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Abstract
Gangs are a serious threat to the public safety in the United

States. We have developed a system known as Gang Graffiti Auto-

matic Recognition and Interpretation (GARI) to help law enforce-

ment identify, track, and analyze gang activities. Gang graffiti

components are the segmented graffiti content including symbols,

digits, and characters. In this paper, we propose a deep convo-

lutional neural network to classify the graffiti components. We

make a comparison between our proposed deep learning method

and our previous traditional method. Experimental results show

the proposed method reaches 89.3% accuracy with dropout regu-

larization.

Introduction
Gangs pose a serious issue to public safety in the United

States. Gangs migrate from city to suburb constantly. Gang mem-

bers usually paint graffiti onto different types of surfaces to claim

territory, exchange information, or battle rival gangs. Law en-

forcement is interested in automatic ways to help investigate gang

activities. We developed a system known as Gang Graffiti Auto-

matic Recognition and Interpretation (GARI) [1] based on mobile

device and back-end server that helps law enforcement to identify,

track, and analyze gang activities. The image analysis of GARI

system includes segmentation, matching, retrieval, and classifica-

tion of gang graffiti images and gang tattoo images [1, 2, 3, 4]. In

this paper, we propose a new method for gang graffiti component

classification for the GARI system. A gang graffiti component is

defined as a segmented individual “graffiti content” that can in-

clude digits, characters, and symbols. Examples of gang graffiti

components can be found in Figure 1. Note that the gang graffiti

components are hand drawn (or hand sprayed). The graffiti com-

ponents can be further interpreted as semantic resources to form

a language among gangs. Analyzing the gang graffiti components

can help law enforcement have a better understanding of gang ac-

tivities and regional situations so they can make a response. Our

previous work [5] takes a query image as input and segments out

each individual component into black and white image. This pa-

per emphasizes on classifying the segmented graffiti components

into different classes.

Background and Related Work
We take the assumption that the individual gang graffiti com-

ponents have been segmented. After the individual graffiti com-

ponents are segmented, we want to classify the components into

different classes. Many methods have been proposed for general

image classifications. Traditional methods employ some forms of

feature extraction, typically using hand-crafted image feature de-

scriptors, such as Scale Invariant Feature Transform (SIFT) [6],

Histogram of Oriented Gradients (HOG) [7], and Speeded up

Robst Features (SURF) [8]. The codebook based bag-of-feature

model along with a spatial pyramid matching strategy [9] has

been a key success in image classification for many years. In

bag-of-feature methods, a codebook is formed by extracting lo-

cal features from a set of database images and clustering through

K-means [10]. Even with the spatial pyramid matching, a large

amount of spatial information is still lost due to the quantiza-

tion effect of the bag-of- features. Recent research in deep con-

volutional neural network (CNN) has achieved impressive re-

sults in segmentation, object detection, and image classification

[11, 12, 13, 14, 15]. A CNN exploits spatial correlation and ho-

mogeneity of low/mid/high level features of natural images [12].

These features can be enriched by stacking convolution layers.

Many deep neural network architectures have been proposed to

improve the classification accuracy, including Alexnet [13] and

Resnet [14].

In this paper, we propose a CNN architecture for gang graffiti

component classification. The difficulty in our application sce-

nario is all of our images are the real gang graffiti images and

they are collected by police officers. There is a lack of large data

sets and ground truth data for the CNN. We argue in the paper

even with small amounts of data, using data augmentation and

regularization to address overfitting can still obtain good classifi-

cation accuracy. Section describes our previous method and our

proposed new method for gang graffiti component classification.

Section discusses the results between the two methods. We ad-

ditionally compare our proposed method with some benchmark

tests on the CIFAR10 [16] dataset for generality purpose. We

draw a conclusion in section .

Gang Graffiti Component Classification
Overview

The goal of our method is to classify query images into dif-

ferent classes based on a set of gang graffiti components. This

process is known as “Gang Graffiti Component Classification”.

