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Abstract
The problem of increasing spatial resolution from Bayer im-

ages is considered. It is solved locally at each point of the un-
known high-resolution image. In each local neighbourhood, sub-
pixel warp and blur kernel are assumed to be the same, which
makes it possible to reduce the computational complexity from
O
(
n6) to O

(
n2 logn

)
. A detailed description of the algorithm

and its proof using the apparatus of multilevel matrices are pro-
vided. The relation between solutions of the SR problem with dif-
ferent warping parameters is also studied, and it is proven that
certain solutions can be derived from solutions with other param-
eters by using simple transforms. This makes it possible to reduce
the amount of memory used for storing filters within a filter bank
approach up to 80 times (2× magnification, 3 input frames).

Introduction
Multi-frame super-resolution (SR) is reconstruction of a

high-resolution image X from several observed low-resolution
images Yi. Solving this problem starts with an agreement on an
image formation model like [1]:

Yi =WiX +ηi,∀i = 1, ...,k,

where Wi is the ith image formation operator and ηi is additive
noise. If ηi = η is Gaussian white noise, the SR problem can be
formulated as

X = argmin
X
||

k

∑
i=1

(WiX−Yi)||2.

Operator Wi is an image formation operator, describing how each
low-resolution was obtained from a high-resolution image. Input
data is often insufficient for unique reconstruction. Therefore, a
regularized problem is considered instead:

X = argmin
X
||

k

∑
i=1

(WiX−Yi)||2 +Γ (X). (1)

Different types of norms, regularization terms, and corresponding
solvers are described in detail in [8]. Most of the research in SR
is focused on the problem with a quadratic data fidelity term and
total variation (TV) regularization term. In the case of a non-linear
and particularly non-convex form of the regularization term in (1),
the only way to find a solution is an iterative approach.

This paper considers a simpler L2−L2 problem with Γ (X) =
Λ 2(HX)∗(HX), where H is a convolution operator. This makes it
possible to solve (1) using the linear equation

ÂX =W ∗Y, (2)

where Â = W ∗W + Λ 2H∗H,W = [W ∗1 , . . . ,W
∗
k ]
∗,Y =

[Y ∗1 , . . . ,Y
∗
k ]
∗. Operators Wi can be composed out of warp

Mi, blur Gi, and decimation D for a single-channel SR problem,
as in [3], [2], and [4]:

Wi = DGMi. (3)

Alternatively, Bayer decimation B may be used for reconstruction
from a Bayer domain (joint demosaicing and super-resolution) as
in [8] and [6]:

Wi = BDGMi. (4)

It is possible to make this problem even narrower and assume each
warp Mi and blur G as being space invariant. This limitation is
quite reasonable when processing a small image patch([2]). In
this case, Â, meeting condition (3), is known to be reducible to a
block diagonal form ([3], [2], [4], [7]), while the case of (4) has
never been covered in literature. The main contribution of this pa-
per is obtaining a block diagonal form for Â meeting (4). The sec-
tion titled Matrix classes arising from the SR problem discusses
the transformation of 1D, 2D, and Bayer SR problems to a mul-
tilevel class with diagonal block classes on different levels. The
section Block diagonalization for SR derives the explicit form of
transforms to obtain the block diagonal form from matrix classes
discussed in the previous section. In the section Symmetries in
the Bayer SR problem filter bank implementation from [6] is rec-
ollected, and symmetry properties that allow a reduction in the
amount of memory used to store the filter bank are studied. The
sub-sections titled Prerequisites in each section summarize basic
facts used in the proofs.

Matrix classes arising from the SR problem
Prerequisites

This paper will extensively use a permutation matrix P ob-
tained from the identity matrix by row permutation. Left multi-
plication of the matrix M by P causes permutation of rows, while
right multiplication by Q = PT leads to the same permutation of
columns. Permutation matrices P and Q are orthogonal:

P−1 = PT ,Q−1 = QT . (5)

Notation Pu will mean cyclic shift by u, providing

(Pu)∗ = (Pu)−1 = P−u. (6)

A perfect shuffle matrix Πn1n2 (notes on application to struc-
tured matrices can be found in [10]) will also be needed. It corre-
sponds to the transposition of a rectangular matrix of size n1×n2
in vectorized form. This is an n× n permutation matrix where
n = n1n2 and an element with indices i, j is one if and only if i
and j can be presented as i− 1 = α2n1 +α1, j− 1 = α1n2 +α2
for some integers α1,α2 : 0≤ α1 ≤ n1−1,0≤ α2 ≤ n2−1.
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An explicit formula for the matrix of a Fourier transform of
size n×n will also be used:

Fn =



1 1 . . . 1 1
1 ε1·1

n . . . ε
1·(n−2)
n ε

1·(n−1)
n

1 ε2·1
n . . . ε

2·(n−2)
n ε

2·(n−1)
n

...

