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Abstract
We propose a square aperture as a simple and practical al-

ternative to existing coded aperture. A spatial derivative converts
sensor measurements taken with a square aperture mask into mea-
surements taken with a pinhole or slit aperture mask. Thus square
aperture shares the properties of both large and small apertures,
yielding excellent light efficiency while an artificial small aperture
results in an infinite depth of field. We developed a prototype lens
to confirm the feasibility of our blur size estimation and image
deblurring approach.

Introduction
Coded aperture refers to the technique of modifying the de-

focus blur kernel by replacing the standard near-circular aperture
with an aperture mask [1, 2]. When the blur kernel and im-
age features are dissimilar (e.g. pseudo-random blur kernel), it
becomes possible to disambiguate them in post-capture process-
ing. Naturally, this improves image deblurring and depth-from-
defocus [3–5], since the recovery of in-focus image and blur ker-
nel is made easier.

In this paper, we propose square aperture as an alternative
to previously proposed aperture masks. Square aperture is desir-
able for computational photography framework because it shares
the properties of both large and small apertures. The aperture
by itself may be a large (with shallow depth of field and ample
light). As illustrated in Figs. 1 and 2, however, a derivative opera-
tor in (4) below converts sensor measurements taken with a square
aperture mask into measurements taken with a slit or pinhole aper-
ture mask. This “sparsified” blur kernel is essentially an artificial
small aperture resulting in an infinite depth of field (i.e. limited
only by diffraction), making it easy to recover the sharp image
from the captured blurry image. One may also understand Figure
2(b-c) as “superimposed slit cameras” and “superimposed pinhole
cameras” where the two or four images are captured at different
positions of the camera aperture, respectively. We also gain the
ability to infer defocus blur size by measuring the displacements
of the four sharp pinhole images or the two slit sharp images—
precisely in the way that phase detection autofocus sensors in
DSLR cameras work, but on a pixel-to-pixel basis—and recover
the scene depth from the reconstructed defocus blur size indirectly
via depth-from-defocus.

In this sense, square aperture can be interpreted as an aper-
ture mask hyper-optimized for gradient image modeling. As such,
we emphasize that the contribution of this work is an aperture
mask designed that takes maximal advantages of a mature area
of computer vision and computational photography. That is, the
algorithm for how we recover blur size and sharp image from gra-

dient images may be fairly standard in and of themselves. How-
ever, it is the direct correspondence of gradient images to multi-
ple pinhole/slit cameras (along with its desirable characteristics
described above) that makes the square geometry a particularly
appropriate choice for derivative-processing-enabled coded aper-
ture. In particular, the proposed sparsifiable aperture provides
a contrary perspective to coded aperture work that has thus far
been dominated by blur shapes that do not have sparse represen-
tations [2, 6, 7]. (See Section .)

Square aperture is also pragmatic—with only a minor change
to a standard commercial camera design, it is possible to design
a “dual purpose” camera system capable of imaging with both
circular and square apertures. With the potential of enabling fast
autofocus enjoyed by phase detection (i.e. without extra mirror,
autofocus sensor, and the bulk associated with them), recovering
scene depth, and a simple image deblurring scheme without inter-
rupting the existing regiments of camera design, square aperture
has better chances of being incorporated into everyday cameras
than the alternatives.

Related Work
The light combined at the detector take the shape of the

scaled versions of the aperture mask—one can interpret this as
a defocus blur whose point spread function (blur kernel) is of
known shape but of unknown size (plus diffraction that is assumed
to be negligent). The existing coded aperture designs are aimed
at discriminating the blur kernel size for depth recovery [2, 8],
reducing the negative effects of “zeros” in the Fourier domain
for deblurring [2, 9], and capitalizing on the compressed sens-
ing principles [6, 10]. Many of the previously proposed aperture
masks tended to resemble pseudo random sampling—whether by
design [6,10] or by a brute force optimization that converged to a
non-sparse shape [2,7]. The fact that the pseudo random blur ker-
nel are dissimilar to image signals (a notion commonly referred
to as “incoherence”) has been attributed to the reason why they
can be disambiguated in post-capture processing [6]. With de-
tected coded defocus blur kernel size inferring the scene depth
and the sharp image recovery effectively extending the depth of
field of the camera, research in coded aperture legitimatized the
idea that blur can be seen as a cue for scene understanding rather
than degradation.

