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Abstract
Fluorescence microscopy has become a widely used tool for

studying various biological structures of in vivo tissue or cells.

However, quantitative analysis of these biological structures re-

mains a challenge due to their complexity which is exacerbated

by distortions caused by lens aberrations and light scattering.

Moreover, manual quantification of such image volumes is an in-

tractable and error-prone process, making the need for automated

image analysis methods crucial. This paper describes a segmen-

tation method for tubular structures in fluorescence microscopy

images using convolutional neural networks with data augmen-

tation and inhomogeneity correction. The segmentation results

of the proposed method are visually and numerically compared

with other microscopy segmentation methods. Experimental re-

sults indicate that the proposed method has better performance

with correctly segmenting and identifying multiple tubular struc-

tures compared to other methods.

Introduction
Recent advances in fluorescence microscopy imaging, espe-

cially two-photon microscopy, have enabled the imaging of cel-

lular and subcellular structures of living tissue [1, 2, 3]. This has

resulted in the generation of large datasets of 3D microscopy im-

age volumes, which in turn need automatic image segmentation

techniques for quantification. However, the quantitative analy-

ses of these datasets still pose a challenge due to light scatter-

ing, distortion created by lens aberrations in different directions,

and the complexity of biological structures [4]. The end result is

blurry image volumes with poor edge details that become worse

in deeper tissue depths.

There have been various techniques developed for segmen-

tation of microscopy images. One widely used class of methods

is based on the active contours technique which minimizes an en-

ergy functional to fit contours to objects of interest [5, 6]. Early

version of active contours [5] generally produced poor segmenta-

tion results since the segmentation results are noise sensitive and

initial contour dependent. An external energy term which con-

volves a controllable vector field kernel with an image edge map

was presented in [7] to address the noise sensitive problem. Sim-

ilarly, the Poisson inverse gradient was introduced to determine

initial contours locations to segment microscopy images in [8].

Moreover, active contours methodology has been integrated with

a region-based segmentation method that poses the segmentation

problem as an energy equilibrium problem between foreground

and background regions [9]. In addition, this region-based active

contours technique was extended to fully utilize 3D information to

identify foreground and background voxels [10]. More recently,

this 3D region-based active contours was combined with 3D in-

homogeneity correction to provide better segmentation since this

technique takes into consideration inhomogeneities in volume in-

tensity [11]. Additionally, a new segmentation method known as

Squassh that couples image restoration and segmentation using a

generalized linear model and Bergman divergence was introduced

[12], whereas a method that combined with detecting primitives

based on nuclei boundaries and identifying nuclei region using re-

gion growing was demonstrated in [13]. Alternatively, combina-

tion of multiresolution, multiscale, and region growing methods

using random seeds to perform multidimensional segmentation

was described in [14].

As indicated above, florescence image segmentation still re-

mains a challenge problem. Tubule, a biological structure with a

tubular shape, segmentation is even more challenging since tubu-

lar shape and orientation is varied without known patterns. Also,

since typical tubular structures have hollow shapes with unclear

boundaries, traditional energy minimization based methods such

as active contours have failed segmenting tubular structures [15].

There has been some work particularly focusing on tubular struc-

ture segmentation. A minimal path based approach was described

in [16, 17] where tubule shape is modeled as the envelope of a

family of spheres (3D) or disk (2D). Similarly, a new approach

for 3D human vessels segmentation and quantification using 3D

cylindrical parametric intensity model was demonstrated in [18].

Also, multiple tubule segmentation technique that combined with

level set methods and the geodesic distance transform was intro-

duced in [19]. More recently, one method used to segment tubular

structures was delineating tubule boundaries followed by ellipse

fitting to close the boundaries while considering intensity inhomo-

geneity [15]. Another method known as Jelly filling [20] utilized

adaptive thresholding, component analysis, and 3D consistency to

achieve segmentation, whereas a method for tubule boundary seg-

mentation used steerable filters to generate potential seeds from

which to grow tubule boundaries followed by tubule/lumen sep-

aration and 3D propagation to generate segmented tubules in 3D

[21]. Previous methods, however, focused on segmenting bound-
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aries of tubule membrane. Since some tubule membranes are

not clearly delineated in fluorescence microscopy image volume,

finding tubule boundaries may not always result in identifying in-

dividual tubule regions.

