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Abstract 

Clinical data about heart failure make it clear that there is a 
need to develop a limited echocardiogram assisted by automated 
functions as a screening tool to identify people who have 
asymptomatic left ventricular dysfunction and who can potentially 
benefit from proven therapies to prevent the development of 
symptomatic HF. Our preliminary tests show that an abbreviated 
version of an echo consisting of only 6 views can provide enough 
information for the binary screening. Six expert echo readers 
achieved near-perfect performance in identifying normal vs. 
abnormal echoes using 6 views, as compared to the diagnosis based 
on the full echocardiogram. The ground truth about the geometry of 
the heart was provided by one expert echo reader in the form of 
drawings and measurements. The drawings were used as a prior in 
a computational model that extracts the contour of the left ventricle 
as the shortest path in a log-polar (complex log) representation of 
the ventricle. This model may represent the first step in the 
development of an automated function for screening 
echocardiogram.  

Introduction  
 
Heart failure (HF) affects 5.5 million Americans, and the cost of 
treating symptomatic HF is estimated to be $40 billion a year [1,2]. 
HF is the inability of heart to pump enough blood to satisfy the need 
of the body, or to do it under increase filling pressures.  In most 
patients HF develops as a slowly advancing disorder and is a result 
of progressive heart damage by diseases like diabetes, hypertension 
and atherosclerosis leading to heart attacks.  There is an estimated 
30 million Americans who have early stages of asymptomatic left 
ventricular (LV) dysfunction. Patients are not aware of this problem 
due to lack of recommended screening and once HF is established, 
the mortality is 90% in 10 years. Early detection of asymptomatic 
LV dysfunction could produce significant benefits for patients and 
for population health [3,4].    
 
Echo examinations are considered to be a gold standard in 
evaluation of cardiac function. Clinically used diagnostic 
echocardiogram has at least 50 to 100 views, takes 30 minutes to 
acquire, 15 minutes to perform measurements and 15 minutes to 
interpret. Skilled echocardiographer can interpret 5-6 studies per 
hour. A standard echocardiogram costs ca. $500-$1,000. There are 
20 million echoes performed each year in the U.S.A. for a total 
current cost of 10-20 billion a year but there is no systematic 
screening of population at risk.  
 
As will be shown in the next section, most patients with early stages 
of HF cannot be diagnosed by their physician unless a specific tool, 
such as an echo is used. A visit to a general practice doctor usually 

does not reveal a HF problem. These patients look good and general 
medical examination will not lead to the primary doctor’s 
recommending a cardiology consult. This is similar to other health 
risks such as breast or colon cancer. However, unlike cancer risks 
which already have widely used screening, HF still does not have a 
comparable tool. 
 

 
Figure 1. Apical 4 chamber view of the heart. Right atrium (RA) 
receives returning venous (blue) blood from the body, fills the right 
ventricle (RV) which pumps blood to the lungs for oxygenation.  
Left atrium (LA) receives oxygenated (red) blood from lungs, fills 
the left ventricle (LV), which pumps blood to the body.  Early 
changes in chambers size and function may be detected by 
echocardiography even before patient develops symptoms of 
shortness of breath, fatigue or swelling of legs. 
 
 
Scope of the Challenge. 
 
Figure 1 shows a schematic view of the heart along with a 
corresponding echo view. Figure 2 shows one frame of a four view 
echo display called a “quad” view. Now look at the movie (video1), 
which shows a 4-view echo of a patient who was on a heart 
transplant list.  When you just looked at this 47yr old patient, you 
would not say that she had advanced cardiac dysfunction.  If we 
cannot rely on person’s general appearance in the advanced stage of 
disease imagine the difficulty to diagnose asymptomatic disorder. 
The patient’s activity is usually limited, but at the early stages of 
cardiac dysfunction the patient may not even complain simply 
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because the patient has been adapting to the progression of the 
disease for years.  Unfortunately, physical examination is also not 
perfect and even cardiologists fail to detect 43% of findings that 
have been classified as “major” based on auscultation [5].   
 

 
Figure 2. One frame of a four view echo display called a “quad” 
view.  Two top images show long and short axis view of the heart 
obtained from echo probe placed in left side of sternum on patient’s 
chest (parasternal views).  Two bottom images show four chambers 
and two chambers view of the heart obtained from echo probe placed 
close to the apex of the heart (apical views).  
 
Figure 3 summarizes the timeline of the disease progression. In most 
cases the disease develops slowly, over decades. At the same time, 
there is proven, guidelines recommended, inexpensive medical 
therapy with beta blockers and ACE Inhibitors, which will slow the 
disease progression [6-9]. But there is no method to screen the 
population at risk for presence of asymptomatic LV dysfunction. 
 

