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Abstract
Lighting is one of the largest power consumers in the United

States and around the globe. To better understand how much
energy lighting uses in a building, a lighting audit can be per-
formed. Typically, this is a long and manual process, current so-
lutions require significant effort on the part of the auditor. This
paper develops a system using commercially available hardware
and custom algorithms that enable a single human operator to
quickly cover a large area while estimating light positions, type,
and surface area. These tasks are accomplished with an error
rate of 6.9% and 13.9%, respectively, with surface area estima-
tion within about a factor of two.

Introduction
Building lighting is one of the largest consumers of electric-

ity around the globe. In California, over twenty five percent of
commercial energy consumption is used just for illumination [1].
To pave the way for a greener future, a building’s energy usage
and therefore lighting usage, must first be understood. Currently,
a lighting audit is performed by an auditor who surveys an area
and manually classifies, counts, and marks the lights on the build-
ing’s floor plan [2]. This is a long and error-prone process which
can take over a day to complete for a large building [3]. To cir-
cumvent this, some auditors install energy monitoring devices to
monitor power consumption when the lights are on or off. This
installation procedure requires invasive changes to the building’s
electrical system.

Prior research in automated object detection for energy au-
diting includes window [4] and computer [5] detection. In these,
a human carried and operated backpack system [6] with multi-
ple LiDAR sensors and cameras is used to generate localized 3D
points clouds. The objects are then detected within the scenes us-
ing infrared and visible light images, surface normal maps, and
depth information.

Unmanned aerial vehicles, UAVs, have been experimented
with for the light auditing task. Bay and Terrill et. al. affix a cam-
era, spectrometer, and distance sensor to autonomously detect and
classify lights within a building [7, 8]. Light sizes are estimated
by using the distance to the floor in an area with a known fixed
height ceiling. Using their approach, global position of lights
cannot be estimated. This paper utilizes similar methods for raw
image processing and light spectra classification.

While an autonomous audit system is exciting, there are sig-
nificant advantages to a portable human carried system. UAVs are
limited by load carrying capacity, this limits camera quality and
system battery life. A human carried system is less constrained by
weight, meaning larger capacity batteries can be used for longer
collection times and a higher quality, heavier camera can be used
to aid in detection. The human operated device can ensure that

Figure 1. Data collection platform

the entire region is covered, even portions which would be im-
passable or difficult for a flying craft such as doorways, narrow
passageways, and locations with variable height ceilings.

Since light sources are inherently the brightest objects in a
scene, classical thresholding techniques for visible light imagery
can be successfully used for detection. This eliminates the need
for surface normal maps and points clouds meaning that expen-
sive LiDAR systems need not be used. Instead, lower cost and
readily available commercial hardware can be used to accomplish
this task. A single camera, spectrometer, and localization device
(Google Project Tango tablet) are combined into a portable unit to
be carried by an ambulatory human operator. By using the Tango
tablet with it’s precise localization abilities, an existing floor plan
is not needed to locate the lights in a building.

Hardware Platform
To enable simple human operation of this system, all of the

hardware components needed to be mounted together in an easy to
carry fashion. Figure 1 shows how all components are assembled.
For localization, a Google Project Tango Tablet was used. The
camera, a Canon EOS 5D Mark III, was chosen for its ability to
capture images at a high frame rate, six frames per second, until
the memory card is full. In our experiments a 128GB card was
used which gives approximately six hours of images. The lens, at
its widest setting of 16mm, provides a 96.7-degree horizontal field
of view and a 73.7-degree vertical field of view which is sufficient
for this application. As shown in Figure 1 the camera and lens
are pointed upwards to face the ceiling. The Ocean Optics Spark-
VIS spectrometer was used with a diffuser to capture the emission
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Figure 2. High level overview of the system.

spectra of lights. This sensor has a narrow field of view and can
only accurately capture the spectrum when directly underneath a
light. A custom controller circuit was build to interface the Tango
tablet with the camera’s shutter release over USB. All of these
devices were attached together rigidly on a wooden board so that
the locations of the components relative to each other was known.

Methods
An overview of the data collection and processing steps is

shown in Figure 2.

