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Abstract
Many important physical processes in fields such as mate-

rials science, ecology, structural biology, and clinical pathology
involve the study of microscopic structures – from formation and
propagation to steady-state behavior. The study of these phenom-
ena is often very slow, creating an enormous need for accurate
computer simulation of the underlying processes.

In this paper, we provide a robust algorithm for simulation of
images of such processes modeled by a Gibbs distribution. As part
of our rare-event simulation solution, we adapt an importance
sampling technique specifically for Markov random fields. We
conclude by showing results of simulation of images of abnormal
grain growth in poly-crystalline materials and NiCrAl super-alloy
precipitates that find applications in several important real-life
fields such as aircraft material design.

Introduction

MANY important physical processes studied by scientists in
a variety of fields such as materials science, structural bi-

ology, and clinical pathology involve the study of microscopic
structures – from formation and propagation to steady-state be-
havior [1, 2, 3]. Unfortunately, direct observation of such phe-
nomena are very slow and impractical, thus necessitating accu-
rate simulation of the images that capture these phenomena. Even
though the processes are stochastic in nature, there is still an un-
derlying model that is at play. A simple but effective way to ana-
lyze these processes is through the energy of the system. Almost
all natural systems that evolve over time do so in a way that re-
duces the net system energy (also known as the hamiltonian).

In any case, useful stochastic simulation depends on accu-
rate stochastic modeling using appropriate probability distribu-
tions. For images that contain normal/expected structures, effec-
tive simulation methods have been developed previously. In fact,
there exists an entire class of Markov chain Monte Carlo (MCMC)
methods [4, 5, 6, 7] that allow us to sample images that contain
structures modeled by a variety of probability distributions. How-
ever, these methods are not effective when images deviate signif-
icantly from expected behavior.

In many applications, it is important to study certain abnor-
mal events that occur very rarely [8, 9, 10]. However, model-
ing rare events using traditional statistics is usually not feasible.
For typical behavior, empirical distributions (often in the form of
histograms) can be computed from experimental data. Probabil-
ity distributions can be fit to histograms, and statistical tests can
measure goodness-of-fit. For a rare event, on the other hand, the
number of experiments needed to compute reasonable probability
estimates can be astronomically large. This problem becomes es-
pecially difficult for modeling rare events in a high-dimensional
space, such as images. Such cases often requiring some form of

the Gibbs distribution,

p(x) =
1
Z

exp(−U(x)), (1)

where x represents the higher-dimension configuration, Z is the
partition function, and U(x) is the system energy of x.

In this paper, we build upon our simulation methods [11, 12]
to formulate a generic rare-event image simulation framework
based on importance sampling. We wish to emphasize that the
theory developed throughout this paper is general and can be ap-
plied to a wide variety of modeling and simulation problems,
though we choose to show two important imaging applications
pertaining to important materials science phenomena. Specif-
ically, we describe how to simulate images of abnormal grain
growth in polycrystalline materials and images of overlapping
super-ellipses that model NiCrAl super-alloy precipitates – both
of whose underlying processes can be modeled by Gibbs distribu-
tion.

Our first application is the growth of grains in a polycrys-
talline material, which is a very complex phenomenon. In re-
cent years, many computational methods have been developed to
simulate grain evolution, and to study the effects of grain growth
on the overall properties of a material. One such method uses
the Ising/Potts model, with simulation based on Metropolis sam-
pling [13, 14]. For our second application, we are interested in
applying our rare-event simulation algorithm to simulate images
of overlapping precipitates in nickel-based super-alloys. As an
example, we work with the nickel-chromium-aluminum (NiCrAl)
super-alloy [15, 16]. To model the shape of these precipitates, we
adopt super-ellipses inspired by [15].

