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Abstract
NASA’s Soil Moisture Active Passive (SMAP) satellite mis-

sion combines a passive L-band radiometer and an active Syn-
thetic Aperture Radar (SAR) instrument in order to monitor the
near-surface soil moisture and freeze-thaw states globally, with a
revisit frequency of 2-3 days. SMAP provides three soil moisture
products: a high-resolution from the radar, a low-resolution from
the radiometer, and an intermediate-resolution from the fusion of
the radar and radiometer measurements. Unfortunately, SMAP’s
SAR instrument halted its transmissions after a short operating
period. In order to address this limitation, we introduce a novel
post-acquisition computational technique aiming to synthesize the
active measurements of SMAP, by exploiting the mathematical
frameworks of Sparse Representations and Dictionary Learning.
We propose a coupled dictionary learning model which consid-
ers joint feature spaces, composed of active and passive images,
in order to recover the missing active measurements. We formu-
late our coupled dictionary learning problem within the context
of the Alternating Direction Method of Multipliers. Our experi-
mental results demonstrate the ability of the proposed approach
to reconstruct the active measurements, achieving better perfor-
mance compared to state-of-the-art coupled dictionary learning
techniques.

Introduction
The Soil Moisture Active Passive (SMAP) instrument [1, 2]

constitutes an environmental research observatory that provides
measurements of the land surface soil moisture [3]. SMAP ac-
quires space-based hydrosphere state measurements in order to
estimate the global water fluxes at the land surface, to enhance the
weather and climate forecast capabilities, and to define processes
that link the terrestrial water, energy, and carbon cycles. The in-
strument’s architecture consists of an L-band radiometer (passive
instrument), with a 1.41 GHz frequency, and H, V, and U polar-
izations; and an L-band radar (active instrument), with 1.26 GHz
frequency, and HH, VV, and HV polarizations. Both active and
passive instruments share a single feedhorn and parabolic mesh
reflector that rotates around the nadir axis providing a scanning
antenna beam with a constant incidence angle of approximately
40o. The SMAP satellite has been launched into a 680-km near-
polar sun-synchronous orbit within an eight-day repeat cycle, and
equator crossings at 6 A.M. and 6 P.M. local time. At this al-
titude, the antenna scan configuration yields a 1000-km swath,
with a 40-km radiometer resolution and 13 km SAR resolution
that provides global coverage within three days at the equator and
two days at boreal latitudes (> 45oN). Consequently, the active

instrument provides high spatial resolution by sacrificing the soil
moisture sensitivity, while the passive instrument provides high
soil moisture accuracy, with a coarser spatial resolution. The fu-
sion of the active and passive measurements provides both high
spatial resolution and high sensing accuracy, in order to retrieve
precisely both the soil moisture and the freeze-thaw states. The
main objective of SMAP satellite is to provide measurements of
the global soil moisture at the top 5 cm of the ground with an
error no greater than 0.04 cm3/cm3 at 10-km spatial resolution,
within a three-day average revisit time over the global land area
excluding regions of snow and ice, open water, urban areas, and
vegetation with total water content greater than 5 kg/m2. Figure 1
provides an example that illustrates the region of Greece captured
by SMAP’s SAR and radiometer instruments at 3-km and 36-km
resolutions, respectively, along with the fused result at 9-km res-
olution.

Unfortunately, within a short period of time after the launch
of the SMAP satellite, its active instrument (SAR) halted its trans-
missions. In contrast, the radiometer (passive) instrument still
acquires data, valuable to the prediction of the global soil mois-
ture. Obviously, the recovery of SMAP’s active measurements is
critical for facilitating weather and climate forecasting skills, in-
cluding the prediction of extreme environmental events such as
droughts and floods, providing high impact on the fields of hu-
man health and agriculture. Additionally, studies have shown that
using measurements from a single instrument results in reduced
accuracy in retrieving the soil moisture levels [4, 5].