1 ε
(n−1)·1
n . . . ε

(n−1)·(n−2)
n ε

(n−1)·(n−1)
n

 , (7)

where εn = e−
2Π i

n . The Fourier matrix and its conjugate satisfy

F∗n ·Fn = Fn ·F∗n = n · In. (8)

Definition 1. A circulant matrix is a matrix with a special struc-
ture, where every row is a right cyclic shift of the row above

A =


a1 a2 . . . an
an a1 . . . an−1

. . .

a2 a3 . . . a1

 .
and corresponds to 1D convolution with cyclic boundary

conditions. Circulant matrices are invariant under cyclic permu-
tations

∀A ∈ C⇒ A = (Pu)T APu. (9)

The class of circulant matrices of size n×n is denoted by Cn,
so it is possible to write A∈Cn. A circulant matrix is defined by a
single row (or column) a = [a1,a2, . . . ,an]. It can be transformed
to diagonal form by Fourier transform:

∀A ∈ Cn⇒ A =
1
n

F∗n ΛnFn. (10)

From (10), it follows directly that all circulant matrices of the
same size commute. Many matrices used below are circulant e.g.,
matrices corresponding to 1D convolution with cyclic boundary
conditions.

As far as this paper is going to deal with 2 or more dimen-
sions, the Kronecker product ⊗ becomes an important tool. An
operator that down-samples a vector of length n by the factor s
can be written as Ds = In/s⊗ eT

1,s, where eT
1,s is the first row of

identity matrix Is. Suppose a 2-dimensional n×n array is given:

Xmatr =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
xn1 xn2 . . . xnn

 .
In vectorized form, this can be written as

XT = [x11,x21, . . . ,xn1,x12,x22, . . . ,xn2, . . . ,x1n, . . . ,xnn].

If An is a 1D convolution operator from Rn to Rn with coefficients
ai, i = 1, ...,n, then In⊗An applied to X will correspond to row-
wise convolution acting from Rn2

to Rn2
, and An⊗In – to column-

wise convolution with this filter. For two row-wise and column-
wise convolution operators An and Bn operator An⊗Bn will be a

separable convolution operator from Rn2
to Rn2

for vectorized n×
n arrays due to the following property of the Kronecker product:

AB⊗CD = (A⊗C)(B⊗D). (11)

For example, 2D down-sampling by factor s will be

Ds,s = Ds⊗Ds = In/s⊗ eT
1,s⊗ In/s⊗ eT

1,s. (12)

Two-dimensional non-separable convolution (warp and blur) op-
erators are block circulant with circulant block (BCCB) and can
be expressed via a sum of Kronecker products of 1D convolution
operators:

∀A∈CnCm⇒∃Ni ∈Cn,Mi ∈Cm, i= 1..r : A=
r

∑
i=1

Ni⊗Mi. (13)

From (10), (11) and (13) follows easily an explicit formula of
transformation of a BCCB matrix to block diagonal form:

∀A ∈ CnCm⇒ A =
1

mn
(F∗n ⊗F∗m)Λ (Fn⊗Fm) , (14)

where Λ = ∑
r
i=1 Λ N

i ⊗Λ M
i and Λ N

i ,Λ M
i are diagonal matrices of

eigenvalues of matrices Ni and Mi from (13).
Although BCCB matrices and their properties are exten-

sively covered in literature, matrices arising from the SR problem
(especially the Bayer case) are more complicated, and this paper
will borrow a more general concept of matrix class from [5] to
deal with them in a simple and unified manner.

Definition 2. A matrix class is a linear subspace of square ma-
trices. Matrix A with elements ai, j : i, j = 1..n belongs to matrix

class M described by numbers a(q)i j ,q ∈ Q if it satisfies

∑
i, j

a(q)i j ai j = 0. (15)

This paper will consider classes of square matrices
Cn(circulant), G (general, Q=∅) and Dn (diagonal) of size n×n.

If matrix blocks satisfy some conditions of form (15), it
is possible to say that this matrix belongs to the particular
block class. The Kronecker product produces bilevel matri-
ces of class M1M2 from matrices from classes M1 and M2:
∀M1 ∈ M1,∀M2 ∈ M2 ⇒ M1 ⊗M2 ∈ M1M2. Here, M1 is
called an outer class and M2 an inner class. Saying A ∈
GM simply means that each block of A belongs to class M.
Multi-level classes like M1M2 . . .Mi . . .M j . . .Mk can be also
constructed. This section classifies matrices from different
SR problems and transforms them to some multi-level classes
M1M2 . . .MiDMi+1 . . .M jDM j+1 . . .Mk containing several di-
agonal block classes, where Mi stand for some non-diagonal
types.