Coded apertures are not without their limitations, how-
ever. Three major shortcomings that have been met with limited
success are light efficiency, deblurring quality, and practicality.
Specifically, the light efficiency of coded aperture lens systems
is poor because less light is allowed to pass through the optics.
One exception to this is the recently introduced color coded aper-
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(a) square aperture mask (b) slit or pinhole aperture mask
Figure 1. The mathematical relationship in (4) converts sensor measurements taken with a square aperture mask in (a) into measurements taken with a slit or

pinhole aperture mask in (b). Green arrow in (a) corresponds to an “square of confusion” for a single large square aperture. The image at the detector is therefore

blurry. With the pinhole aperture mask in (b), the detector sees a few copies of the latent sharp images that are superimposed. The relative displacement of

images/edges—indicated by the magenta arrow in (b)—is also determined by the scene depth. Clearly, it is far easier to infer the scene depth and to recover the

latent sharp image from the system in (b).

(a) square aperture mask (b) slit aperture mask (c) pinhole aperture mask
Figure 2. Two dimensional representation of square, slit, and pinhole aperture masks in Figure 1.

ture by Chakrabarti et al. [8], which overcomes this problem by
allowing the diameter of the radial aperture be smaller in green
channel than the red and blue diameters. Second, the claims of ex-
tended depth of field is limited by the deblurring quality. Though
the recovered sharp image is certainly an improvement over the
captured blurry image, deblurring cannot resolve the fine image
details to the extent that a small aperture camera does. An ex-
ception here is the tri-lens mask (aperture mask + lens) proposed
in [9], which has a long depth of field thanks to the pinhole-like
aperture mask, but at the severe sacrifice of light efficiency and
the additional complexity of three small lenses covering the three
pinholes. Third, consumer imaging industry has also been slow to
embrace significant changes to acquisition hardware (especially
randomized ones). Coded aperture designs are often incompatible
with existing camera designs—in the sense that a mask must be
inserted mechanically in the optical pathway, effectively replac-
ing the near-circular aperture commonly used in today’s cameras.
Since circular blurs (a.k.a. bokeh) are regarded as aesthetically de-
sirable by photographers, coded apertures require disruptive hard-
ware modifications that few manufacturers would be willing to
incorporate. Contrast this to the proposed square aperture, which
boasts favorable light efficiency, a mathematical correspondence
to a slit/pinhole camera, and implementation with minimally dis-
ruptive hardware modification to standard optics.

Square Aperture Camera System Design
Proposed Aperture Design

We first describe a camera with a large square aperture. As
illustrated by raytracing in Figure 1(a), image formed at the detec-
tor is blurred when the light originating from the same point in the
scene does not converge. The severity of the blur is determined by
the “square of confusion”—the extent that light passing through
the aperture opening is allowed to deviate from the chief ray (blue
ray in Figure 1(a)) at the detector, determined by the light rays
passing the aperture boundaries (red rays in Figure 1(a)). Assum-
ing Gaussian optics, the size of the square of confusion s and the

distance to the object z have the relation:

s = a|z0( f−1− z−1)−1|, (1)

where z0 is the distance from the lens to the detector, f is the focal
length, and a is the aperture opening size.