(a) SAR (b) Radiometer (c) Fused
Figure 1: Greece captured by the SMAP satellite: (a) L2 SM A
product captured at a 3-km gridding resolution, (b) L2 SM P
measurement with a 36-km coarser spatial resolution, (c)
L2 SM AP fused result at a 9-km resolution

To address the soil moisture retrieval problem, most state-
of-the-art approaches focus on the fusion of the radar and the ra-
diometer measurements. For instance, the authors in [6] propose
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Figure 2: Block diagram of the proposed scheme: Overall system block diagram: The system takes as input a passive scene acquired
by the SMAP instrument, and produces an estimate of its corresponding active version. During the training phase, multiple active and
passive image patches are utilized. Given these patch pairs, a coupled dictionary learning scheme is employed for learning two dictionaries
corresponding to the active-passive feature spaces. During the testing phase, passive image patches are mapped to the passive dictionary
and the identified sparse coding coefficients are subsequently combined with the active dictionary for synthesizing the reconstruction of
the active measurements.

an effective technique that merges the active and passive measure-
ments to create a 9-km soil moisture product. Specifically, they
rely on the radar capability to detect high-resolution soil-moisture
spatial variability within the coarse-resolution radiometer grid.
Their algorithm uses a time-series analysis to determine the slope
of the linear relationship between the radar and the radiometer,
without requiring the previous satellite overpass measurements to
retrieve the current soil-moisture value. The authors in [7] pro-
pose a soil moisture retrieval technique using simultaneously both
radar and radiometric data in an efficient optimization algorithm
that extracts surface soil moisture in vegetation areas. Another
interesting technique that combines radar’s backscatter and ra-
diometer’s brightness temperature measurements for soil mois-
ture estimation is presented in [8]. The authors use physics-based
models in order to couple the scattering and emission processes.
Additionally, they define a joint cost function that balances the
contributions of radar and radiometric measurements, extracting
the optimal estimates over a larger range of surface soil moisture.
Finally, the authors in [9] present an efficient machine learning
scheme, relying on Random Forests, which upscales in-situ soil
moisture estimates to the satellite footprints scale of SMAP in or-
der to validate with high accuracy the soil moisture retrieval.

In contrast to the aforementioned techniques, the main ob-
jective of this work is the recovery of SMAP instrument’s active
measurements from its corresponding acquired passive observa-
tions. The reconstruction of high resolution SAR estimations will
be valuable for subsequent accurate soil moisture retrieval. Us-
ing a dual dataset, consisting of active and passive correspond-
ing patch pairs from the time period that both instruments were
normally operating, we are able to synthesize the active measure-
ments directly from the currently obtained passive data, and sub-
sequently use them for soil moisture estimation. In order to val-
idate the reconstruction performance, we test our method with a
set of active measurements, matched to their corresponding pas-
sive ones from the time period that the SAR instrument was func-

tioning. The proposed algorithm capitalizes on the Sparse Repre-
sentations [10] and Coupled Dictionary Learning [11–13] frame-
works, adhering to the assumption that active image examples can
be directly recovered via their corresponding passive versions.
Furthermore, we solve the active reconstruction synthesis prob-
lem within the Alternating Direction Method of Multipliers op-
timization framework [14, 15]. Figure 2 illustrates the proposed
system’s block diagram. To the best of our knowledge, the pro-
posed scheme is the first post-acquisition technique that focuses
on the reconstruction of SMAP active measurements.

Sparse Representations for SMAP’s Active
Measurements Recovery

In this work, we formulate the problem of SMAP active
measurement reconstruction as an inverse imaging problem, con-
sidering as input the passive (radiometer) image and seeking to
recover its corresponding active (SAR) observation. The recov-
ery of SMAP’s active measurements is implemented by capitaliz-
ing on the Sparse Representations framework [10], according to
which, image patches x ∈ Rm, extracted from active images can
be represented as a sparse linear combination of elementary sig-
nals encoded in a dictionary matrix, Dα ∈ Rm×n, generated from
a collection of active training image patches. The sparse coding
is formulated in a vector w, such that x = Dα w, where ||w||0 ≤ n
represents the sparsity assumption. Instead of directly observing
the active patches, we observe the corresponding passive patches
y ∈ Rm×n of the input scene. Similarly, patches extracted from
passive scenes can be directly mapped onto a dictionary matrix
Dp ∈ Rm×n, constructed by training elements selected from cor-
responding passive images using a set of sparse vectors. The the-
ory of SR suggests that the sparse coding vectors among the two
different representations are the same, and one can recover the ac-
tive image patches by using the estimated passive sparse coding
vectors. As a result, the optimization problem is formulated as:

w? = argmin
w
||sp−Dpw||2F +ρ||w||1 (1)
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The parameter ρ stands for the regularization term, while it bal-
ances the fidelity of the solution. To obtain the active image patch,
the optimal sparse coding w? from (1), is directly projected onto
the active dictionary Dα ∈ RM×N , to synthesize the active im-
age patch, according to sα = Dα w?. However, the main chal-
lenge pertaining to the estimation of the active image patches is
related to the proper construction of the dictionary matrices, to si-
multaneously sparsify both the active and passive measurements.
The following paragraph describes in detail the coupled dictio-
nary learning procedure that we propose in this work.