1D case
The single-channel SR matrix Â from problem (2) uses for-

mation model (3) and can be expanded as

Â =

(
k

∑
i=1

M∗i G∗D∗DGMi

)
+Λ

2H∗H. (16)

In 1D Mi and H being convolution operators provides

Mi,G,H ∈ Cn,D = Ds = In/s⊗ eT
1,s. (17)
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Theorem 1. Matrix (16) meeting conditions (17) satisfies

Â = F∗n ΛAFn,

where ΛA ∈GsDn/s.

To prove theorem 1, the following is necessary:

Lemma 1. Let 1s,s be an s× s matrix of all ones. Then

FnD∗s DsF∗n = (n/s)1s,s⊗ In/s.

Proof. First,

DsF∗n = 11,s⊗F∗n/s (18)

will be proved. According to (7), an element of matrix F∗n
with indices m,k is F∗n [m,k] = ε

−(m−1)(k−1)
n . Elements of the

matrix U = DsF∗n of size n× ns will be F∗n [1+ s(l − 1),k], l =
1, ...,n/s,k = 1, ...,n; i.e., U [l,k] = ε

−s(l−1)(k−1)
n . Notice that

ε
−s(l−1)(k−1)
n = ε

−(l−1)((k−1) mod (n/s))
n/s . (19)

From (19) follows that U = [F∗n/s, . . . ,F
∗
n/s︸ ︷︷ ︸

s times

], which coincides with

(18). From (8), (11) and (18):

FnD∗s DsF∗n =
(

1s,1⊗Fn/s

)(
11,s⊗F∗n/s

)
= n

s 1s,s⊗ In/s.

Now it is possible to prove theorem 1.

Proof. Property (10) implies

Â=(∑
k
i=1( 1

n F∗ΛiF)
∗
( 1

n F∗ΛGF)
∗
D∗D( 1

n F∗ΛGF)( 1
n F∗ΛiF))+

Λ 2( 1
n F∗ΛH F)

∗
( 1

n F∗ΛH F).

From (8) follows

Â= 1
n2 F∗((∑

k
i=1 Λ ∗i Λ ∗GFD∗DF∗ΛiΛG)+Λ 2nΛ ∗HΛH)F. (20)

Applying Lemma 1 to (20), Â = 1
ns F∗ΛAF is obtained, where

ΛA =
(

∑
k
i=1 Λ∗i Λ∗G

(
1s,s⊗ In/s

)
ΛiΛG

)
+ Λ 2sΛ∗HΛH . As far as

1s,s⊗ In/s ∈GsDn/s, multiplication rules for block matrices yield

Λ∗i Λ∗G

(
1s,s⊗ In/s

)
ΛiΛG ∈GsDn/s. Obviously from Λ∗HΛH ∈Dn

immediately follows Λ∗HΛH ∈GsDn/s and ΛA ∈GsDn/s.

2D case
In the 2D case, warp, blur, and regularization operators be-

come

Mi,G,H ∈ CnCn,D = Ds,s = Ds⊗Ds. (21)

Theorem 2. Matrix (16), meeting condition (21), satisfies

Â = (F∗n ⊗F∗n )ΛA(Fn⊗Fn),

where ΛA ∈GsDn/sGsDn/s.

Proof. Equations (8) and (14) make it possible to rewrite (16)
satisfying (21) as

Â = (1/n)4(F∗⊗F∗)((
k

∑
i=1

Λ
∗
i Λ
∗
G(F⊗F)D∗s,sDs,s (F∗⊗F∗)ΛGΛi)+

+Λ
2n2

Λ
∗
HΛH)(F⊗F) .

(22)

From lemma 1, (12), and (11) immediately follows

(F⊗F)D∗s,sDs,s(F∗⊗F∗) =
(n

s

)2
1s,s⊗ In/s⊗1s,s⊗ In/s.

Hence, (22) simplifies to Â = 1
n2s2 (F∗n ⊗ F∗n )ΛA(Fn ⊗ Fn),

where ΛA =
(

∑
k
i=1 Λ∗i Λ∗G

(
1s,s⊗ In/s⊗1s,s⊗ In/s

)
ΛGΛi

)
+

Λ 2s2Λ∗HΛH . As far as both 1s,s ⊗ In/s ⊗ 1s,s ⊗ In/s ∈
GsDn/sGsDn/s and Λ∗HΛH ∈ D ∈ DnDn ∈ GsDn/sGsDn/s,
the theorem is proven.