For our study here, 14 classes are created from real graffiti im-

ages including digit 0, 1, 2, 3, 4, 8, character E, G, s, x, symbol

5-point star, 6-point star, arrow, pitchfork. Figure 1 shows exam-

ples of the query images. We describe our previous method and

our proposed deep learning method for classifying gang graffiti

component and make a comparison.

Figure 1: Sample images for each class.
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Previous Method
Our previous method [5] uses SIFT keypoints based spa-

tial location to create Local Shape Context (LSC) descriptors de-

scribed in [17] and [4]. LSC takes the spatial location of the SIFT

points and puts them into different bins to create a histogram. The

bins of LSC are large enough to compensate for the local shape

distortions and orientation variations [5]. The SIFT-based LSC

are used along with hierarchical k-means clustering to build the

vocabulary tree [18, 19] classifier shown in Figure 2. This ap-

proach is similar to the bag-of-feature approach since the vocab-

ulary tree represents the codebook.

Figure 2: Our Previous Method for Gang Graffiti Component

Classification

Data Augmentation
For our proposed method, since our dataset only contains

257 images for training, we need to generate more data in or-

der for the CNN perform well. We use a series of operations in

the data augmentation process, including Gaussian blur, image

sharpening, add values, multiplications, contrast normalization,

rotation. Detailed parameters to each operation can be found in

Table 1. All operations are randomly selected and applied to the

training images. For every training image, we create 500 aug-

mented images. In total we obtain 128757 images for training.

Operation Parameter

Gaussian Blur σ ∈ (1.0,3.0)

Image Sharpening α ∈ (0,1.0)

Add Value δ ∈ (−10,10)

Multiplication β ∈ (0.5,1.5)

Contrast Normalization ε ∈ (0.5,1.0)

Rotation θ ∈ [90◦,−90◦,180◦,−180◦]

Table 1: Parameters used for Data Augmentation. σ is variance,

α is sharpening factor, δ is added value, β is multiplication

factor, ε is contrast normalization ratio, θ is rotation angle

Proposed Method
We propose a Deep Convolutional Neural Network architec-

ture for classifying the gang graffiti components. Our network

consists of 5 convolutional layers followed by 3 fully connected

layers and an output softmax layer. Table 2 shows the detailed

information about each layer. The first two convolutional layers

(conv1 and conv2) are followed by a max pooling layer (pool1

and pool2) and normalization layer (norm1 and norm2). The

Rectified Linear Units (ReLU) [20] nonlinearity has been used to

model the neuron’s output. Let x be the input and f be the output,

then the nonlinearity described by f (x) = max(0,x) has advan-

tages over tanh(x) or sigmoid since it provides a constant learning

rate over x > 0 while the others see significant drop of learning

rate after some iterations of training. Many normalization tech-

niques have been proposed to act like some sort of regularization.

Our normalization use local response normalization in some lay-

ers after applying ReLU nonlinearity. According to [13], local

response normalization implements a form of lateral inhibition

similar to the real neurons, therefore creating better performed

outputs with different kernel size.

Proposed Network Layers

conv1 (11,11,1,64)

pool1

norm1

conv2 (7,7,64,64)

norm2

pool2

conv3 (5,5,64,192)

conv4 (3,3,192,256)

conv5 (3,3,256,256)

pool3

fc1 (256,1152)

fc2 (1152,384)

fc3 (384,192)

softmax (14)

Table 2: For conv layers, the first two numbers are kernel size,

the third number is the input channel and the last number is the

output size. For fc layers, the first number is input and the second

number is the output. For softmax we get the prediction for each

class

During the training phase, 128757 images created from data

augmentation are used. Every image is resized to 48x48 and

changed to grayscale. These images are treated as database im-

ages. The images are then gone through the network. After

100000 iterations of training, we obtain the trained network. Dur-

ing the testing phase, each test image is also resized to 48x48 and

then enters the trained network. The softmax layer will output 14

activation numbers and the class corresponding to the maximum

activation will be selected as the predicted label. The process is

illustrated in Figure 3.