Coupled Dictionary Learning
Coupled dictionary learning relies on generating a pair of

dictionaries which jointly encode the active, Sα , and the passive,
Sp, feature spaces where the signals have sparse representations in
terms of the trained dictionaries [16]. The main task is to recover
a coupled dictionary pair Dα and Dp for the spaces Sα and Sp,
respectively [10], and their corresponding sparse codes Wα and
Wp, under the constraint Wα = Wp, by solving the following
sparse matrix decomposition problems:

argmin
Dα ,Wα

||Dα Wα −Sα ||F +λα ||Wα ||1, ||Dα (:, j)||22 ≤ 1 (2)

argmin
Dp,Wp

||DpWp−Sp||F +λp||Wp||1, ||Dp(:, j)||22 ≤ 1,

where λα and λp denote the sparsity regularization parameters,
for the active and the passive feature spaces, respectively. A
straightforward approach is to concatenate the coupled feature
spaces and use a common sparse representation. Consequently,
the coupled dictionary learning problem in converted into a single
dictionary learning problem that can be efficiently solved via ex-
isting algorithms, such as the K-SVD [17, 18]. However, a major
limitation of single dictionary learning strategies is their inability
to guarantee that the same sparse coding can be separately utilized
in both active and passive representations.

To overcome this limitation, we propose a computationally
efficient coupled dictionary learning technique, based on the Al-
ternating Direction Method of Multipliers (ADMM) scheme [14,
15], that converts the constrained dictionary learning problem in
(2), into an unconstrained version which can be efficiently solved
via alternating minimizations. To apply the ADMM technique in
our coupled dictionary learning scheme, we reformulate the min-
imization problem posed in (2) as:

min
Dα ,Wα ,Dp,Wp

||Sα −Dα Wα ||2F + ||Sp−DpWp||2F+ (3)

λp||Q||1 +λα ||P||1, subject to: P = Wα ,Q = Wp,

Wα = Wp, ||Dα (:, i)||22 ≤ 1, ||Dp(:, i)||22 ≤ 1
The ADMM technique takes into account the separate structure of
each variable in (3), relying on the minimization of its augmented
Lagrangian function:

L (Dα ,Dp,Wα ,Wp,P,Q,Y1,Y2,Y3) =
1
2
||Dα Wα −Sα ||2F

+
1
2
||DpWp−Sp||2F +λα ||P||1 +λp||Q||1+< Y1,P−Wα >

+< Y2,Q−Wp >+< Y3,Wα −Wp >+
c1

2
||P−Wα ||2F+

c2

2
||Q−Wp||2F +

c3

2
||Wα −Wp||2F , (4)

where Y1, Y2, and Y3 stand for the Lagrange multiplier matrices,
while c1 > 0, c2 > 0, and c3 > 0 denote the step size parame-

ters. We empirically set the step size parameters to c1 = c2 = 0.4
and c3 = 0.8. Following the algorithmic strategy of the ADMM
scheme, we seek for the stationary point, solving iteratively for
each one of the variables, while keeping the others fixed. The
overall algorithm for learning the coupled dictionaries is summa-
rized in Algorithm 1.

Algorithm 1 Coupled Dictionary Learning
Input: training examples Sc and Sn, iterations: K, step size parameters:
c1,c2,c3.
Initialization of the Dictionaries: Random selection of the columns of
Sα and Sp ; Initialization of Lagrange multiplier matrices: Y1 = Y2 =

Y3 = 0.
for k = 1, · · · ,K do

1. Update Wα and Wp:
Wα = (DT

α Dα + c1I + c3I)−1 · (DT
α Sα +Y1−Y3 + c1P+ c3Wp)

Wp = (DT
p Dp + c2I + c3I)−1 · (DT

p Sp +Y2 +Y3 + c2Q+ c3Wα )

2. Update P and Q:
P = Sλα

(∣∣∣Wα −Y1/c1

∣∣∣)
Q = Sλp

(∣∣∣Wp−Y2/c2

∣∣∣),
3. for j = 1, · · · ,N do

• Update φc and φn:
φα = Wα ( j, :)Wα ( j, :)T

φp = Wp( j, :)Wp( j, :)T

• Update the dictionaries Dα and Dp:

D(k+1)
α (:, j) = D(k)

α (:, j)+(Sα Wα ( j, :))/(φα +δ )