Let I(x,y) denote the latent sharp image formed only by the
chief ray of the square aperture. Supposing for the moment that a
scene is comprised of Lambertian fronto-parallel objects, the light
combined at the detector J(x,y) is a convolution of I(x,y) and the
blur kernel H(x,y)(x,y):

J(x,y) =
∫
R

∫
R

I(ε ,τ)H(ε ,τ)(x− ε ,y− τ)dεdτ . (2)

The square aperture takes the form

H(x,y)(ε ,τ) =

{
1

s(x,y)2 if |ε|< s(x,y)
2 and |τ|< s(x,y)

2

0 else,

where s(x,y) is the blur size for location (x,y) (constant for a
fronto-parallel object). This simplifies (2) as

J(x,y) =
∫ y+ s

2

y− s
2

∫ x+ s
2

x− s
2

I(ε ,τ)
s2 dεdτ , (3)

where we omitted (x,y) from s(x,y) for simplicity. The blurring
in (3) is illustrated in Figure 2(a). We emphasize that noise is an
uncertainty attributed to making sensor measurements on J(x,y).
The topic of noise modeling (Section ) and handling (Section ) are
left to later sections.
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Relationship To Slit/Pinhole Aperture Masks
Consider now the derivative images of J(x,y). By the funda-

mental theorem of calculus, we have

Jx(x,y) =
∂

∂x
J(x,y) =

K(x+ s
2 ,y)−K(x− s

2 ,y)
s

Jy(x,y) =
∂

∂y
J(x,y) =

L(x,y+ s
2 )−L(x,y− s

2 )

s

Jxy(x,y) :=
∂ 2

∂x∂y
J(x,y) (4)

=
I
(
x+ s

2 ,y+ s
2
)

s2 −
I
(
x+ s

2 ,y− s
2
)

s2

−
I
(
x− s

2 ,y+ s
2
)

s2 +
I
(
x− s

2 ,y− s
2
)

s2 ,

where K(x,y) and L(x,y) are vertically and horizontally blurred
images of I(x,y), respectively:

K(x,y)=
∫ y+ s

2

y− s
2

I(x,τ)
s

dτ , L(x,y)=
∫ x+ s

2

x− s
2

I(ε ,y)
s

dε . (5)

The key is to interpret Jx(x,y) and Jy(x,y) as an aperture mask
with two slits, and Jxy(x,y) as a mask with four pinholes as illus-
trated in Figures 1(b-c) and 2(b-c). One difference between (4)
and the standard slit/pinhole masks is that the sign is negative for
some terms in the derivative images.

Detector Measurement And Noise Model
Recalling that detector has a finite pixel dimension, let

J[m,n] = J(m∆,n∆)+N[m,n] (6)

be the discretized sensor measurements on the continuous image
J(x,y), where ∆ is the detector pitch and N[m,n] is the measure-
ment noise. In the pixel domain, the derivative operators required
to convert the square aperture mask into pinhole aperture mask
must be approximated. We regard the discrete derivative images
Jx[m,n], Jy[m,n], and Jxy[m,n] as a result of the convolution (de-
noted by ?)

Jo[m,n] = J[m,n]?Go[m,n], o ∈ {x,y,xy} (7)

where Go[m,n] is the discrete Gaussian derivative filter:

Gx[m,n] = Gy[n,m] =
−m

∆σ2
√

2πσ2
e
−m2−n2

2σ2

Gxy[m,n] =Gx[m,n]?Gy[m,n],
(8)

with scale parameter σ2. Examples of numerically computed gra-
dient images are shown in Figure 4.

Circular-Square Aperture Prototyping
A square aperture is a minimally disruptive hardware modifi-

cation to the standard camera optics. Specifically, square aperture
can be incorporated into a camera without “replacing” the cir-
cular aperture—meaning a “dual purpose” (i.e. circular-square)
aperture can be designed with only a minor change to the stan-
dard hardware. As shown by Figure 3(a), variable size aperture
mechanism has a diaphragm (or a collection of “blades” arranged
in a circular pattern) that controls the diameter of an approxi-
mately circular lens opening. Figure 3(b) shows how a square

aperture can be formed by strategically rearranging a subset of the
diaphragm blades (design #1). Alternatively, Figure 3(c) shows a
lens system with circular aperture diaphragm blades housed inside
a square aperture—diaphragm can open maximally to make way
for the square aperture (design #2).1 Pragmatic approach to im-
plementation such as these gives square aperture a better chance
of being incorporated into commercial products than the alterna-
tives.

