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Abstract
The rise of cheaper and more accurate genotyping tech-

niques has lead to significant advances in understanding the
genotype-phenotype map. However, this is currently bottlenecked
by manually intensive or slow phenotype data collection. We pro-
pose an algorithm to automatically estimate the canopy height of
a row of plants in field conditions in a single pass on a moving
robot. A stereo sensor pointed down collects a series of stereo im-
age pairs. The depth images are then converted to height-above-
ground images to extract height contours. Separate height con-
tours corresponding to each frame are then concatenated to con-
struct a height contour representing one row of plants in the plot.
Since the process is automated, data can be collected throughout
the growing season with very little manual labor complementing
the already abundantly available genotypic data. Using exper-
imental data from seven plots, we show our proposed approach
achieves a height estimation error of approximately 3.3%.

1. Introduction
The availability of cheaper and more accurate genotyping

techniques in recent years has allowed for significant advances
towards addressing growing challenges such as ensuring global
food security and creating a sustainable biofuel source. Auto-
matic extraction of biomass information such as crop height re-
moves a bottleneck allowing geneticists to further understanding
of the genotype-phenotype map. Current techniques for estimat-
ing plant height in the field are manually intensive and inaccurate.
Thus, only a few measurements are taken within a relatively ho-
mogeneous plot a few times throughout the growing season.

High throughput imaging techniques have been proposed to
automate the measuring process. Li et. al. [1] provide a survey of
the various applications for plant phenotyping, such as machine
vision, hyper-spectral remote sensing and three dimensional (3D)
imaging. Paulus et. al. [2] discuss the advantages of 3D systems
specifically comparing low cost systems such as stereo vision to
more costly systems such as laser scanning. While laser scanners
provide higher accuracy, they are expensive and also difficult to
deploy in the fields.

Various algorithms have been developed to take advantage of
3D sensors for analyzing and measuring plant growth. Paproki et.
al. [3][4] demonstrate an advanced segmentation and processing
technique for 3D meshes of cotton plants. In order to create the
high precision mesh, 64 images are taken at equally spaced in-
tervals around the whole plant for multi-view reconstruction. Im-
ages are taken on a turn table and tripod in controlled conditions
in the lab. Paulus et. al. [5] and Kjaer et. al. [6] present dif-
ferent approaches using high precision 3D laser scanners. While
these works capture the plants with high fidelity, they are limited
to laboratory controlled conditions and require manual data cap-

Figure 1: The camera coordinate frame is presented by the x,y,z
axis. The robot coordinate frame is represented by the X ,Y,Z axis.
The robot is assumed to move in the X direction. Camera angle θ

and height h are used to transform between the coordinates.

ture. Ngueyn et. al. [7] propose a structured light based approach
for phenotypic measurement. They use five pairs of stereo cam-
eras to 3D reconstruct smaller plants, with the eventual goal of
automating for field deployment.

There have been a number of recent works focused on au-
tomating the phenotype data collection process in the field. This
can be divided into two major categories: mobile and static mea-
suring systems. In this paper, we focus on ground-based agri-
cultural robots, even though quadcopter based systems could also
be a viable approach. Agricultural robots are designed to col-
lect data in field conditions. They face challenges such as noise,
proximity of robot to plants, wind, weather and sunlight. They
are typically equipped with sensors to measure and estimate plant
growth metrics. Mueller-Sim et. al. [9] describe a ground-based
agricultural robot capable of automatically collecting leaf area,
leaf angle and stalk width in field settings. Jay et. al. [8] apply
structure from motion to reconstruct 3D models of plants. Jay
et. al. have demonstrated their algorithm on crops in field con-
ditions using a specialized agricultural robot, extracting metrics
such as plant height and leaf area. Similar to previous works, Jin
and Zakhor [10] estimate stem width of crops from time-of-flight
sensors mounted on an agricultural robot. Baharav et. al. [11]
demonstrate a similar pipeline to estimate the width of sorghum
using time-of-flight sensors and the height using stereo sensors.