Convolutional neural network (CNN) has been used to ad-

dress segmentation problems in biomedical imaging [22]. The

fully convolutional network [23] introduced an encoder-decoder

architecture for semantic segmentation. U-Net [24] is a 2D CNN

based method utilizing this encoder-decoder architecture with

connecting intermediate stages of downsampling and upsampling

to preserve information. U-Net can be used segment complex bio-

logical structure in microscopy images. Similarly, in [25] a U-Net

trained on cell objects and contours was used to identify tubu-

lar structures. Additionally, a multiple input and multiple output

structure based on a CNN for cell segmentation in fluorescence

microscopy images was demonstrated in [26]. Also, a nuclei seg-

mentation method that combined with a 2D CNN and a 3D refine-

ment process was introduced in [27].

In this paper, we present a method for segmenting and iden-

tifying individual tubular structure based on a combination of in-

tensity inhomogeneity correction, data augmentation, followed by

a CNN architecture. Our proposed method is evaluated at object-

level metrics as well as pixel-level metrics using manually anno-

tated groundtruth images of real fluorescence microscopy data.

Our datasets are comprised of images of a rat kidney labeled with

a phalloidin which labels filamentous actin collected using two-

photon microscopy. A typical dataset we use in our studies con-

sists of two tissue structures, the base membrane of the tubular

structures and the brush border which is generally located inte-

rior to proximal tubules. Our goal here is to segment individual

tubules enclosed by their membranes.

Proposed Method

2D CNN

Train

Inhomogeneity 

Correction

Inference

Data 

Augmentation

Postprocessing

Figure 1: Block diagram of the proposed segmentation method

for tubule segmentation

Figure 1 shows a block diagram of the proposed method. We

denote a 3D image volume of size X ×Y × Z by I, and the pth

focal plane image along the z-direction, of size X ×Y pixels, by

Izp
where p ∈ {1, . . . ,Z}. We also denote the original training

and test images in the pth focal plane by I
O, train
zp

and I
O, test
zp

, re-

spectively. In addition, I
G, train
zp

and I
G, test
zp

denote the groundtruth

images that are used for training and testing that correspond to

I
O, train
zp

and I
O, test
zp

, respectively. Similarly, I
C, train
zp

and I
C, test
zp

de-

note inhomogeneity corrected training and test images, respec-

tively. Lastly, I
S, test
zp

denotes the binary segmentation mask gener-

ated by our proposed deep learning architecture and I
F, test
zp

denotes

the final segmentation outcome. For example, the 100th original

focal plane is denoted as IO
z100

, its corresponding groundtruth im-

age by IG
z100

, the inhomogeneity corrected version by IC
z100

, the bi-

nary segmentation mask as IS
z100

, and the final segmentation result

by IF
z100

, respectively.

As shown in Figure 1, our proposed network includes two

stages: a training and an inference stage. During the training

stage original training images (I
O, train
zp

) have their intensity inho-

mogeneities corrected (I
C, train
zp

) as a preprocessing step. Since flu-

orescence microscopy images suffer from intensity inhomogene-

ity due to non-uniform light attenuation, correcting intensity in-

homogeneity helps improve final segmentation results. We then

utilize both I
C, train
zp

and I
G, train
zp

as inputs to the data augmenta-

tion step to increase the number of training image pairs used for

training the CNN model, M. During the inference stage inho-

mogeneity correction is done on the test images (I
O, test
zp

) to obtain

I
C, test
zp

. These I
C, test
zp

are then used to segment tubules with the

trained model M.