 
Figure 3. Defining the population of patients with CHF [10]. 
 
There are estimated 60 million Americans in stage A, which means 
asymptomatic patients who have one or more risks for development 
of LV dysfunction. Additionally, there are 33 million Americans in 
stage B, which are patients with asymptomatic LV dysfunction. 
These patients have the disease, but they have no symptoms or their 
symptoms are not diagnosed.  This group has significant 10-year 
mortality described by long term Framingham study as pictured on 
Figure 4 [11]. 
  
Using technical jargon, the disease is in the null space of the current 
medicine. As already pointed out, the development of the disease 
can be dramatically slowed down pharmacologically. The 

population that receives treatment under current guidelines is in 
stage C and D, with a total of over 6 million patients who are already 
very sick. These are the two groups whose care costs over $40 
billion annually, with over half of these costs spent on > 1 million 
hospitalizations per year. 
 

 
Figure 4. Kaplan-Meier curves for survival of patients with 
asymptomatic LV dysfunction (ALVD) compared with normal 
population and with patients with CHF. 
 
Opportunity. 
 
There is a need to screen large population of patients who are at risk 
of developing HF. Mortality for HF is 270 per 100 thousand people 
per year. Yet, there is no recommended screening despite the 
availability of noninvasive methods. Physical exam, ECG or blood 
work are not adequate for diagnosis of HF [12]. As a comparison, 
there is recommended screening for colon cancer with colonoscopy 
once you are 50 years old. Mortality of CC is 16 per 100 thousand 
people per year, which is 15 times lower than in HF [13]. Note also 
that colonoscopy, the screening method, is both expensive and 
invasive (not to mention the preparation). 
 
Screening 30% of adult population will require additional 90 mln 
studies, likely repeated every 5-10 years. We identified 3 main 
barriers that would have to be overcome: workforce, cost and 
technology. The rest of this paper will propose ways to do it. 
 
New Approach. 
  
If 30% of US population (over 90 mln Americans) is screened every 
5-10 years, there will be more than 10 mln screening echoes to 
interpret every year. With the current cost of $500-$1,000 per echo, 
HF screening will add significant cost to an already expensive care. 
But even more importantly, there will need to be increased number 
of echo technicians and echo readers to acquire and interpret them. 
These additional screening echoes will add more than 50% of echoes 
to an already existing 20 mln studies, annually. The only way to 
justify echo screening is to scale it down and automatize it, at least 
partially. 
 
In order to introduce echo based screening tool, echocardiogram 
needs to be scaled down to small number of views.  Acquiring such 
a screening echocardiogram should take about than 10 minutes to 
acquire, measurements should be assisted by a computational 
model, and the interpretation should focus only on providing a 
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binary decision whether the screening echo is normal vs abnormal.  
The cost of screening echo should be less than $200.  
 
Our preliminary experiment suggests that 6 views may be sufficient 
for screening. In addition to the 4 views shown in Figure 2, there 
should be two additional views, as shown in Figure 5. Parasternal 
long axis view with color Doppler interrogation of the mitral and 
aortic valve will provide information about key valvular function, 
and spectral Doppler through the mitral valve will provide 
information about the filling pressures of the left ventricle which is 
an important hemodynamic parameter. 
 

   
Figure 5. Two additional views for the 6 view screening echo.   
 
One of us (IGP) randomly selected from the IU Health database of 
echocardiograms 50 normal and 50 abnormal echoes. Six views 
were extracted.  Measurements were obtained from these views as 
part of initial interpretation. Five readers were asked to make binary 
decision whether echo was normal or abnormal based on visual 
assessment and then final decision after looking at measurements. 
Some of the readers had years of experience, others have been 
reading echoes for about a year or two. Across the 5 readers, 94% 
echoes were correctly classified based on visual assessment, and 
98% correct when measurements were available. The average time 
of interpretation was less than 2 minutes per study.  This experiment 
will be repeated with larger number of echoes and with realistic base 
rates of normal vs. abnormal. But already these results confirm our 
expectation that small number of views will be sufficient for 
screening the population at risk.  
 
Towards an automated analysis of echocardiograms. 
 
Look at the left ventricle (LV) in Figure 1. The 2D images are used 
to estimate 3D geometry of the LV throughout the heart cycle and 
characterize cardiac function. If the pumping function of the heart is 
normal, then the ratio of the maximum volume of LV to its minimum 
volume (referred to as ejection fraction) is in the range of 55 to 65%.  
What really matters is the volume of the blood that is pumped and 
the spatiotemporal geometry of the heart can be used to estimate it. 
 