We developed a prototype for square aperture mask design
#2 by modifying Nikkor 50mm f/1.8D lens. As shown in Figure
3(d), the 14mm×14mm aperture mask was cut out of a paper and
inserted next to the existing aperture diaphragm within the lens
housing. One can verify that the prototype is behaving accord-
ing to our specification by imaging an approximate point source
(e.g. Figure 3(e)).

Aperture Mask Comparisons
How appropriate are the choices of aperture masks for

derivative-based processing? The relative advantage of square
aperture is evident in Figure 4. While other aperture masks yield
complex gradient images, where the details of the image are dif-
ficult to see, the gradient image of square aperture-blurred im-
age clearly show superimposed sharp images. Drawing on the
analysis in [11], gradient image of a blurred image is a sharp im-
age blurred by “gradient blur.” By this account, the complex of
the gradient image is directly commensurate to the complexity
of the “gradient blur kernel,” also shown in Figure 4. Clearly,
the square aperture enjoys the sparest gradient blur, while the al-
ternative aperture shapes and masks do not yield straightforward
interpretation. Hence the square geometry is highly desirable for
derivative-enabled coded aperture.

Blur Size Estimation And Deblurring
Noise Robust Blur Size Estimation

The key to recovering depth of an object is to determine the
square of confusion size s from the pinhole or slit aperture images,
obtained indirectly from the gradient images Jx[m,n], Jy[m,n],
and/or Jxy[m,n] in (4). Figure 5 shows a real-camera example
of the square aperture image J[m,n] and the corresponding gra-
dient images. The degree of blur is difficult to assess directly
from J[m,n] since blur significantly degrades image features. As
is expected from analysis in (4), however, the gradient operators
restore the sharp transitions of the original image I[m,n].

For the task of recovering s, we draw on the phase detection
autofocus principles—a proven strategy for recovering blur size in
DSLR cameras today. As illustrated in Figure 6, light rays pass-
ing at the top and the bottom of the lens are captured by autofocus
sensors 2 and 1, respectively. When out-of-focus, captured sen-
sor images are shifted (a.k.a. disparity in stereo matching) by an
amount proportional to the blur size. Hence the task of recovering
s simplifies to the problem of correlating the displaced edges.

We implemented a simple scheme to enable phase detection
in square aperture images. Recalling (4), Jx[m,n] corresponds to
two slit aperture images K[m± s

2 ,n] displaced in the horizontal
direction by s. Since slit aperture camera has an long depth of
field in the direction orthogonal to the slit direction, vertical edges
in K[m,n] is preserved (see Figure 5(c)). To identify the horizontal

1Note that aperture mask of [8] is also compatible with design #2.
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(a) circular aperture (b) square design #1 (c) square design #2 (d) prototype (e) impulse response
Figure 3. A minor modification to variable size aperture mechanism in a standard camera optics can form a square aperture. (a) Traditional circular aperture

using a diaphragm. (b) Square aperture formed by strategically rearranging a subset of the diaphragm blades. (c) Square aperture revealed when circular

aperture diaphragm is fully opened. (d) Prototype for design #2. (e) Sensor response to a laser pointer dot pointed on a wall verifies that the blur kernel is indeed

square.

(a) sharp image (b) circular blur (c) square blur (d) aperture mask in [2] (e) aperture mask in [7]

(f) gradient of (a) (g) gradient of (b) (h) gradient of (c) (i) gradient of of (d) (j) gradient of (e)
Figure 4. How appropriate is the aperture mask for gradient-based image deblurring? Sharp image in (a) is blurred by (b) conventional circular blur, (c)

proposed square blur, (d) aperture mask in [2], and (e) aperture mask in [7]. (f-j) gradient image of (a-e) are shown with gradient aperture. It is clearly that

sparser the gradient aperture, the better image features are represented in the gradient blurred image.