While mobile agricultural robot based algorithms have been
developed to collect individual plant metrics such as width and
leaf angle, there has been less focus on height estimation. Exist-
ing methods of height estimation primarily use static measuring
systems. For example, Phan et. al. [12] mount a 3D laser scan-
ner at a high vantage point overlooking a field and estimate plant
height from the 3D point cloud. Friedli et. al. [13] also extract
canopy height using 3D laser scanners in fixed locations through-
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Figure 2: Example depth image of dimension H×W .

out the field.
In this paper, we leverage the mobility and flexibility of agri-

cultural robot systems to develop a height estimation algorithm
around data collected from sensors mounted on robots capable of
traversing between crop rows. The proximity to the canopy al-
lows us to use cheaper commercial 3D stereo sensors over more
expensive 3D laser scanners. We propose an automatic height es-
timation pipeline robust enough to handle crops from early to late
stages of growth. The system is designed to have a dynamic range
capable of measuring plants with a difference in height of up to
3 meters. Automatic collection of field metrics throughout the
growing season offers geneticists a powerful tool to better under-
stand the genotype-phenotype map.

The outline of this paper is as follows: we discuss the details
of our pipeline in Section 2. Next, we explain the experimental
setup for data collection designed to test the accuracy of our algo-
rithms and analyze the results of our pipeline in Section 3. Finally,
we provide some concluding remarks in Section 4.

2. Estimation Pipeline
The proposed pipeline requires a high moving vantage point

and a commercial stereo camera as shown in Figure 1. The stereo
camera is mounted on the mast of a moving robot pointed down.
The robot moves in the space between two rows of plants and col-
lects a series of images at a fixed rate as shown in Figure 6. The
robot is assumed to move at a fixed speed and in one direction.
The infrared images, depth images, mast height and camera angle
are then passed into the pipeline to estimate the height of plants
within each plot. The algorithm is designed to be modular and in-
dependent of the agricultural robot as long as the above conditions
are met.

The overview of our proposed height estimation approach is
as follows: the robot collects a series of depth images which are
then converted into point clouds and filtered for only the points
corresponding to the row directly in front of the robot. We re-
duce the point cloud constructed from the depth images to a one
dimensional (1D) curves representing the canopy’s height above
ground. These height contours are then registered to construct
a global height contour for one row of a plot. Individual plant
heights are then extracted from the global height contour. In the
following sections we describe each step in more detail.

2.1 Coordinate Transformation
We define the x,y and z axis as the camera reference coor-

dinate system with the z axis pointing away from the camera and

Figure 3: Point A is projected onto the image plane. zA is stored
for the depth image.

Figure 4: Two dimensional images Px
xyz(u,v), Py

xyz(u,v) and
Pz

xyz(u,v) are stacked together to form a length 3 vector of images.

the y axis pointing up as shown in Figure 1. We also define a
robot coordinate frame as the X ,Y, and Z axis with the X axis
aligned with the direction of the robot’s movements along the row
of plants, the Z axis perpendicular in the direction of the plants,
and the Y axis pointing directly upward. Although the origin of
the robot coordinate frame shifts in the real world between each
new set of images, we can relate the Y and Z values of pixels
between different sets of images as they correspond roughly to a
plant’s height above ground and distance from the robot respec-
tively. Both coordinate frames are shown in Figure 1.

The stereo camera creates a depth image Id(u,v) of dimen-
sion H ×W as seen in Figure 2. In order to predict the height
of plants from the depth images, we must first convert it into
a point cloud as shown in Figure 3. For pixel location (uA,vA)
in the depth image, we determine the projected point A found at
(xA,yA,zA) in 3D space defined by the camera coordinate sys-
tem. We set Id(uA,vA) = zA and then repeat this for each pixel
within the range [1,H]× [1,W ]. Then, using the depth image and
camera intrinsics, we determine the x and y values correspond-
ing to each pixel (u,v) to construct 2D images Ix(u,v) and Iy(u,v)

(a) Y-Channel Image (b) RGB Image

Figure 5: (a) PY
XY Z(u,v), the Y-Channel of point cloud post trans-

formation representing a height above ground image. The original
depth image before transformation can be found in Figure 2; (b)
The corresponding RGB image.
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Figure 6: A top down view of the plot. We wish to only estimate
heights on plants in the front row circled in green. Plants in further
rows are filtered out.

in a similar fashion. Note that by definition Iz(u,v) = Id(u,v).
We then concatenate the three images Ix(u,v), Iy(u,v) and Iz(u,v)
into
−→
Pxyz(u,v) = [Ix(u,v), Iy(u,v), Iz(u,v)], a vector of 2D images

as seen in Figure 4. When referring to a specific image within the
vector, we will denote the coordinate axis as a superscript, e.g.
Px

xyz(u,v) = Ix(u,v). We also refer to the three images as the x, y,
and z channels respectively.

