ground stripe of an ideal light field with uniformly spaced x;
should be constant!. For distorted light fields this is not the
case (e.g., Figure 2, a; ripples in flat background regions),
because the observed distorted indices x; directly affect dis-
parities that are computed from them. By assuming a con-
stant disparity in a background stripe, we can construct a
disparity term E; of a minimization problem that ties to-
gether the searched true indices £; and estimated disparities.
Hence, the disparity term can be written as:

Ey(%) = Di—d, @)

where d € R is the mean disparity between any two con-
secutive views v and v over all background pixels and
D € R™" is a special linear difference operator constructed
from disparities d;. As the result we get the following set
of linear equations that constitute the first part of the least-
squares problem defined in Eq. (1):
(Fit () (1 —di+ |di]) +
Fiy1a)(di— |di]) = %i) —d =0,
Vie{l,...,n}. 3)
More precisely, we first estimate sub-pixel disparities be-
tween two views vi and vi 1 in a cropped background stripe,

'We assume that the camera sensor is perfectly aligned with the trans-
port and an ideal lens is used.
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e.g. using the OpenCV 3.2 [9] stereo matcher. Then we de-
termine a mean disparity d; in each position index x; and the
mean disparity d over the entire cropped background. These
parameters are then used in Eq. (3).

Obviously, this fomulation is not practicable when acquiring
non-flat objects. In this case, the EPI stack might not con-
tain a flat background region spanning along the entire ac-
quisition that is a prerequisite of this version of the proposed
algorithm. In the next section we provide an alternative for-
mulation of the disparity term E,, that makes no assumption
about the scene’s geometry.

Version 2: Balanced foreward & backward disparities (Fig-
ure 4, b). When considering an ideal light field with uni-
formly spaced x;, the disparities between same structures
in neighboring views should be balanced. Thus, we esti-
mate forward disparities between views v; and vy, and
backward disparities between views v; and v;_;. Analogue
to the first version of our disparity term, we determine the
mean forward disparity dj ; and the mean backward dispar-
ity di; in each index x;. In an ideal light field, the mean
forward disparity dy ;, computed between v; and vy 1, and
the mean backward disparity Jk,,-, computed between vy and
Vi1, for an index x; should be consistent, i.e., should can-
cel each other out. Thus, given dj ; and d_kJ for each position
index x;, we can infer the true indicies X; with our second
version of our disparity term:

E (%) =D'%, “)

where for each position index x; for which both forward
and backward disparities exist, we form one line in matrix
D' € R"™"  The corresponding set of linear equations for
the least squares problem in Eq. (3) for any give view v,
ke {2,..,m—1} are as follows:
=25 + %y |a,,) (I —di+di;i]) +
Fipae (i —ldil)  + %)
Siv1de) (W —dii+ dii])  +
% rde i — Ldki])
Vie{l,...,.n}.
Our second disparity term therefore chooses &; in such a way
that the obtained solution minimizes curvature of EPI-lines
for the given triplet of views vx_1, v and vi4. Note that,
since the m lines of the multi-line camera simultaneously
capture different parts of the object, the transport artefact at
x; is the same in all these views but overlaid with different
object parts. Thus, the recovered true index %; can be com-
puted from all views v;. In contrast to the first version of our
disparity term, in this second version the estimation of the
sub-pixel disparities d ; and d_k7,~ in each position index x;
are not restricted to a background stripe. The disparities can
be computed over the entire view or a copped stripe (i.e.,
fixed y; values) that may contain a non-flat 3D object.
Identity term. To stabilize the solution and preserve its mono-
tonicity, we assume that the actual movement is similar to
the assumed ideal movement of the transport stage:

0,

Q

Ey(%) =x—&. (6)
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Figure 4. lllustration of the first (a) and second (b) version of our disparity term. Both versions are based on previously estimated disparities (d;), which relate

corresponding object points (dark blue points) in different views (vi_i, vk, vk+1). In presence of transport issues, data points are acquired too early / late (light
versus dark blue point in vi) and the observed index x; of a multi-line frame differs from its true index %;. (a) Version 1: The disparities in a flat fronto-paralell
background stripe of an ideal EPI stack should not vary (light blue point). Thus, true indices %; can be determined according estimated disparities d; (red arrow)
and the mean background disparity d (green arrow), which were both assessed in a background stripe of the acquired EPI stack. (b) Version 2: In an ideal
EPI stack fore- and backward disparities are balanced (dy;, green arrows). In a distorted EPI stack with observed x; and disparities d; and d; (red and orange
arrow) this is not the case. However, for x;, a true x; can be determined by enforcing this balance between its found corresponding points (%; i and Xi1q; ;)-

Hence in Eq. (3), we also solve the set of equation:
xi— X =~ 0, ViE{l,...,n}. (@)

Smoothness term. In order to ensure smoothness of the solution
Xi, we penalize abrupt changes between neighboring recon-
structed position indices by

Es(X) = A%, ®)

where A denotes the Laplacian operator, which is imple-
mented in form of a convolution filter with the kernel
[1,—2,1]. Thus, we form another set of linear equations as
follows:

—2%+ X1+ X411 =0, ViE{L...,n}. )

We express the energy term in Eq. (1) as an overdeter-
mined linear system of equations described in Egs. (3) or (5),
and (7) and (9), which can be solved only approximately using a
least squares solver based, e.g., on a standard conjugate gradient
method. Once the true indices X; are computed, the undistorted
views are computed by warping the distorted views according to
the determined true positions of the acquired multi-line frames.
This results in a local stretching or squeezing of the EPI stack
compensates for motion artefacts.