In the Background section, we briefly outline spatial point
processes, marked point processes, and importance sampling to
give the reader some necessary background to appreciate the pa-
per better. In the Method section, we begin by expressing our ma-
terials science problems as random experiments using Gibbs dis-
tributions and marked point processes (MPP) [17, 18]. It turns out
that abnormally large grains and overlapping NiCrAl precipitates
occur with a low probability, and as such the Gibbs distribution
that models normal behavior cannot be directly used within the
Metropolis-Hastings algorithm. To address this issue, we adapt
an importance sampling strategy for our Gibbs distribution. This
involves modifying the way we compute the system energy of the
2D configurations in our images.

Finally, in the Results section, we present several image sim-
ulation results showing configurations corresponding to various
parameter combinations. Finally, we demonstrate the effective-
ness of our maximum likelihood parameter estimation followed
by results from the anomaly detection experiment.
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Background
Spatial Point Processes and MPP

Spatial point processes are random processes that model how
points are distributed in a 1D, 2D or 3D space. Point processes
describe certain characteristics such as the number of points, and
interaction between these points in a random pattern. Marked
point processes (MPP) are an extension of spatial point processes,
which assign marks to the points to describe properties. MPPs
have several applications such as object detection [19, 20], image
analysis and reconstruction [21, 22], and denoising [23].

Importance Sampling
Suppose X is a random variable describing a random exper-

iment on a sample space,with probability density given by p(x).
We are interested in evaluating the probability:

ρ = E[1A(X)], (2)

where 1A(x) is an indicator function on the set A which is of in-
terest to us. One way to evaluate Eq. 2 is to sample n i.i.d. random
variables X1,X2, ...,Xn from p(x) and calculate,

ρ̂ =
1
n

i=n

∑
i=1

1A(Xi). (3)

Here, ρ̂ is known as the Monte Carlo estimate. An alternative
way to evaluate Eq. 2 is to sample n i.i.d. random variables
X1,X2, ...,Xn from a distribution q(x) known as the importance
sampling distribution, and to calculate the estimate,

ρ̂IS =
1
n

i=n

∑
i=1

1A(Xi)
p(Xi)

q(Xi)
. (4)

Here, ρ̂IS is known as the importance sampling estimate, and
q(x) is such that 1A(x)q(x) is non-zero for values of x at which
1A(x)p(x) is non-zero . The ratio p(·)

q(·) in Eq. 4 is called the Radon-
Nikodym correction term. This term is introduced to correct for
the artificially boosted probability obtained because of choosing
an importance sampling distribution q(·) instead of the original
distribution p(·). We must choose the importance sampling den-
sity carefully. Ideally, the importance sampling density should be
such that it hits the rare event of interest A more often. It can be
seen that Eq[ρ̂IS] = ρ implying ρ̂IS is an unbiased estimator of ρ .

Method
Importance Sampling to Simulate Abnormal Grain
Growth Images

In this section, we formulate an expression for the impor-
tance sampling-specific interaction potential, G(s), and thence the
full system potential, W (s). For our purpose, G(s) must satisfy
two conditions - it must be a measure of abnormality of the con-
figuration, and it must have a form that can be summed over all
the lattice sites in the configuration.

But what does it mean for G(s) to measure the amount of ab-
normality in configuration s? A zeroth order approach would be
for G(s) to be a count of all sites in the configuration s that belong
to the (most) abnormal grain 1 (with grain index kabn). A better

1This would raise the question of what would make a grain (the most)
abnormal. We answer this important question after we develop an expres-
sion for G(s), and we assume for now that we have a grain, gkabn , that is
abnormally growing.

expression of G(s) would not only count sites that belong to the
abnormal grain, but also weight each count by the abnormality of
the neighborhood of each site. The abnormality of the neighbor-
hood could simply be a count of the number of neighboring lattice
sites that belong to the abnormal grain. The second condition on
G(s) ensures that updating G(s) (after every lattice site update
in the Metropolis-Hastings algorithm) would be computationally
tractable.
With these considerations in mind, our proposed expression for
G(s) is as follows,

G(s) =
N

∑
i=1

ci(ni +1), (5)

where, N is the number of sites in the lattice,

ci =

{
c1 if site i belongs to the kabn-th grain
c2 otherwise

c1,c2 are constants such that c1 > c2.
ni = number of neighboring sites of i that belong to the kabn-th
grain.
kabn is the index of the most abnormally growing grain.
Note that the term (ni+1) in Eq. (5) guards against the case when
none of the neighbors of site i belong to the abnormal grain, as
opposed to having just ni which would zero out G(s) even when
site i belongs to the abnormal grain.