(a) I[m,n] (b) J[m,n] (c) Jx[m,n] (d) Jy[m,n] (e) Jxy[m,n]
Figure 5. Example image captured by prototype camera. (a) Sharp image I[m,n] taken in focus. (b) Blurred image J[m,n] taken by prototype camera with

square aperture mask. (c) Horizontal gradient image ∂

∂x J[m,n] = Jx[m,n]. (d) Vertical gradient image ∂

∂y J[m,n] = Jy[m,n]. (e) Horizontal-vertical gradient image
∂2

∂x∂y J[m,n] = Jxy[m,n]. It is clear that gradient operator restores the sharp transitions of the original image I[m,n].

471-4
IS&T International Symposium on Electronic Imaging 2018

Computational Imaging XVI



disparity of vertical edges of K[m,n] in Jx[m,n], we first apply a
vertical derivative/edge filter (such as Gx[m,n] in (8)) on Jx[m,n]
to eliminate non-vertical features:

Jxx[m,n] :=Jx[m,n]?Gx[m,n] (9)

=
Kx[m− s

2 ,n]−Kx[m+ s
2 ,n]

s
+Nxx[m,n],

where Kx := d
dx K = K ?Gx and Nxx := d2

dx
2 N = N ?Gx ?Gx. We

then compute the mean absolute sum (MAS):2

Φ[i,m,n] = E
∣∣∣Jxx[m,n]+ Jxx[m+ i,n]

∣∣∣
=
∣∣∣Kx[m− s

2 ,n]−Kx[m+ s
2 ,n]+Kx[m+i− s

2 ,n]−Kx[m+i+ s
2 ,n]

s

+Nxx[m,n]+Nxx[m+ i,n]
∣∣∣. (10)

Clearly, MAS attains minimum at i =±s[m,n]: ∀i ∈ Z,

Φ[i,m,n]≥Φ[±s,m,n] = (11)

E
∣∣Kx[m± 3s

2 ,n]−Kx[m∓ s
2 ,n]

s +Nxx[m,n]+Nxx[m± s,n]
∣∣

because some Kx terms cancel. Hence we estimate the size of
square of confusion s by

ŝx[m,n] = argmin
i

Φ[i,m,n]. (12)

Similarly, estimation for the vertical gradient takes the form

ŝy[m,n] = argmin
i

Ψ[i,m,n], (13)

where Ψ is MAS for Jyy. The combined estimate is:

ŝΦ[m,n] = (14){
min(ŝx[m,n], ŝy[m,n]) if |ŝx[m,n]− ŝy[m,n]|< τ

0 else,

where τ is a predefined threshold. As a post processing, we
smooth the blur estimates by the graph cut method of [12] to regu-
larizes the initial estimation of square confusion size ŝΦ. We seek
this regularized estimation ŝ by minimizing an energy function,
similar to the one proposed in [12], [8], [2]:

ŝ =argmin
s ∑

[m,n]∈Z2

D1(ŝ[m,n], ŝΦ[m,n]) (15)

+ γ ∑
[m,n]∈Z2,[i, j]∈{±1}2

D2(ŝ[m,n], ŝ[m+ i,n+ j])

Where the γ is a weighting factor, and D1 and D2 are:

D1(ŝ[m,n], ŝΦ[m,n]) = |ŝ[m,n]− ŝΦ[m,n]|
D2(ŝ[m,n], ŝ[m

′,n′]) = (16){
exp(−(J[m,n]−J[m′,n′])2

σ 2 ) if J[m,n] 6= J[m′,n′]
0 else,

2Analogous to the mean absolute difference used in video compres-
sion.

Figure 6. Schematic for phase detection autofocus. Disparity between the

images captured by AF sensors 1 and 2 (corresponding to light rays passing

at the top and the bottom of the lens) is proportional to the blur size.

We solve this minimize problem by using the centers of clusters
of initial estimation ŝΦ as candidates for ŝ.