Experimental Results

‘We perform our experiments on 2320 x 4212 x 11 EPI stacks
that were obtained with our multi-line scan system [10] with an
optical resolution of 13.7 um in the focal plane. In this con-
figuration, our unoptimized MATLAB implementation requires
0.20 seconds to recover %; in a system of equations that consist of
12636 equations and is based on the first disparity term. When
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using the second disparity term, our system of equations con-
tains 46332 equations and our algorithm requires 0.22 seconds
to recover X;. In order to increase the visibility of motion arte-
facts in our acquisitions, our experiments are also performed on
a free running dataset, i.e., Notel, Note2, PCBI, PCB2, Coinl
and Coin2. For these acquisitions, we used a free running cam-
era without synchronization with the transport stage via trigger.
Our experiments consider both versions of our disparity term.
Disparities are estimated in different regions of the unprocessed
EPI stacks, i.e., in a (assumed flat) background stripe and in a
foreground stripe that might contain a 3D non-flat object.

Since motion artefacts are especially visible in the 3D data
(e.g., ripples in Figure 2, a; Figure 5, top), such as disparity maps,
the experimental results of our approach will focus on them. In
Table 1 and Figure 5, we compare disparity maps that were gen-
erated from the (unprocessed) distorted and from our undistorted
EPI stacks. In particular, Table 1 lists the standard derivation of
disparities within a (assumed flat) background region. Since the
disparity maps in such a region should be constant, the standard
deviation can be used as a quality measure, where low values in-
dicate less artefacts than larger ones. It can be seen that the ma-
jority of disparity maps which were generated from our corrected
EPI stacks exhibit lower standard variations than those generated
from the distorted EPI stacks. The motion artefact compensation
with the first version of our disparity term and background dispar-
ities (V1 BG) and with the second version of our disparity term
(V2 BG and V2 FG) reduced the average variation by a factor
of 2.7. This indicates a significant reduction of the motion arte-
facts in our test data. As expected, the first version of our dispar-
ity term fails when its underlying assumption is violated (Table 1,
V1 FG). When assuming a constant disparity within a foreground
stripe that may contain objects (hence varying disparities), the dis-
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Table 1. Quantitative evaluation of the proposed motion arte-
fact compensation approach. The table lists the standard de-
viation of pixel disparities in a flat background region. Our ap-
proach is evaluated in two versions, i.e., with the first (V1) and
the second (V2) version of our disparity term, and when apply-
ing them with disparities that were estimated in a background
(BG) and foreground (FG) stripe of the distorted EPI stack.

| Data set [ Distorted [ V1 BG [ V1 FG [| V2BG [ V2FG |

free running camera
Notet 0.3061 0.0941 | 7.0588 || 0.0954 | 0.0986

Note2 0.2896 || 0.0957 | 7.2707 || 0.1036 | 0.1153
PCB1 0.3069 || 0.0988 | 0.4513 || 0.1004 | 0.1283
PCB2 0.3361 0.1076 | 0.4779 || 0.1006 | 0.1319
Coint 0.2954 || 0.0883 | 4.2589 || 0.1004 | 0.0992
Coin2 0.2771 0.0856 | 3.5649 || 0.0900 | 0.0912

synchronization via trigger
Coin3 0.0686 || 0.0624 | 6.6274 || 0.0606 | 0.0617
No object || 0.0612 || 0.0476 - 0.0481 -

tortions in our processed data increase. In this context, and as V1
BG and V2 BG and V2 FG achieve similar good results, V2 is
typically the more practical choice. Figure 5 shows corresponding
disparity maps for Notel, PCBI, Coinl and Coin3. The discussed
reduction of artefacts (with V1 BG, V2 BG and V2 FG) and the
failure case (V1 FG) are also evident in the visual examples.

We further observe (Table 1, Figure 5), that the largest im-
provements can be observed when applying our algorithm with
disparities that were estimated from a background compared to a
foreground stripe that might also contain a non-flat object. As our
compensation approach strongly relies on its input disparities, we
believe this observation also relates to their integrity. While the
random color pattern in the background of our test data (e.g., Fig-
ure 5, views) typically eases the stereo matching process, texture-
less regions, repetitive patterns and glossy surfaces and occlusions
might introduce erroneous disparities (Figure 5, ¢ and d).

Conclusion

Given a light field that was acquired with our setup, we were
able to compensate for motion artefacts by leveraging the rich
pixel information provided in the recorded light field. Our pro-
posed approach, constrained the light field’s transport position in-
dices according the information obtained by comparing multiple
views and enforcing uniform spacing between line acquisitions
in a variational optimization procedure. Subsequently, the undis-
torted views were computed according to a warping function. To
our knowledge, such a method did not exist before, especially for
improving the integrity of light field data acquired in the line scan
process. Performed evaluations demonstrated that our warping-
based motion artefact compensation approach is able to signifi-
cantly reduce (i.e., on average by a factor of 2.7) the mentioned
motion artefacts in our test data, including acquisitions that were
performed with a free running camera. A key advantage of the
proposed approach, is that it allows multi-line scan light field
imaging at virtually any magnification with correct resolution in
the transport direction and in cases where the transport cannot be
controlled with high precision.
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Results: Disparity maps generated from undistorted light field

Figure 5. Visual comparisons of disparity maps generated from unprocessed distorted (top) and from our corrected (bottom) EPI stacks. Our approach was
tested in two versions: with the first (V1) and the second version (V2) of our disparity term, and based on disparities that were estimated in background (BG)
and foreground (FG) stripes of the distorted EPI stacks. The FG stripe (yellow) and BG stripe (pink) that were used in the disparity estimation are marked in
the unprocessed views (top). The disparity maps shown as results were generated after undistorting the EPI stacks with our proposed approach. The motion
artefacts are especially visible in the close-ups, which show intensity-normalized disparities of the marked regions in the disparity maps.
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