To simplify the estimation of plant height, we convert point
cloud

−→
Pxyz(u,v) in the xyz coordinate frame to

−−→
PXY Z(u,v) in the

XY Z coordinate frame as seen in Figure 1. We use an uncon-
ventional coordinate frame for the camera’s frame of reference to
simplify the transformation between coordinates. We make the
assumption that the robot moves primarily in one direction with
little to no change in yaw. This reduces the transformation to
a rotation about the x-axis by the camera angle θ , i.e. the an-
gle between the z-axis and the Z-axis, followed by a translation
in the Y axis by the mast height h, i.e. the distance between
the origins of the two coordinate frames. For every pixel (u,v),
Px

xyz(u,v) = PX
XY Z(u,v), so we can reduce all coordinate manipula-

tions to 2 dimensional transforms focusing only on the y,z to Y,Z
transformations.

Let us rearrange the points
−→
Pxyz(u,v) and vectorize it as a

3×HW matrix P′yz where the rows correspond to the y and z co-
ordinate of every pixel respectively. We append a row of 1s so
that the applied transformation is homogeneous. Likewise, if we
vectorize

−−→
PXY Z(u,v), we get a second 3×HW matrix P′Y Z . We

can relate P′yz and P′Y Z with the following equation:

P′Y Z =

cosθ −sinθ 0
sinθ cosθ h

0 0 1

P′yz (1)

The end result is a new point cloud
−−→
PXY Z(u,v) =

[IX (u,v), IY (u,v), IZ(u,v)] with each pixel (u,v) now storing the
points in 3D space with respect to the XY Z axis in Figure 1. The Y
channel, or PY

XY Z(u,v) = IY (u,v), corresponds to a ”height-above-
ground” image as seen in Figure 5a. We use this to calculate the
canopy height from a single channel.

2.2 Height Contour
Once the images are in the correct coordinate frame, we ex-

tract the height contour of the canopy. In order to reduce estima-
tion error, we focus on the front row only, or the row of plants

Figure 7: We approximate the location of the front row by its
average Z value Z f r. We use the radial distances highlighted in
orange to determine which pixels correspond to the front row.

(a) (b)

(c)

Figure 8: An example of (a) the Y channel image IY (u,v), (b)
Ir(u,v), and (c) IY

f iltered(u,v) the Y channel image after filtering
for the front row only.

(a) (b)

(c)

Figure 9: The tallest pixel in each column highlighted in red on
the (a) Y channel image and (b) RGB image respectively. (c)
Height contour curve plotted over the physical plants

IS&T International Symposium on Electronic Imaging 2018
Computational Imaging XVI

228-3



closest to the robot as seen in Figure 6. The row behind it suffers
from error due to the degradation of sensor accuracy at further
distances. Any plants beyond that typically belong to a separate
plot which would corrupt the measurements of the plot of interest
if included.

We detect the front row by estimating its distance Z f r from
the origin of the robot coordinate frame XY Z as shown in Figure
7. We approximate this distance by assuming that pixels of the
plants in the front row are the closest to the camera as seen in
Figure 7. We calculate the radial distance of every pixel using
only the Y and Z channel of the point cloud

−−→
PXY Z(u,v). If we let

h denote the mast height, then we can generate Ir(u,v), an H×W
radial image which stores the distance of each pixel (u,v) from
the camera center:

Ir(u,v) = (PZ
XY Z(u,v))

2 +(h−PY
XY Z(u,v))

2 (2)

Each Ir(u,v) now stores the Euclidean distance with respect to the
Y and Z axis of the pixel to the camera origin as shown in Figure
8b. Then, for each column vk,k ∈ [1,W ] in Ir(u,v), we select a
corresponding uk = argminu Ir(u,vk). This gives us the W pixel
locations (uk,vk) closest to the camera corresponding to the front
row. We then average the corresponding Z values of each pixel
(uk,vk) as in Equation (3) to obtain Z f r.