D(k+1)
p (:, j) = D(k)

p (:, j)+(SpWp( j, :))/(φp +δ )

end

• Normalize Dα and Dα between [0,1]
• Update Lagrange multiplier matrices Y1, Y2 and Y3:

Y (k+1)
1 = Y (k)

1 + c1(P−Wα )

Y (k+1)
2 = Y (k)

2 + c2(Q−Wp)

Y (k+1)
3 = Y (k)

3 + c3(Wα −Wp)

end

Experimental Setup
In this paragraph, we evaluate the performance of the pro-

posed ADMM coupled dictionary learning scheme when applied
to the recovery of SMAP instrument’s active (SAR) measure-
ments. In this paper, we worked with SMAP’s Level-2 prod-
ucts. Specifically, we considered L2 SM A active (SAR) mea-
surements and their corresponding L2 SM P passive (Radiome-
ter) observations. The gridding resolution of the L2 SM A prod-
uct is 3 km, while the coarser resolution of the L2 SM P passive
product is 36 km. In terms of spatial resolution, both the active
and passive images are of size (1134× 1034) pixels. To vali-
date the reconstruction performance, we measured both the Peak
Signal to Noise Ratio (PSNR) and the Root Mean Square Error
(RMSE) metrics, between the reconstructed and the ground truth
SAR measurements. The PSNR error metric between the original
and the reconstructed scene is defined as:

PSNR = 10× log10

(MAX2
I

MSE

)
, (5)
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where the mean square error is defined as:

MSE =
1

m×n

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− Î(i, j)]2 (6)

Specifically, m×n stand for the spatial dimensions of the images,
I denotes the ground truth active scene, while Î represents the
reconstructed active observation. MAXI denotes the maximum
possible pixel value of the scene. Moreover, each active recon-
struction is compared against the corresponding ground truth ac-
tive measurement in terms of the Structural Similarity Index Met-
ric [19], a psychophysically modeled error metric defined as:

SSIM(x,y) =
(2µxµy + c1) · (2σxy + c2)

(µ2
x +µ2

y + c1) · (σ2
x +σ2

y + c2)
, (7)

where µ and σ stand for the mean value and the standard de-
viation, respectively. Finally, we measured the absolute differ-
ence [9] between the reconstructed and the ground truth active
measurements. The absolute difference is widely used in soil
moisture retrieval problems. Relatively small values of the ab-
solute difference index indicate both high reconstruction quality
and high soil moisture retrieval accuracy.

During the coupled dictionary training phase, one pair of dic-
tionaries was prepared, corresponding to the active and passive
measurements. Specifically, we utilized 100.000 randomly se-
lected (3×3) patch pairs from corresponding active-passive train-
ing images. Additionally, in order to study the sensitivity of the
proposed algorithm, we evaluated the reconstruction performance
of the coupled trained dictionaries when different patch sizes were
used. Figure 3 provides the PSNR (dB) values for the recon-
struction of the active measurements of California, when (3×3),
(5× 5), (7× 7), and (9× 9) patch sizes were used. The num-
ber of the representative dictionary atoms that we utilized in our
proposed ADMM coupled dictionary learning scheme was set to
512, balancing the computational cost with the robustness of the
representation. As we may observe, the optimal reconstruction
performance is achieved when we use a small patch size (3×3),
with 2 pixels overlapping factor. We observe, that as we increase
the patch size, the reconstruction quality is degraded.

Figure 3: California’s SAR measurement reconstruction. In this
figure we examine the reconstruction performance of the active
measurement, when different patch sizes were used for both the
coupled dictionary training and the reconstruction phases. We ob-
serve that the best performance is achieved when we use a small
patch size, of (3× 3), with 2 overlapping parameter between ad-
jacent pixels.

Similarly, we investigated the performance of the proposed
ADMM scheme as a function of dictionary size. Specifically,
we have experimented with 256, 512, 1024, and 2048 dictionary

atoms. In Figure 4 we illustrate the reconstruction performance
in terms of the PSNR metric when the aforementioned numbers
of dictionary atoms were used. As we may observe, the best per-
formance is achieved when we use 512 dictionary atoms. In this
simulation, the patch size is set to (3× 3), with a 2 overlapping
factor among adjacent pixels.

Figure 4: California’s SAR measurement reconstruction. In this
figure we examine the reconstruction performance of the active
measurement as a function of the number of dictionary atoms
used. As we may observe, the best performance is achieved when
we use 512 dictionary atoms. Additionally, as the dictionary size
increases above 512, the reconstruction quality decreases.