Data Collection
Data is collected in two phases. The first phase generates

an Area Description File, ADF, using Google’s Explorer appli-
cation. This file contains a representation of visual landmarks
within a given area. These landmarks are stored so that during
data collection the Tango can more accurately localize itself. A
custom Android application was written to then load ADF and
connect the Tango to the spectrometer and camera for collect-
ing data. When the user initiates the data collection process in
the application, the camera begins capturing images at 6 Hz, the
spectrometer records data at approximately 15 Hz, and the Tango
records position and orientation data at 100 Hz. The camera is
preset to capture images at a 1/4000 second shutter speed at f/22
aperture and ISO 3200 sensitivity. These settings were found to
eliminate any motion blur and focus issues while having no sig-
nificant noise in the images. All data measurements are recorded
and timestamped according to the Tango’s system clock. The ex-
ception is images captures on the camera. Here, the initial trigger
time is recorded on the Tango and each image has a timestamp
with respect to the camera’s clock. These are synchronized in the
pre-processing stage.

Data Processing
Pre-processing

After all of the data is collected, the raw data data files are
copied to a computer for processing. Here, the measurements
from the spectrometer and Tango are converted into CSV format
and the images are resized to 1500× 1000 pixel JPGs to speed
up the remainder of the processing steps. Using the timestamped

(a) Input light image

(b) Annotated light mask from blob analyzer

Figure 3. Light detection example. (a) Fluorescent tubes from the dataset

(b) Light mask annotated with the centroid (blue x), end points of major axes

(green dots), and minor axes (red squares) of each light

spectrometer and position data, each recorded emission spectra is
tagged with its location in the real world. Similarly, each image
is tagged with its location. However, since the image timestamps
are based off of a different clock, they must first be aligned tem-
porally. To do this, the timestamp when the camera was first trig-
gered by the Tango added with a 61 millisecond shutter lag in the
5D Mark III camera is subtracted from the first image’s times-
tamp. This time offset is then applied to each image to align them
with the Tango’s clock. Then, by finding the position measure-
ment closest in time to the new timestamp, the image is tagged
with position and orientation from the Tango measurements.

Light Detection
Since the images were captured with a low exposure value,

the lights can be detected by thresholding the images. However,
due to variations in fixtures, the bulbs can be partially obstructed
or have bright reflections. To account for these and fill small gaps
across the face of a bulb, the following morphological operations
are applied:

1. Opening with a 3×3 pixel rectangle
2. Closing with a 20×20 pixel rectangle
3. Filling of holes
4. Dilation with a 30×30 pixel rectangle
5. Erosion with a 30×30 pixel rectangle

The resulting binary image represents a mask of where the lights
are (white pixel) and aren’t (black pixel). This mask is then in-
putted into Matlab’s blob analyzer function which computes con-
nected regions and returns the centroid, orientation angle, lengths
of major and minor axes for each region. Each region is treated
individually as a separate light. An example of the masking and
blob detection is shown in Figure 3. If any part of the region
touches the edge of the image, the detection is ignored and not
used in tracking. This ensures that the entire light is contained in
the frame for each image used.
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Figure 4. Light tracking example showing detected lights and their tracks,

sequence shortened from original 15 frames.

Light Tracking
Since the images are captured at six frames per second, each

light will appear in multiple frames. An example of the light
tracking process is shown in Figure 4. In order to avoid over
counting the lights, each is tracked between frames using the ap-
proach in [9]. Starting with the coordinate of the light centroid in
pixel space, a Kalman filter based on a constant velocity model
is used to predict the location of the light in a subsequent frame.
Then, between the frames, the Munkres variant of the Hungarian
assignment algorithm [10] is used to match the Kalman predicted
centroids to detected centroids in the subsequent image in O(n3)
time. The assignment algorithm runs on an n×n matrix of costs,
in this case between the predicted lights from the Kalman filter
and the newly detected lights. The cost is the pixel distance be-
tween the predicted and detected centroid. However, when a new
light is detected or an old light goes out of frame, the number
of detections can be mismatched. To account for this, additional
rows or columns are added with a high cost, 1000 pixels. If a light
is not currently being tracked or at any point leaves the frame, it
is considered a new light. This is dealt with in the de-duplication
section.