Figure 3: Proposed Convolutional Neural Network for Graffiti

Component Classification
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Experimental Results
For our previous method, using SIFT feature yields a 41.07%

accuracy. By using LSC [5] we can achieve best accuracy 89.3%.

For the proposed method, the precision and recall of the test im-

ages are listed in Table 3. The precision is computed by
tp

tp+fp

and the recall is computed by
tp

tp+fn , where tp is true positive, fp

is false positive, fn is false negative [21]. The overall accuracy is

82.1%. Table 3 shows most of the classes can reach 100% preci-

sion. For the digit 3 and character s, the precision is lower.

label (class) Size Precision Recall

0 (0) 4 (7.14%) 100% 100%

1 (8) 4 (7.14%) 100% 75%

2 (G) 4 (7.14%) 80% 100%

3 (3) 4 (7.14%) 66.7% 100%

4 (E) 4 (7.14%) 100% 50%

5 (s) 4 (7.14%) 66.7% 100%

6 (2) 4 (7.14%) 100% 75%

7 (1) 4 (7.14%) 80% 100%

8 (x) 4 (7.14%) 100% 100%

9 (5 point star) 4 (7.14%) 80% 100%

10 (6 point star) 4 (7.14%) 100% 75%

11 (4) 4 (7.14%) 100% 50%

12 (pitchfork) 4 (7.14%) 100% 100%

13 (arrow) 4 (7.14%) 100% 100%

Table 3: Precision and Recall of test data

We additionally use dropout to combat overfitting problem.

Dropout is a simple technique to randomly disable (drop) some

units during training time to prevent co-adapting [22]. We add

dropout operations for layer fc1 and fc2. Each of the dropout

operation is controlled by a dropout rate that determines the prob-

ability of a unit being dropped. Table 4 shows the detailed ex-

perimental results of how different combinations of dropout rates

affect the classification accuracy. It shows with dropout, the clas-

sification accuracy increases by about 7%.

H
H
H
HH

d2

d1 0% 25% 50% 75%

0% 82.1% 82.1% 85.7% 87.5%

25% 89.3% 83.9% 83.9% 85.7%

50% 83.9% 85.7% 89.3% 85.7%

75% 83.9% 85.7% 87.5% 80.4%

Table 4: Classification accuracy with different combinations of

dropout rates. d1 denotes dropout rate for fc1, d2 denotes

dropout rate for fc2.

Since we do not have enough test images, to make our net-

work fair, we also use it on another benchmark dataset. We choose

CIFAR10 dataset [16] for our comparison. CIFAR10 dataset con-

sists of 60000 32x32 RGB images in 10 classes. All the classes

are uniformly distributed. There are 50000 training images and

10000 test images. We do not fine tune our network to adapt

to CIFAR10 dataset because it defeats the purpose of generality.

We only make the necessary modifications. We change the first

layer to accept 3-channel inputs. We change the kernel size of

the first 3 layers to adapt to the smaller image size. Specifically,

we change the first layer to conv1(5,5,3,64), the second layer to

conv1(5,5,64,64), and the third layer to conv1(3,3,64,192). We

train our network for 1 million epochs. We use the same dropout

method to counter overfitting. We achieve 87% overall classifica-

tion accuracy. Table 5 shows the comparison between our result

and some benchmark results. It shows even without heavy modi-

fication, our network still produces competitive results.

Method Accuracy

Resnet [14] 93.57%

DSN [23] 91.78%

Maxout Network [24] 90.65%

Alexnet [13] 89%

Our Method 87%

Stochastic Pooling [25] 84.87%

Ex-CNN [26] 84.3%

Table 5: Benchmark results

Conclusion

We proposed a deep convolutional neural network to clas-

sify gang graffiti components. We compared our results with our

previous method. It showed with regularization techniques like

dropout, we can easily achieve competitive results. We also show

our network is not just tuned for one dataset, it is suitable for other

datasets such the CIFAR10 dataset with minor modification.
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