Bayer case
In the Bayer case, vector X can be represented as stacked

vectorized G,B, and R channels. Then matrix Â from problem (2)
uses formation model (4) and can be expanded as

Â =

(
k

∑
i=1

M̃∗i G̃∗D̃∗B∗BD̃G̃M̃i

)
+Λ

2H̃∗H̃, (23)

where

D̃ = I3⊗Ds,s, G̃ = I3⊗G,M̃i = I3⊗Mi,

B =


D2,2 0 0

D2,2P1,1 0 0
0 D2,2P1,0 0
0 0 D2,2P0,1

 ,

H̃ =


Hg 0 0
0 Hb 0
0 0 Hr

Hc1 −Hc1 0
Hc2 0 −Hc2

0 Hc3 −Hc3

 ,
(24)

and Pu,v is a 2D cyclic shift by u columns and v rows. Regu-
larization operator H̃ is constructed so that it has both an inter-
channel term (which may be different for each channel) and a
cross-channel term (which may also be selected independently for
each pair of channels). Sub-matrices from (24) satisfy

Mi,G,Hr,Hg,Hb,Hc1 ,Hc2 ,Hc3 ∈ CnCn. (25)

Bayer down-sampling operator B from (24) extracts and stacks
channels G1,G2,R and B from the pattern in Fig. 1.

Figure 1. Bayer pattern
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Theorem 3. Matrix (23), meeting conditions (24) and (25), sat-
isfies

Â = (I3⊗F∗n ⊗F∗n )ΛA(I3⊗Fn⊗Fn),

where ΛA ∈G3G2sD n
2s
G2sD n

2s
.

Proof. Applying the multiplication rule for block matrices and
(5) obtains

B∗B =

 D∗2,2D2,2 +(P1,1)∗D∗2,2D2,2P1,1 0 0
0 (P1,0)∗D∗2,2D2,2P1,0 0
0 0 (P0,1)∗D∗2,2D2,2P0,1

.
If M̃∗i G̃∗D̃∗B∗BD̃G̃M̃i is expanded, non-diagonal blocks
will be zero, and diagonal blocks will contain the term
D∗s,s(P

v,u)∗D∗2,2D2,2Pv,uDs,s multiplied from the left and right
sides by some other matrices. Taking into account that
D2,2Ds,s = D2s,2s and the fact that shifting by (v,u) after
down-sampling s times is equivalent to shifting by (sv,su) before
down-sampling, the following is obtained:

D∗s,s(P
v,u)∗D∗2,2D2,2Pv,uDs,s = (Psv,su)∗D∗2s,2sD2s,2sPsv,su. (26)

So it is possible to rewrite

D̃∗B∗BD̃ =

 D̂+(Ps,s)∗D̂Ps,s 0 0
0 (Ps,0)∗D̂Ps,0 0
0 0 (P0,s)∗D̂P0,s

, (27)

where D̂ = D∗2s,2sD2s,2s. As long as Pu,v ∈ CnCn, it commutes
with blur and warp. Hence, it is possible to introduce supplemen-
tary variables M′i = Ps,0Mi,M′′i = P0,sMi , and M′′′i = Ps,sMi and
use (26) to rewrite the expression under the sum in (23) as

M̃∗i G̃∗D̃∗B∗BD̃G̃M̃i =

 a1 0 0
0 a2 0
0 0 a3

 ,
a1 = M∗i G∗D∗2s,2sD2s,2sGMi +M′′′∗i G∗D∗2s,2sD2s,2sGM′′′i ,

a2 = M′∗i G∗D∗2s,2sD2s,2sGM′i ,
a3 = M′′∗i G∗D∗2s,2sD2s,2sGM′′i .

Theorem 2 provides that for k = 1, ...,3

(Fn⊗Fn)ak(F
∗
n ⊗F∗n ) ∈G2sD n

2s
G2sD n

2s
,

which means

(I3⊗Fn⊗Fn)M̃∗i G̃∗D̃∗B∗BD̃G̃M̃∗i (I3⊗F∗n ⊗F∗n ) ∈
∈ D3G2sD n

2s
G2sD n

2s
⊂G3G2sD n

2s
G2sD n

2s
.

Each of the 3×3 blocks h j,k of matrix H̃∗H̃ satisfy

(Fn⊗Fn)h j,k(F
∗
n ⊗F∗n ) ∈

∈ D⊂ DnDn ⊂GsDn/sGsDn/s ⊂G2sD n
2s
G2sD n

2s
,

providing (I3⊗Fn⊗Fn)H̃∗H̃(I3⊗F∗n ⊗F∗n ) ∈G3G2sD n
2s
G2sD n

2s
which finally gives

(I3⊗Fn⊗Fn)Â(I3⊗F∗n ⊗F∗n ) ∈G3G2sD n
2s
G2sD n

2s
.