The proposed blur estimation enjoys robustness to noise for
a number of reasons. Besides the fact that large square aperture
allow more light than most coded aperture alternatives, Jxx and
Jyy are essentially Gaussian second derivatives—we found that
standard deviation of Gaussian function in (8) can be increased to
nearly eliminate Nxx and Nyy without significant sacrifices to the
quality of blur size estimation. Furthermore, the expectation in
MAS defined in (10) is implemented as a spatial averaging, which
further reduce the influence of noise. As a side note, the use of
higher order derivative images (Jxx and Jyy) is a unique aspect of
the square aperture processing.

Noise Robust Deblurring
We describe a method to recover the sharp image I from

the small aperture camera in (4). At a high level, square blur
H(x,y)(x,y) is conceptually equivalent to a combination of hori-
zontal blur and a vertical blur. Hence our strategy is to deblur in
horizontal and vertical directions separately: we follow example
of the double discrete wavelet transform (DDWT) of [11] which
seamlessly combines any type of wavelet-based denoising algo-
rithms with deblurring of 1D horizontal/vertical blurs. Combining
(4) with 1D (horizontal) wavelet transform, we have: Jx`

x [m,n] =

Kx`[m+ s
2 ,n]−Kx`[m− s

2 ,n]
s

+Nx`
x [m,n], (17)

where superscript x` denotes `th subband horizontal (x) wavelet.
Then the horizontal direction wavelet coefficients Kx` is recovered
by:3

K̂x`[m,n] = ŝ · absmin{Jx`
x [m− ŝ

2 ,n],−ŝJx`
x [m+ ŝ

2 ,n]}, (18)

where absmin{·, ·} assigns output to whichever is smaller:

absmin{a,b}=

{
a if ‖a‖< ‖b‖
b otherwise.

(19)

Inverse horizontal wavelet transform of K̂x` yields the image K̂,
an estimate of vertically blurred image K in (5):

K̂[m,n] = K(m∆,n∆)+ N̂[m,n], (20)

where N̂ is now a combination of measurement noise and residual
error from estimation. Suppose we take a derivative K̂y = d

dy K

3Optimal deblurring for sparse images with noise, according to [11].
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(not to be confused win Kx in Section ):

K̂y[m,n] =
I[m,n+ s

2 ]− I[m,n− s
2 ]

s
+ N̂y[m,n],

where sharp image I[m,n] emerges from the fundamental theorem
of calculus (recall (4) and (5)). We recover the vertical wavelet
transform coefficients Iy`[m,n] (superscript y` denotes `th sub-
band of vertical wavelet):

Îy`
noisy[m,n] = ŝ · absmin{K̂y`

y [m,n− ŝ
2 ],−K̂y`

y [m,n+ ŝ
2 ]}

(21)

where λ (·) is any denoising scheme to suppress noise and residual
error N̂y`

y (we used [13] in our work). Inverse wavelet transform
of Îy`

K recovers ÎK . We repeat the procedure (17)-(21), reversing
the direction (use Jy`

y to recover Ly` in(18); use L̂x`
x = ∂

∂x Lx to
estimate Îx`

L ; denoising and inverse wavelet transform yields ÎL).
We arrive at the final estimate Î by combining ÎK and ÎL in the
wavelet domain:

Îx`[m,n] = absmin(Îx`
K [m,n], Îx`

L [m,n]) (22)

Îy`[m,n] = absmin(Îy`
K [m,n], Îy`

L [m,n])

The above procedure is repeated for all wavelet levels ` ∈
{1,2, . . .}. In addition, the scaling coefficient of J is used as
a proxy for scaling coefficient of I. Taking the inverse wavelet
transform of {Îx`, Îy`} together with the scaling coefficients re-
covers the latent sharp image I[m,n].

Experiment
Figure 7(a) shows images captured by Nikon D90 with our

square aperture prototype lens. All images were taken in a raw
sensor mode and processed with demosaicking [14], white bal-
ancing, and color correction. The image was downsampling by
factor of 4 after 4× 4 pixel neighborhood were averaged to sup-
press any demosaicking artifacts that may interfere with blur de-
tection or deblurring. Gamma correction was applied after blur
detection and deblurring.