Look at Figure 6. The contour of LV drawn by an expert echo reader 
is shown in green and superimposed on contours extracted by a 
standard edge detection algorithm. Recall that the output of edge 
detection is a set of edge pixels – here shown in white. You see 
curves, but edge detection does not produce contours; only isolated 
pixels. The green contour was actually drawn on top of the raw 
image shown on top of Figure 6. The next movie (video2) actually 
shows a normal echocardiogram with superimposed contours drawn 
by an expert. The expert drew the contours on stationary images and 
she did not have in front of her the previous images and contours. 
This leads to some uncorrelated noise in the drawn contours due to 
noise in the motor system, as well as visual system. We will point 
out later in this paper that a computational model will not have a 

motor noise and the visual noise can be reduced because the model 
can use the information from all images. Once the contours are 
drawn, they are used to estimate the volume of LV using an 
approximation that assumes that LV is a truncated ellipse. 

 
 

 
Figure 6. Top: one image from an echocardiogram. Bottom: ground 
truth superimposed on a standard contour extraction result. 
 
 
Extraction of contours from images has received a lot of attention in 
computer vision literature [14-24]. It has also received attention in 
psychophysical literature [25-32]. Here we build on the model 
recently developed by one of us [33]. It is known that human 
observers can detect closed curves in noisy images very well. An 
example of a stimulus illustrating this is shown in Figure 7 labeled 
“retina.” A pentagon, represented by a fragmented contour is 
embedded in 300 distractor pieces of contours. The stimulus was 
prepared in such a way that proximity of contours was not a useful 
feature allowing detection of the pentagon. Only smoothness, 
closure, and convexity could do the job. When the reader looks at 
this stimulus, she can easily see the pentagon. The pentagon is 
marked in red in Figure 7, labeled as “perceived contour”. In fact, 
this perceived contour was produced by Kwon et al.’s model. The 
subjects in their experiment used a stylus to draw what they saw on 
a tablet. They tested 3 subjects. One of the subjects was naïve about 
the underlying hypotheses. Their experiment used both convex and 
concave polygons. The difficulty of the task was manipulated by 
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adding a random jitter to the orientation of the edges representing 
the polygon. Performance of all 3 subjects was very similar and very 
good. This is not surprising: most visual functions are characterized 
by very small individual differences: We all see things the same 
way. Kwon et al.’s model was motivated by the known architecture 
of the primate primary visual area V1 [34].  
 

 

 
Figure 7. An illustration of how the shortest path in the complex-log 
representation corresponds to a smooth, convex and closed contour 
in the image (after [33]). 
 
 
It is known that the distribution of cone receptors on the human 
retina is not uniform. More specifically, the distance between the 
neighboring cones is proportional to their eccentricity, which is the 
distance from the center of the retina. This proportionality is not 
perfect around the very center due to the finite size of the cone, 
whose diameter is 0.3 minutes of arc. So, there is high density of 
cones in the center of the retina, and the cones are sparser in the 
periphery. It follows that in order to see details, we orient the eyes 
in such a way that the image of the detail falls into the center of the 
retina. The retinal image is mapped onto area V1 in the occipital 
cortex and this map is distorted. One way to see why distortion is 
needed is to realize that it is economical to distribute the neurons in 
the volume of the brain approximately uniformly. So, what are the 
possible transformations from the known distribution of cones on 
the retina into a uniform distribution on the surface of V1? There is 
only one such transformation and it is called complex-log.  
 
Consider the Cartesian coordinate system (x,y) on the retina and the 
corresponding polar coordinate system (r,ϕ). Now, instead of using 
a pair of real numbers (x,y) to represent a point, we will use a 
complex number z=x+iy, or in Euler notation z=reiϕ. If you take a 
complex logarithm, you get a complex-log representation 
corresponding to a complex plane: ln(r)+iϕ. So, the radius on the 
retina is transformed into its natural logarithm and the polar angle is 
expressed in radians. Complex-log map belongs to the family of 
conformal maps, which preserve local angles (but not curvatures) 

[35]. Figure 7, panel labeled “area V1” shows how the stimulus 
looks like in the complex-log representation. It is easy to realize that 
the complex-log map of a retinal stimulus depends on the position 
of the origin of the polar coordinate relative to the stimulus. So, the 
representation in V1 is not translation invariant. But it is scale and 
rotation invariant. Interestingly, when translation on the retina 
occurs, local angles are invariant, too. This means that any measure 
of smoothness of a contour that is based on local angles, will be 
translation invariant, too. 
 