Block diagonalization for SR
In papers relying on block diagonalization of BCCB matri-

ces like [4], it is usually only noted that certain matrices can be
transformed to DG, and no explicit transforms are provided.

This section derives closed-form permutations re-
arranging matrices from classes GsDn/s, GsDn/sGsDn/s
and G3G2sDn/(2s)G2sDn/(2s) to block diagonal form Dn/sGs,
Dn2/s2Gs2 , and Dn2/(4s2)G12s2 , respectively.

Prerequisites
The apparatus of multi-level matrices is very handy to grind

this problem. Unfortunately, the most relevant explanation in En-
glish that could be found [9] does not contain statements exactly
meeting the present needs, while necessary statements with proofs
are available only in publication [5] (in Russian). As far as def-
inition 2 is more narrow than in original work (the constant in
the right-hand side of (15) has been set to zero, and only square
matrices are used, while [5] studies arbitrary constants and rectan-
gular matrices), simplified versions of appropriate statements are
explained below.

Theorem 4. Let M1 and M2 be two classes of n× n and m×m
matrices, respectively. Then ∀A ∈M1M2 : Π T

n,mAΠn,m ∈M2M1,
where Πn,m is a perfect shuffle.

Theorem 4 is provided without proof, but its meaning is quite
obvious from Fig. 2. A perfect shuffle matrix is used in the prop-
erty of the Kronecker product [10]

∀A ∈Rn×n,∀B ∈Rm×m : (B⊗A) = Π
T
n,m(A⊗B)Πn,m, (28)

but theorem 4 is slightly more general. It can be applied to any
class including GnMm or MnGm, which is not necessarily ex-
pressible as A⊗ B with A ∈ Rn×n and B ∈ Rm×m. The prop-

Figure 2. Swapping matrix classes can be done by corresponding permu-

tation of rows and columns

erty of outer class preservation can be postulated for any matrix
classes M1 of size n×n and M2,M3 of size m×m and for matri-
ces Pm,Qm providing ∀A ∈M2⇒ PT

m AQm ∈M3 :

∀A ∈M1M2 : (In⊗PT
m )A(In⊗Qm) ∈M1M3. (29)

This means that each inner block is transformed from class M2

to class M3, while the outer class M1, describing the interrelation
between blocks, remains the same. From (29) and (28) immedi-
ately follows the property of inner class preservation. For matrix
classes M1,M3 of size n×n and M2 of size m×m, and matrices
Pn,Qn satisfying ∀A ∈M1⇒ PT

n AQn ∈M3 :

∀A ∈M1M2 : (PT
n ⊗ Im)A(Qn⊗ Im) ∈M3M2. (30)
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1D case
Theorem 5. Matrix (16), meeting condition (17), satisfies

Π
T
s, n

s
FnÂF∗n Πs, n

s
∈ Dn/sGs.

Proof. The formula immediately follows from theorems 1 and 4.

Theorem 5 provides that the 1D SR problem of dimension
n×n can be reduced to n

s sub-problems of dimension s× s.

2D case
Theorem 6. Matrix (16), meeting condition (21), satisfies

(I n
s
⊗Π T

s, n
s
⊗Is)Π

T
ns, n

s
(Fn⊗Fn)Â(F∗n ⊗F∗n )Πns, n

s
(I n

s
⊗Πs, n

s
⊗Is)∈D n2

s2
Gs2 .

Proof. From theorem 2 follows ΛA = (Fn ⊗ Fn)Â(F∗n ⊗
F∗n ) ∈ GsDn/sGsDn/s. Theorem 4 provides Π T

ns, n
s
ΛAΠns, n

s
∈

Dn/sGsDn/sGs and

∀M ∈GsDn/s⇒Π
T
s, n

s
MΠs, n

s
∈ Dn/sGs. (31)

Equations (29), (30) and (31) yield ∀M ∈ Dn/sGsDn/sGs ⇒
(I n

s
⊗ Π T

s, n
s
⊗ Is)M(I n

s
⊗ Πs, n

s
⊗ Is) ∈ D n

s
D n

s
GsGs. Finally,

D n
s
D n

s
GsGs ⊂ D n2

s2
Gs2 .