Light Localizing and Measurement
A key element of this project was determining the location

of the lights in a building. In order to provide the location of the
lights with respect to the real world, rather than pixels, pairs of
images and their orientation and position information are used.
Since accurate orientation and position information are collected
on the Tango tablet, the change in position and orientation and can
be treated as a stereo baseline for the two images. Using Matlab’s
triangulate function with the pair of corresponding light centroids,
the coordinates of the light with respect to the first image’s loca-
tion are computed. By adding in the position of the first image,
the real world position of the light is found. This same calcula-
tion is run over all pairs of images that contain the same light. For
each light, the median centroid is found.

Using this same technique, but on the end points of the ma-
jor and minor axes of each light the real world length and width of
each light can be approximated. For a given detection with cen-
troid c = (cx,cy), orientation θ , major axis length M and minor
axis length m, the four end points are:(
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The distances calculated along each axis can then be used to esti-
mate the surface area of the lights.

De-duplication of Lights
While traveling through a building, the same light may by

encountered in nonsuccessive frames. Heuristics are used to re-
move these duplicates. First, if two detections are within one me-
ter of each other they can either be two bulbs in the same fix-
ture or duplicates. When bulbs are in the same fixture, they will
appear together in subsequent frames together. Once the dupli-
cates are identified, they are treated as additional tracked frames
of the original light to aid the classification and measurement pro-
cedures. Next, a second heuristic removed false detections which
do not correspond to any light. This uses the fact that an operator
must be directly underneath a light for it to be properly identified
by the spectrometer. Therefore, if there is no image with the de-
tected light within 200 pixels of the image center, the detection is
discarded.

Light Classification
The final step is to classify the spectra of the detected

lights based on their light source: LED, fluorescent, or incan-
descent/halogen. The spectrometer outputs a 1024× 1 vector of
intensity values for wavelengths across the visible spectrum. To
account for slight variations in samples, every four elements of
the vector are averaged together resulting in a 256 × 1 feature
vector. This is then fed into a single layer feed-forward neural
network with 50 neurons which was trained on over 7,000 spec-
tra from commercially available light bulbs of varying wattages,
styles, color temperatures, and chemistries. The closest five spec-
tra in world-space to the detected light centroid were run through
this classifier for each light detection. The light is assigned the
label of the most frequent class from those five.

Results
To evaluate this system, four datasets were collected on the

campus of the University of California, Berkeley. The paths col-
lected totaled 937 meters and contained 319 lights. Of those, 2
were incandescent bulbs, 32 were LED bulbs, and 285 were flu-
orescent lights. Figure 5a shows manually collected ground truth
data for one dataset similar to what an auditor would create. Fig-
ure 5b shows the collection path as well as the detected lights.

For light detection, the positions of the algorithmically de-
tected lights were visually compared against the ground truth
and a correspondence between them denotes a correct detection.
Twelve lights were missed in the data set and there were ten false
positive detections. This means that 297 light were correctly de-
tected. For light classification the number of correctly classi-
fied spectra is compared against the spectra for the 317 collected
lights. Finally, measurement results compare the actual surface
area of the lights to the estimated, in square meters. The results
are summarized in Table 1.

In total, light detection had a 6.9% error rate and classifica-
tion a 13.9% error rate. Light measurement estimation was the
most erroneous at 105% error. In one of the regions traversed,
there was a maze of cubicles. In order to collect the data, the de-
vice was extended at arm’s length, an unstable pose, to maneuver
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(a) Manually annotated ground truth

(b) Algorithmically detected lights and collection path

Figure 5. One of the datasets collected containing 106 fluorescent lights

(blue circles and numbers) and 3 LED (green stars) lights with a 300 meter

long path. Incandescent light detections are marked as red triangles in (b).

around desks and filing cabinets. This led to increased noise in the
position and orientation measurements which are crucial to light
measurement. Since the images and the Tango are only synchro-
nized within 10 milliseconds, the position and orientation at the
instant the picture was taken could be significantly different than
those assigned to the image, further exasperating the problem.

Further work on this topic would involve a more stable
and easier to maneuver platform for collecting data, such as a
steadicam. While this project provides estimates of total lighting
surface area and type of bulb which could be used to determine
actual power consumption, additional sensors such as an infrared
camera, could be added to measure actual energy consumption
and provide more accurate detections and classifications.

Table 1. Summary of Results

Experiment Ground Truth Calculated Error
Detection 319 lights 297 lights 6.9%

Classification 317 spectra 273 correct 13.9%
Measurement 11.06 m2 22.27 m2 105%
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