 
Figure 8. The ground truth from Figure 5 and superimposed model’s 
contour that used the ground truth as a prior. 
 
Next, note that the problem of integration of a fragmented closed 
curve on the retina translates into the problem of finding the shortest 
path in the complex-log representation. More precisely, it is the 
problem of the least-cost path where the cost evaluates the size of 
the interpolations and the size of turning angles. The shortest path 
problem can be solved optimally in a polynomial time. So, what 
looks like an NP hard problem on the retina is transformed into a P 
problem in the complex-log representation. Note that we are not 
claiming that P=NP. What we are saying is that a problem for which 
it is difficult to find a polynomial approximation in the retina has a 
natural polynomial approximation in the complex-log 
representation. Gestalt Psychologists have always claimed that a key 
to solving difficult problems is in finding the right representation 
[36]. Kwon et al.’s model is a good illustration of this claim. The 
panel “shortest path” in Figure 7, shows the shortest path between 
the left and right edges of the map labeled “area V1.” Once the 
shortest path is found in the complex-log map, it is back projected 
to the retina and the result is shown in the panel labeled “perceived 
contour” (see [33] for details of the model and for the 
psychophysical tests).  
 
Kwon et al.’s model is a model of how every human being sees 
contours in images. This is surely how a medical resident sees 
contours in the echocardiogram. By the time, the student finishes 
her cardiology fellowship with specialization in echocardiography, 
she will see the contours in the echo much more accurately. During 
the training, the cardiologists builds a mental model of the heart, and 
connects this model with the examples of echo images. At this point, 
we have a model of a naïve human observer and we improved the 
model’s performance by using the expert’s drawing as a prior. An 
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example of how such a model compares to the ground truth drawn 
by an expert echo reader is shown in Figure 8. 
 
The model starts with a standard edge detection applied to a blurred 
image. Then, it uses the center of LV as the origin and applies 
complex-log transformation. Then, it selects a starting point and 
solves the least-cost path. But the cost is now modulated in such a 
way that the path is biased towards the path representing the ground 
truth. 
 
Figure 9 shows a number of images from an echo cycle with the 
ground truth and with the model’s contour superimposed. In these 
simulations, the model used the ground truth as a prior only once, 
for the first image. For all subsequent images, the prior for image 
n+1, was the model’s contour from image n. These are very 
preliminary results, but they are encouraging. Note that what is 
important is not that the contours are perfect, but that characteristics 
such as rejection fraction, derived from the contours are correct.  
 
Future work. 
 
There are a number of aspects of our model that have to be improved 
and worked out. First, is the automatic estimation of the center of 
LV. Second is the optimal choice of parameters for edge detection. 
Next, is the optimal choice of a cost function that combines the 
contours from image n+1 with the prior from image n. Next, is the 
smoothing of the resulting contour. Finally, we will need to build a 
statistical model of the prior that can be applied to the first image 
automatically. This prior will be derived from a large data based of 
the contours drawn by expert echo readers. 
 
Conclusions. 
 
There are two main contributions in our paper. First, we call the 
attention of the medical and imaging communities to the need for 
developing a screening tool for asymptomatic cardiac dysfunction. 
This screening will be based on a reduced echo represented by 6 
views. This echo will take less time to acquire and less time to 
interpret compared to the full echocardiogram. Second, we point out 
that the main spatiotemporal characteristics of the heart should be 
extracted by a computational model. Such a model will eliminate the 
time of the echo technician performing measurements.  Expert echo 
reader will perform binary classification to normal and abnormal 
studies based on 6 views.  It is estimated based on literature that 16% 
of studies will be classified as abnormal and will need to be followed 
by a full diagnostic echocardiogram [37]. We believe that the 
current knowledge of how the human visual system works is at the 
point that one can emulate perception of a naïve observer. The next 
step, is to enhance the model so that it can emulate the percept of an 
expert. The method that we propose, namely, the use of the ground 
truth in the form of contours and measurements, combined with 
tools such as shortest path in the complex-log representation may 
lead to dramatic improvement of the model’s performance. 
 
Once the elaborated computational model exists, one can speculate 
about developing a computational tool that will be guiding a 
relatively naïve echo user in acquiring the necessary views. This 
goal may be achieved in a distant future, but we think that the field 
is at the point where this task should be taken seriously. 
 
 

  
 

  
 

  
 

  
 

  
 

  
 
Figure 9: Every 3rd image from an echo cycle with the ground truth 
(green) and our model (red). The expert reader drew open contours 
assuming that the endpoints should be connected.  
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