Bayer case
Theorem 7. Matrix (23), meeting conditions (24) and (25), sat-
isfies

Π
T
3,n2

(
I3⊗

(
(I n

2s
⊗Π

T
2s, n

2s
⊗ I2s)Π

T
2ns, n

2s

))
(I3⊗Fn⊗Fn)Â·

· (I3⊗F∗n ⊗F∗n )
(

I3⊗
(

Π2ns, n
2s
(I n

2s
⊗Π2s, n

2s
⊗ I2s

))
Π3,n2

∈ D n2

4s2
G12s2 .

Proof. From theorem 3 follows (I3⊗Fn⊗Fn)Â(I3⊗F∗n ⊗F∗n ) ∈
G3G2sD n

2s
G2sD n

2s
. Theorem 6 and property (29) give

∀M ∈G3G2sD n
2s
G2sD n

2s
⇒(

I3⊗
(
(I n

2s
⊗Π T

2s, n
2s
⊗I2s)Π

T
2ns, n

2s

))
M
(

I3⊗
(

Π2ns, n
2s
(I n

2s
⊗Π2s, n

2s
⊗I2s

))
∈G3D n2

4s2
G4s2 .

(32)

After applying theorem 4 to (32) and taking into account
D n2

4s2
G4s2G3 ≡ D n2

4s2
G12s2 , the proof is completed.

Symmetries in the Bayer SR problem
Motivation

This section explains the reason to study the symmetries of
the SR problem. The closed-form solution of (2) can be written
as X = Â−1W ∗Y. In [6], the redundant structure of Ã = Â−1W ∗

was exploited, and elements of the pre-computed matrix were ex-
tracted in the form of filters (Fig. 3). It was assumed that the
accuracy of the motion estimation algorithm is quite limited, so
only c quantization levels of sub-pixel motion can be considered.
In the single-channel 2D SR problem with k input frames, c2(k−1)

sets with ks2 filters in each set are required (the first frame is al-
ways supposed to have zero motion). In the Bayer SR problem
(2c)2(k−1) sets with 3k(2s)2 filters in each set will be needed.
Even for the small values c = 4,k = 3,s = 4, filter bank tends
to occupy quite a lot of memory (2.3Gb for 16×16 filters stored
with double precision). To reduce this value, a scheme with filter
bank compression (Fig. 4) is applied, where only a limited num-
ber of filters is actually stored, and the rest are obtained by using
simple transforms of these stored values, derived from symmetry
properties. To obtain the desired symmetry properties, additional
restrictions will be imposed.

Figure 3. Representing Â−1W ∗ in filter form

Figure 4. Bayer pattern

Additional restrictions
Conditions on the Bayer SR problem (equations (23), (24),

and (25)) will be tightened and the following will be assumed:

Hr = Hg = Hb =
1
√

γ
Hc1 =

1
√

γ
Hc2 =

1
√

γ
Hc3 = H. (33)

This condition is quite reasonable, because it assumes, that dif-
ferent image channels behave the same way. Condition (33) leads
to

H̃∗H̃ =

 1+2γ −γ −γ

−γ 1+2γ −γ

−γ −γ 1+2γ

⊗ (H∗H).

J3 will denote a class of matrices sized 3×3 satisfying condition

∀B ∈ J3 =⇒ JBJT = B, where J =

 1 0 0
0 0 1
0 1 0

. Obviously

J∗J = I. (34)

Matrix H̃∗H̃, meeting (33), has a remarkable property

H̃∗H̃ ∈ J3CnCn. (35)

IS&T International Symposium on Electronic Imaging 2018
Computational Imaging XVI

272-5



Warping will be considered to be integer cyclic shift in a
high-resolution grid (which means c = s):

Mi = Pui,vi , i = 1, ...,k. (36)

Consider a permutation matrix of size n×n that flips input vector

Un =


0 . . . 0 1
0 . . . 1 0

0 . .
.

0 0
1 . . . 0 0

 ,
which satisfies

Un =U∗n =U−1
n (37)

and

UnPuUn = P−u. (38)

G and H are desired to satisfy the following conditions:

(Un⊗ In)G(Un⊗ In) = G,(Un⊗ In)H (Un⊗ In) = H, (39)

(In⊗Un)G(In⊗Un) = G,(In⊗Un)H (In⊗Un) = H, (40)

Π
T
n,nGΠn,n = G,Π T

n,nHΠn,n = H. (41)

In order to satisfy conditions (39), (40), and (41), G and H can
be taken as convolution operators with some symmetric filters H
and G, respectively. In the numeric experiments, G was chosen

as being the Gaussian filter, and H =

 −1/8 −1/8 −1/8

−1/8 1 −1/8

−1/8 −1/8 −1/8

 .
Symmetric properties

Matrix Â can be treated as a function of horizontal and verti-
cal shifts describing Mi’s: Â = Â(u1,v1,u2,v2, · · · ,uk,vk).