We calculate the index, kabn, of the (most) abnormal grain
by considering two factors:
(1) the size of the grains in configuration s, and
(2) the velocity at which the grains are growing.

Specifically, we compute the abnormal grain index by a very
simple two-objective optimization as follows:

kabn = argmax
k

(sk +wv(p)
k ), (6)

where sk is the size of the k-th grain, v(p)
k is its velocity, and the

weight, w, balances the size and velocity. In order to make an as-
sessment of how fast the grains are growing currently, we use the
notion of “instantaneous” velocity. The (instantaneous) velocity,
v(p)

k , of grain k can be defined as the net growth of the grain k in
the past p attempts 2.

To simulate abnormal grain growth, we use a modified sys-
tem potential given by W (s) = E(s)− gG(s), where g is a user-
chosen parameter and E(·) denotes the Markov random field sys-
tem energy [12].

Putting all results together, the importance sampling density
πW can be explicitly written as,

πW (s) =
1
Z

exp
(
−(E(s)−g∗G(s))

kBT

)
, (7)

where E(s) =
N

∑
i=1

z

∑
j=1

γi j and G(s) = ∑
N
i=1 ci(ni +1), and g∗ is the

optimal value of parameter g.

2The value of p = 1 would be make the velocity highly instantaneous,
but is not usually the best choice because of possible fluctuations. On the
other hand, a high value of p makes the velocity less instantaneous and
possibly “misleading”.
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Importance Sampling to Simulate Overlapping
NiCrAl Super-Ellipse Images

Our objective is to simulate a marked point process X with
probability distribution p(.). We define P⊂ Z2 to be a P1xP2 dis-
crete lattice which is the space of points upon which we wish to
simulate our marked point process. Let M ⊂ R3 be the space of
marks associated with the points. Then, χ = P×M is the space
of all marked points, upon which we wish to simulate a set of ob-
jects. Suppose, x is the realization of X then x ∈ {xn = (pn,mn) :
pn ∈ P,mn ∈M}.

Let Nx denote the number of objects and Sx denote the
amount of clustering in a realization x of the marked point pro-
cess X . Nx and Sx are random variables since they are realized
through a random process.

Based on [24], the marked point process can be described
through a Gibbs density function,

f (x) =
1
Z

exp
(
− 1

kT
U(x)

)
, (8)

where U(x) is known as the Gibbs potential and Z is the normal-
izing constant called the partition function, k is the Boltzmann
constant, and T is the temperature.

One possible MPP model is the Strauss model which is based
on the number of objects and pairwise interaction of objects in the
random process. The Gibbs potential for the Strauss model [24]
is given by,

U(x) = λNx +β

(
∑
{i, j}

1[0,d]
(
‖pi− p j‖2

2

))
, (9)

where λ ≥ 0 controls the number of super-ellipses in our simula-
tion, β ≥ 0 controls how clustered or dispersed the spatial points
are, d > 0 is the clustering radius of the spatial points.

This Strauss model does a good job of characterizing the un-
derlying spatial point pattern. Since our objective is to simulate
configurations with specific amounts of overlap between objects
of different sizes, we add another term to the Gibbs potential to
control the amount of overlap. The resulting Gibbs potential is,

U(x) = λNx +β

(
∑
{i, j}

1[0,d]
(
‖pi− p j‖2

2

))
+γ1 ∑

i, j
R(wi,w j),

(10)

where R(wi,w j) is the normalized overlap area between objects
wi and w j in configuration x and γ1 is the parameter that controls
the overlap between objects.