The proposed blur size detection algorithm yields a dense
map of blur size, shown in Figure 7(b). The estimated blur clearly
separates the out-of-focus foreground from the in-focus back-
ground (or vise versa), making it possible to infer the distance
between the camera and the objects in the scene by (1). Thanks in
part to to graph cut, object boundary shapes are well preserved in
the blur size estimation.

The proposed deblurring is able to reproduce fine image de-
tails from a severely blurred input image. As evidenced in Figure
7(c), the reconstructed image is free of noticeable ringing arti-
facts and oversmoothing that plague most deblurring methods and
coded apertures. Instabilities may still arise, however, if there are
inaccuracies in the blur estimation boundaries (though not as per-
vasive as ringing).

Figure 8 compares the proposed square aperture to coded
apertures in [2, 8]. Here, Figures 8(a-b) were acquired by Nikon
D90 with the same circular-square aperture prototype lens—sharp
image in Figure 8(a) was obtained with small circular aperture
(f/22), while blurry image of Figure 8(b) was with the square

aperture. Figures 8(a-b) are shown with 4× 4 downsampling af-
ter 4× 4 pixel averaging. Figure 8(e) is the result of deblurring
the actual blurry image in Figure 8(b) directly. Blurry images of
Figures 8(c-d) were simulated by convolving the aperture masks
in [2, 8] with the full resolution version of Figures 8(a), and then
downsampled in the same way as before (no noise added). Figures
8(f-g) are the result of deblurring the images in Figures 8(c-d).
We considered the “aperture/blur size” for each coded aperture
to be the radius of the smallest circle that fits around the coded
aperture—radius in Figures 8(b-d) was 13 pixels (after downsam-
pling). Though far from perfect, the deblurring results in Figures
8(e-g) suggests that the square aperture clearly resolves finer im-
age details than the alternatives.

Figure 9 shows a simulation study to understand the accu-
racy of depths estimated from recovered blur size. Assumed op-
tics matched our prototype modified Nikkor lens and Nikon D90:
aperture size of 19.7mm (=14mm·

√
2), pixel pitch of 5.5µm, fo-

cal length of 50mm. The camera was assumed to be “in-focus”
at 2m from the camera and out of focus objects were assumed
to be behind the depth of field. To simulate image capture under
various lighting conditions, we simulated the blurred image as:

J[m,n] = (αI[m,n])?H[m,n]+N[m,n], (23)

where the sharp image I is in the ranges of [0,1], N is additive
white Gaussian noise (σ = 0.01), and H is coded aperture blur
with radius equal to 4.4mm on the sensor plane. Smaller value
of α implies higher noise. Figure 9 clearly shows that the square
aperture results in smaller depth estimation error even when the
influence of noise is high.

Conclusion
We proposed a square aperture as a simple and practical

alternative to existing coded aperture patterns. Square aperture
shares the properties of both large and small apertures, yielding
excellent light efficiency while preserving fine image details. It
follows from the idea that aperture can be made sparse by a deriva-
tive operator, which simplifies the blur size estimation and image
deblurring. Testing with prototype lens confirmed the feasibility
our approach. The square aperture was superior to the previously
proposed coded aperture patterns in terms of depth estimation and
image deblurring, even under the influence of noise.
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(a) captured image (b) estimated blur size (c) deblurring output
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(a) taken w/ f/22 aperture (b) taken w/ square aperture (c) simulated from (a) by [2] (d) simulated from (a) by [8]

(e) deblurring of image in (b) (f) deblurring of image in (c) (g) debluring of image in (d)
Figure 8. Comparisons of the proposed square aperture to the coded apertures of [2, 8]. (a) Real camera image taken with small (f/22) circular aperture. (b)

Real camera image captured by the prototype square aperture. (c-d) Blurry images simulated from (a). (e-g) Deblurring results of (b-d). The smallest circle

fitting around apertures in (b-d) has the radius of 13 pixels.

Figure 9. Light efficiency vs. accuracy of scene depth estimation for pro-

posed and aperture masks of [2, 8]. The error standard deviation is in mil-

limeters. Smaller α implies higher noise.
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