The theorem below explains how to express solution for R
values via solution for B values for the GBRG Bayer pattern.

Theorem 8. Consider the transform φ1(Â) =
(J⊗Ps,s)∗ Â(J⊗Ps,s). If conditions (36) and (35) are met
then Â from (23) satisfies

Â(u1,v1, · · · ,uk,vk) = φ1(Â(u1,v1, · · · ,uk,vk)).

Proof. From (27) and (34) follows D̃∗B∗BD̃ = φ1(D̃∗B∗BD̃),
while from (24) and (34) follows G̃ = φ1(G̃),M̃i = φ1(M̃i).
Equation (6) provides (J ⊗ Ps,s)(J ⊗ Ps,s)∗ = I, yielding
M̃∗i G̃∗D̃∗B∗BD̃G̃M̃i = φ1(M̃∗i G̃∗D̃∗B∗BD̃G̃M̃i). From (35) imme-
diately follows H̃∗H̃ = φ1(H̃∗H̃). If H̃∗H̃ ∈ J3CnCn then also
H̃∗H̃ = φ1(H̃∗H̃).

Obviously, matrix H̃∗H̃, satisfying (33), also meets condi-
tion (35) of the theorem.

Theorem 9. Consider the transform φ2(Â) =
(I3⊗Px,y)∗ Â(I3⊗Px,y) and two integer numbers x and y.
If condition (35) is met, then

Â(u1 +x,v1 +y, · · · ,uk +x,vk +y) = φ2(Â(u1,v1, · · · ,uk,vk)).

Proof. Denote M̃orig
i = M̃i(ui,vi) and

M̃shi f t
i = M̃i(ui + x,vi + y).

From (36) follows Px,yMi = MiPx,y. Consequently,
M̃orig

i (I3⊗Px,y) = M̃shi f t
i , providing

φ2((M̃
orig
i )∗G̃∗D̃∗B∗BD̃G̃M̃orig

i )= (M̃shi f t
i )∗G̃∗D̃∗B∗BD̃G̃M̃shi f t

i .

From (9) and (35), it also follows that H̃∗H̃ = φ2(H̃∗H̃).

Theorem 10. Consider the transform φ3(Â) =
(I3⊗Un⊗ In) Â(I3⊗Un⊗ In) . If condition (39) is met, then
changing the sign of a single ui for all input frames provides

Â(−u1−1,v1, · · · ,−uk−1,vk) = φ3(Â(u1,v1, · · · ,uk,vk)).

Proof. Denote

M̃urev
i = M̃i(−ui−1,vi).

From (36) and (38) follows

(I3⊗P−1,0)(I3⊗Un⊗ In)M̃orig
i (I3⊗Un⊗ In) = M̃urev

i .

Properties (38),(39), and (37) lead to

G̃M̃urev
i = (I3⊗P−1,0)(I3⊗Un⊗ In)G̃M̃orig

i (I3⊗Un⊗ In).

The rest of the proof will be based on the fact that
UnP1D∗s DsP−1Un = D∗s Ds, which makes it possible to rewrite

(I3⊗Un⊗ In)(I3⊗P1,0)D̃∗B∗BD̃(I3⊗P−1,0)(I3⊗Un⊗ In) =

= D̃∗B∗BD̃,

providing

(M̃urev
i )∗G̃∗D̃∗B∗BD̃G̃M̃urev

i = φ3((M̃
orig
i )∗G̃∗D̃∗B∗BD̃G̃M̃orig

i )

From (39) and (37) immediately follows H̃∗H̃ = φ3(H̃∗H̃).

This proof can be easily extended to

Theorem 11. Consider the transform φ4(Â) =
(I3⊗ In⊗Un) Â(I3⊗ In⊗Un) . From condition (40) follows

Â(u1,−v1−1, · · · ,uk,−vk−1) = φ4(Â(u1,v1, · · · ,uk,vk)).

Theorem 12. Consider the transform

φ5(Â) = (I3⊗Π
T
n,n)
∗Â(I3⊗Πn,n) .

If condition (41) is met, then

Â(v1 + s,u1 + s, · · · ,vk + s,uk + s) = φ5(Â(u1,v1, · · · ,uk,vk)).

Proof. Denote M̃swap
i = M̃i(vi + s,ui + s). From (28) immedi-

ately follows Pv,u = Π T
n,nPu,vΠn,n, so taking into account (36) ob-

tains (I3⊗Ps,s)∗(I3⊗Π T
n,n)
∗M̃orig

i (I3⊗Πn,n)(I3⊗Ps,s) = M̃swap
i .