Let Sx = ∑{i, j} 1[0,d]
(
‖pi− p j‖2

2
)

and Rx = ∑i, j R(wi,w j).
Then the Gibbs potential can be rewritten as,

U(x) = λNx +βSx + γ1Rx. (11)

Therefore, the Gibbs density function for our model is given
by,

f (x) =
1
Z

exp(−(λNx +βSx + γ1Rx)). (12)

For both abnormal grain growth and overlapping super-
ellipses, once we have a target importance sampling density func-
tion, we use the Metropolis-Hastings algorithm [25] to draw sam-
ples (i.e., images in our case) from it.

Results and Discussion
Abnormal Grain Growth Simulation

We perform nine simulations by varying the value of the im-
portance sampling parameter, g∗. In order to observe the effect
g∗ has on the microstructure evolution, we keep other parameters
(velocity weight w, c1, and c2) fixed. Specifically, we set c1 = 1,
c2 =−1, and w = 0.8. We then vary g∗ from 0 to 0.24 in steps of
0.03. The case where g∗ = 0 corresponds to having no importance
sampling potential term (G(s)), and our simulation falls back to
the regular Monte Carlo framework. For each simulation s, we
report the fraction of the area occupied by the largest grain.

In our experimental results, we observe that the largest grain
size increases with increasing values of g∗. This property helps
us solve for the required value of g∗ empirically, given the knowl-
edge of desired value of the largest grain size. Since we exper-
iment with a limited number of g∗ values, we perform a curve
fitting operation to establish the relationship between g∗ and the
largest grain size.

We fit a degree-3 polynomial that fits the data best (in the
least squares sense), and the resultant curves are given in Fig. 2.
Suppose, we are interested in generating a configuration with an
abnormal grain that occupies about 30% of the total area (i.e.,
t = 0.3), then the required value of the IS parameter g would be
approximately 0.16. This is as shown in Fig. 2.

The curve fitted to a polynomial of degree 3 is given by,

p3(g) = 17.4585g3 +8.1510g2−0.2820g+0.0689. (13)

NiCrAl Super-Ellipse Simulation
In this section, we present several simulation results show-

ing configurations corresponding to various parameter combina-
tions. These results highlight the effect of varying each parame-
ter, holding the other two fixed. Then we vary just γ to simulate
abnormal (overlapping) super-ellipses. Finally, we demonstrate
the effectiveness of our maximum likelihood parameter estima-
tion followed by results from the anomaly detection experiment.

Note that γ is a variable contraption that is composed of γ1
and γ2 as γ := γ2− γ1. Regardless of the experiment, γ1 is set to
2000, while only γ2 is varied. So, for example, when we report a
γ value of -200, we mean that we set γ2 = 1800, maintaining γ1 at
2000.

In summary, we have a reliable set of algorithms for stochas-
tic simulation of normal and abnormal configurations.

Conclusion
In this paper, we provided a robust algorithm for simulation

of images of physical processes that occur in natural systems in
materials science, clinical pathology, etc. We modeled two spe-
cific materials science examples using a Gibbs distribution.

To develop our rare-event simulation solution, we adapted
the method of importance sampling specifically for Gibbs distri-
butions. Specifically, we showed several results of simulation of
images of abnormal grain growth in poly-crystalline materials fol-
lowed by evolution of NiCrAl super-alloy precipitates that find
applications in several important real-life fields such as aircraft
material design. With this, we propose a generic and effective
method to simulate rare images in any system that can be charac-
terized by Gibbs distributions.
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(a) Normal grain growth: g = 0 (b) Abnormal grain growth: g = 0.12 (c) Abnormal grain growth: g = 0.24

Figure 1: As we increase g, the area of the largest grain – visualized in blue – increases as well, from 5.2% in (a) to 19.8% in (b) to 66.7%
in (c). All percentages are relative to the full lattice area.

Figure 2: Degree-3 polynomial curve fitting to establish an empir-
ical relationship between desired values of the largest grain size
and corresponding required value of parameter g.
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decreases as we decrease γ keeping λ and β fixed.
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