In order to quantify the performance of the proposed ADMM
coupled dictionary learning scheme, we investigate the empiri-
cal convergence behavior of the Augmented Lagrangian function,
and the coupled dictionaries. Figure 5 depicts the normalized re-
construction error for the active-passive pair of dictionaries and
the Augmented Lagrangian function as a function of the num-
ber of iterations. We observe that both the coupled dictionaries
and the augmented Lagrangian function converge into a station-
ary point, after a small number of iterations.

(a) Coupled Dictionaries (b) Augmented Lagrangian
Figure 5: (a) Convergence Behaviour of the ADMM coupled dic-
tionary learning Algorithm, (b) Convergence of the augmented
Lagrangian function. The number of dictionary atoms was fixed
to 512, while we used a (3× 3) patch size. We observe that the
coupled dictionaries and the augmented Lagrangian function con-
verge into a stationary point after approximately 10 iterations.

Simulation Results
Figure 6 illustrates an exemplary active reconstruction of

California’s region using the proposed ADMM coupled dictionary
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(a) Input Passive California (RGB) (b) Input Passive California (c) Ground Truth Active (d) Reconstructed Active, SSIM: 0.96
Figure 6: California’s Region Active Recovery.(a) L2 SM P product in RGB color-map, (b) L2 SM P product in gray-scale, (c) L2 SM A
product’s ground truth active measurements, (d) ADMM recovery of the active measurements. As we may observe, the proposed sparsity-
based technique is able to reconstruct accurately the missing SAR (active) measurements.

(a) Input Passive California (RGB) (b) Ground Truth (c) K-SVD, RMSE: 5.22 (d) Proposed, RMSE: 2.97
Figure 7: California’s Region Active Recovery - Comparison with the State-of-the-art.(a) Input L2 SM P passive measurements, (b)
Ground Truth L2 SM A active measurements, (c) K-SVD reconstruction of the active measurements (d) ADMM recovery of the active
measurements. As we may observe, the proposed algorithm outperforms the state-of-the-art K-SVD technique, both in terms of the
evaluation indexes and visually. Additionally, in the zoomed yellow-square regions (depicted on the second row), we illustrate the subtle
differences among the compared techniques.

learning scheme. As we may observe, our algorithm is able to re-
construct with great efficiency the corresponding active measure-
ment from this challenging passive observation. In terms of the
PSNR evaluation error metric, the proposed technique achieves a
similarity index of 0.96, validating the high similarity of the re-
covered active observation with respect to the ground truth active
measurement.

Another interesting reconstruction is presented in figure 7,
where we demonstrate the performance of the proposed ADMM
coupled dictionary learning algorithm, versus the state-of-the-art
K-SVD dictionary learning scheme. Although the K-SVD cou-
pled algorithm produces faithful approximations of the ground
truth active measurement, the proposed ADMM technique syn-
thesizes high quality SAR observations without introducing noise

effects. Quantitatively, the proposed SCDL scheme outperforms
the K-SVD comparable technique, in terms of the evaluation met-
rics, achieving a PSNR value of 38.66 dB, in contrast to the K-
SVD that achieves 33.77 dB. Additionally, in terms of RMSE, the
proposed algorithm achieves 2.97, in contrast with the 5.22 of the
K-SVD technique. Similarly, measuring the absolute difference
among the comparable techniques, we observe that the proposed
scheme achieves a smaller absolute difference of 1.26, in con-
trast with the K-SVD recovery that achieves 1.45. Consequently,
the smallest absolute difference indicates a more representative
approximation of the ground truth active measurement. Finally,
in terms of the structural similarity index (SSIM), the proposed
ADMM coupled dictionary learning algorithm achieves a 0.96
SSIM index, compared to the 0.89 of the K-SVD technique.
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Conclusions and Future Work
In this paper, we developed a novel technique that tackles the

problem of recovering SMAP instrument’s active measurements.
The reported experimental results suggest that Sparse Representa-
tions and Coupled Dictionary Learning are powerful tools, able to
reconstruct SAR measurements from their corresponding passive
observations. Additionally, we observed that the proposed recon-
struction scheme works successfully with these extreme coarse
resolution passive observations. The developed coupled dictio-
nary learning scheme can be efficiently used in satellite instru-
ments, where knowledge transfer is required. In our future work,
we aim to exploit the ADMM coupled dictionary learning scheme
in order to combine in-situ soil moisture estimates with brightness
and temperature satellite measurements from radiometer’s instru-
ment of the SMAP satellite, in order to provide accurate predic-
tions concerning the global soil moisture.
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