Restriction (41) yields (I3⊗Π T
n,n)
∗G̃(I3⊗Πn,n) = G̃.

Notice that Π T
n,n = Πn,n,Πn,nΠn,n = In2 and D∗s,sDs,s =

Π T
n,nD∗s,sDs,sΠn,n. Substituting these formulae into (27) yields

(I3⊗Π
T
n,n)D̃

∗B∗BD̃(I3⊗Πn,n) = (I3⊗Ps,s)∗D̃∗B∗BD̃(I3⊗Ps,s)

which provides

φ5((M̃
orig
i )∗G̃∗D̃∗B∗BD̃G̃M̃orig

i )= (M̃swap
i )∗G̃∗D̃∗B∗BD̃G̃M̃swap

i .

Equation H̃∗H̃ = φ5(H̃∗H̃) immediately follows from (41).
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Theorem 13. If σ(i) is any permutation of indices i = 1, ...,k,
then

Â(u1,v1, · · · ,uk,vk) = Â(uσ(1),vσ(1), · · · ,uσ(k),vσ(k)).

Proof. It immediately follows from (23).

Theorem 14. Adding 2s to one of the ui’s or vi’s does not change
the problem:

Â(u1,v1, · · · ,uk,vk) = Â(u1,v1, · · · ,ui−1,vi−1,ui +2s,vi,ui+1,vi+1 · · · ,uk,vk),

Â(u1,v1, · · · ,uk,vk) = Â(u1,v1, · · · ,ui−1,vi−1,ui,vi +2s,ui+1,vi+1 · · · ,uk,vk).

Proof. From (27) and (P2s)∗D∗2sD2sP2s = D∗2sD2s two properties
can be derived:

D̃∗B∗BD̃ = (I3⊗P0,2s)∗D̃∗B∗BD̃(I3⊗P0,2s)

D̃∗B∗BD̃ = (I3⊗P2s,0)∗D̃∗B∗BD̃(I3⊗P2s,0)

Provided Mi(ui + 2s,vi) = (P2s,0)Mi(ui,vi),Mi(ui,vi + 2s) =
(P0,2s)Mi(ui,vi) the theorem is proven.

For some motions u1,v1, · · · ,uk,vk, certain non-trivial com-
positions of transforms φ1, ...,φ5 keep the system invariant:

Â = (φi1 ·φi2 · · · · ·φim)(Â),

which makes it possible to express some rows of Â by using ele-
ments from other rows. This is an additional resource for filter
bank compression. The present authors have conducted a nu-
meric experiment applying theorems 8 through 14 to compress
filter banks. Compression ratios for filter size 16× 16 and k = 3
input frames are summarized in Table 1.

Filter bank compression using symmetries
Problem Original size Compressed

size
Compression
factor

2D, s=2 16x[3x2x2x16x16] 26x16x16 7.38

2D, s=4 256x[3x4x4x16x16] 300x16x16 40.96

Bayer, s=2 256x[3x3x4x4x16x16] 450x16x16 81.92

Bayer, s=4 4096x[3x3x8x8x16x16] 25752x16x16 91.62

Conclusion
This paper has formulated a L2−L2 joint demosaicing and

super-resolution problem for reconstruction from multiple Bayer
images and proposed a direct method to obtain a block diagonal
form of the problem matrix. Closed-form transforms were pro-
vided. It is hoped that the presented proofs are clearer and easier
to understand than the proofs provided in [2], [3], and [4].

Table 2 shows the computational complexity of finding the
matrix inverse (marked ”MI”) for 1D, 2D and Bayer SR prob-
lems. Block diagonalization made it possible to reduce the com-
plexity of 2D and Bayer SR problems from O(n6) to O(n2s4)+
O(n2 logn), where n2 logn corresponds to the complexity of the
block diagonalization process itself. Typically, n is much larger
than s (as n = 16, ...,32,s = 2, ...,4) which provides significant
economy.

This paper also studied the symmetries intrinsic to the Bayer
SR problem. Theoretic analysis of these properties was con-
ducted, and results of numeric simulations applied to filter bank

Complexity

Problem Matrix
size

Blocks Block
size

MI,
original

MI,
reduced

1D n×n n/s s× s n3 ns2

2D n2×n2 (n/s)2 s2× s2 n6 n2s4

Bayer 3n2×3n2 (n/(2s))2
12s2×12s2 n6 n2s4

compression were provided. In the case of k = 3,s = 4, an ×80
reduction of the filter bank has been obtained.

All the proofs are based on the apparatus of multilevel ma-
trices and can easily be extended to deblurring, multi-frame de-
blurring, demosaicing, multi-frame demosaicing or de-interlacing
problems.
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