Z f r =
1

W

W

∑
k=1

−−→
PXY Z(uk,vk,Z) (3)

Any pixel u,v whose Z value PZ
XY Z(u,v) falls outside of a range

centered at Z f r are zeroed out in all three channels to result in
2D images IX

f iltered(u,v), IY
f iltered(u,v), and IZ

f iltered(u,v). An ex-
ample of the Y channel after filtering out all points except those
corresponding to the front row can be found in Figure 8c.

Since we are only interested in the height of the canopy, it
is wasteful to track all points associated with the front row. In-
stead, we reduce the point cloud into a 1-D curve representing the
top of the plants. Specifically, for every column vk,k ∈ [1,W ] in
IY

f iltered(u,v), we select yk = maxuIY
f iltered(u,vk), the tallest pixel

in the Y channel as seen in Figure 9a. This reduces an H×W ×3
point cloud to a length W vector of height measurements along
the X direction. We refer to this vector as the height contour H.
The physical representation of the height contour with respect to
the plant row is shown in Figure 9 and an example graphical rep-
resentation in Figure 10. In the next two subsections we describe
two methods to extract plant height from height contours.

2.3 Height Estimation
The overall goal of height estimation is to accurately esti-

mate histograms of plant height for each plot. Current genetic
research maintains emphasis on comparison of plots with differ-
ent gene characteristics. In particular, the histogram, mean, and
variance of each plot is compared with each other to evaluate each
genotype.

2.3.1 Method 1: Individual Frame Estimation
In this approach, we assume each plant results in a peak in

the height contour, and use peak detection to find its height. We

Figure 10: The generated height contour (orange) with the
smoothed height contour (blue). The local peaks detected from
the algorithm are given as blue dots on the smoothed contour. The
x-axis is in pixels and the y-axis is in meters.

Figure 11: The height contour with median filter. The red points
are the local maximum that were remapped to the median filtered
graph and represent the final predicted peaks. The x and y axes
are the same as Figure 5.

then aggregate all of the heights obtained in this manner across all
the height contours on a corresponding to depth images given row
of plants to estimate the histogram of plant height for that row.
Since each plot is seen in multiple depth frames, the overcounting
of plants does not affect the shape of the histogram since nearly
all plants are overcounted by a similar amount with the exception
of plants near the edge of the row which appear in fewer frames
than the rest.

For each height contour generated, we perform local max-
imum estimation as follows. Each plant is assumed to corre-
late with only one local maximum on the contour line. As a
result, the goal is to find peaks on height contour H. To de-
noise H, a 1-dimensional 11-pixel median filtering is used to pro-
duce Hm. To reduce likelihood of detecting the same peak twice,
the Hm is smoothed using a Hamming window, producing Hms.
The smoothing process causes the height of detected peaks to be
slightly lower than expected as shown in Figure 10.

Local maximum detection occurs on the smoothed contour
Hms. For each x,y pair in the contour line, the algorithm de-
cides if the point is a peak. A peak is defined as any single point
larger that its nearest L neighbors where L depends on planting
distances. For our setup, we choose L = 20. To prevent the ends
of the contours from being falsely classified as peaks, an interval
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Figure 12: The total height contour for a specific collection.

at the beginning and the end of the contour are ignored. This also
ignores errors caused by the boundary effects of smoothing.

As mentioned earlier, smoothing underestimates the mean
heights of detected peaks. To address this, we remap detected
peak locations to values on the median filtered height contour Hm
which does not suffer from the same artifacts. An example of this
process on a height contour is shown in Figure 11.

The method described in this section over counts plants be-
cause each plant appears in multiple frames. With the excep-
tion of plants near the edge of a plot, all plants are recounted
the same amount. With approximately 60 frames for each plot,
under-counted plants represent a minority of all detected plants
and hence do not significantly affect the histogram and average
height estimated per plot.

2.3.2 Method 2: Registered Frame Estimation
The robot takes a series of overlapping images of a plot, with

every plant appearing in more than one image. Our approach is
to register and concatenate successive height contours Hms into
one global height contour for a given row in a plot, and to use the
peaks in that as location of each plant. This alleviates the over-
counting problem of method 1. The height contours do not vary
significantly from frame to frame beyond a translation in the x di-
rection and noise. To mitigate error in detecting shift caused by
noise, we use the denoised and smoothed height contours Hms. To
determine x-shift, we compare two consecutive height contours
and find the shift that minimizes the `1 loss of the middle range
of the contours.

Xs = argmin
x
‖ H i

ms−H i+1
ms x ‖ (4)

where H i
ms and H i+1

ms are the ith and (i+ 1)st height contours re-
spectively and H i+1

ms x represents the second height contour shifted
by x pixels. This process is repeated for each subsequent height
contour Hms generated from each frame to construct a global
height contour of the plot. Once the global contour of a plot is
constructed, we can use a similar process to method 1 to estimate
height. Because there is no overlap in a height contour for an en-
tire plot, it is possible to count the number of detected peaks to
estimate plant number.

3. Results
All data was collected at University of Illinois at Urbana-

Champaign. An Intel RealSense R200 was mounted on a mast
connected to a robot and moved along each plot at a fixed distance.
For each frame RGB, infrared, and depth images are taken at a
resolution of 640×480.

The sorghum is arranged in 3 meter by 3 meter plots. Each
plot has a distinct genotype with mostly homogeneous plants
within the plot. The sorghum is planted in four rows per plot with

Figure 13: Comparison of 2 height contours. The previous height
contour (dotted orange line) is x-shifted by the algorithm to match
the next height contour (blue line).

(a)

(b)
Figure 14: An example of the histograms (a) generated from
method 1 and (b) with the ground truth. The difference scale in the
y-axis is caused by the detection of the same plant across multiple
images.

75 cm between each row. Sorghum plants are planted approxi-
mately every 6 cm resulting in approximately 50 plants per row
and 200 plants per plot. A diagram of a plot is shown in Figure 6.

The robot traverses in the spacing between two rows and col-
lects data from one row. The data is then processed by our pipeline
to estimate a height histogram for each plot. Ground truth mea-
surements were collected on 7 plots allowing us to compare the
results of our algorithm.

Each plant in a plot was manually measured to create the
ground truth. The list of measurements for a row of a plot cre-
ates a histogram of heights for a single collection. Table 1 shows
the mean of histograms for 7 plots as estimated by method 1 and
ground truth. As seen the error for all ranges in predicted and
ground truth mean varies from 1 cm to 6 cm. Averaged over all
plots, the mean error is 3.3%. The majority of the error in our
algorithm is caused by an average overestimation of the predicted
local peaks verses the ground truth peak heights.

Table 2 shows the performance of method 2 as compared to
ground truth for both height estimation error as well as the num-
ber of plants. Averaged across all plots, the height estimation
error for method 2 is 1.7% which is slightly lower than that of
method 1 with 3.3%. The plant number estimate for method 2 has
18.9% error compared to ground truth. The underestimation of
plant number is mostly caused by the smoothing process where
two peaks on Hm could be detected as one on Hms.
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(a)

(b)
Figure 15: A comparison of the histogram from (a) method 2 with
(b) the actual histogram of plants for a specific plot.

Table 1: Performance characterization of Method 1

Table 2: Performance characterization of Method 2, and compar-
ison with method 1

Table 3: Error comparison of methods 1 and 2.

Example histograms for methods 1 and 2 are shown in Fig-
ures 14 and 15 respectively. As seen, the estimated and ground
truth histograms look similar to each other.

4. Conclusion
In this paper, we introduced two methods for estimating the

histogram of a row of plants. Since the algorithms are run auto-
matically, data collection can be done with little human interven-
tion and can be done throughout the year and growth cycle. The
algorithm can be used for different plants in addition to sorghum.
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