Intensity Inhomogeneity Correction
Due to non-uniform intensities of fluorescence microscopy

where center regions of the focal plane are generally brighter

than boundary regions, simple intensity based segmentation meth-

ods failed to segment biological structures especially near image

boundaries [11]. Our previous work [11] employed a multiplica-

tive model where the original microscopy volume is modeled as

IO =W ◦ IC +N. (1)

Here, W and N are a 3D weight array and a zero mean 3D Gaus-

sian noise array, respectively, both of same size as the original

microscopy volume. Specifically, W represents weight values for

each voxel location that accounts for the degree of intensity inho-

mogeneity. The ◦ operator denotes the Hadamard product repre-

senting voxelwise multiplication.

The main idea of the multiplicative model is that an original

volume, IO, is modeled as the product of a 3D inhomogeneity

field W with a corrected volume IC and the product corrupted by

additive 3D Gaussian noise N. In [11] an iterative technique to

finding W and then correcting for the intensity inhomogeneities

based on this model is described.

Our proposed method uses this inhomogeneity correction

technique as a preprocessing step for both training and inference.

Examples of original and inhomogeneity corrected images are

shown in Figure 3a and Figure 3b, respectively.

Data Augmentation
Our training data consists of paired images which are orig-

inal microscopy images and corresponding manually annotated

groundtruth images. Generating manually annotated groundtruth

images is a time consuming process and thus impractical when

generating large numbers of images. Data augmentation is typi-

cally used when the available training data size is relatively small

to generate additional groundtruth images [24]. In this paper we

utilize an elastic deformation to generate realistic tubular struc-

tures with different shapes and orientations. This allows the net-

work to learn various deformed tubular structures, and is particu-

larly useful for analysis of microscopy images especially for tubu-

lar structures that appear in varying shapes and orientations [24].

We used elastic deformation by employing a grid of control

points located every 64 pixels along the horizontal and vertical

directions and displacing these control points randomly within 15
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Figure 2: Proposed convolutional neural network architecture

pixels in each direction to generate a deformation field. The de-

formation field is used to deform the pth focal planes I
C, train
zp

and

I
G, train
zp

by fitting 2D B-spline basis function to the grid followed

by bicubic interpolation [28]. We generated 100 random defor-

mation fields for each image pairs and use them to generate 100

deformed image pairs. Each deformed image is rotated 0◦, 90◦,

180◦, 270◦ to generate four sets of rotated images while preserv-

ing the original image size. Each rotated image is then flipped left

and right to generate another two sets of images. In our experi-

ment, we manually annotated five pairs of training data during the

training stage. Since the elastic deformation uses 100 deforma-

tions followed by four rotations and two flips for each deformed

image, 4000 pairs of images were generated for training.

Convolutional Neural Network (CNN)

The architecture of our convolutional neural network, shown

in Figure 2, consists of 5 encoder layers denoted as E1 through

E5 and 5 decoder layers denoted as D1 through D5 that are se-

rially connected followed by a softmax layer at the end. Each

encoder layer consists of a 3× 3 kernel with 1 pixel padding to

maintain same image size, a batch normalization step [29] to per-

form image whitening, followed by a rectifier-linear unit (ReLU).

The combination of convolution, batch normalization, and ReLU

are performed twice at every encoder. Finally, maxpooling with a

stride of 2 is used to reduce dimensionality. This encoder scheme

is similar to VGGNet [30] which shrinks the input dimensions but

increases the number of filters in the deeper structures. In Figure

2, each encoder’s input dimension is indicated in red under the en-

coder layers. Also note that the number shown above each layer

represents the number of filters utilized for training. For example,

an input image of size 512×512×1 is resized to 256×256×16

at the input to the E2 layer. As the image passes through the all

encoder layers, its X and Y dimensions shrink to 32, respectively,

but number of filters utilized increases to 256. Therefore, the in-

put to the first decoder layer is of dimension 32×32×256.

Conversely, each decoder is comprised of two 3 × 3 ker-

nels with 1 pixel padding, batch normalization, and ReLU. In-

stead of a maxpooling layer, the decoder has an unmaxpooling

layer to upsample the data to increase dimensionality. Note that

this upsampling process is a reconstruction process. To achieve

better upsampling maxpooling indices from each encoder layer

are recorded and transferred to the corresponding same size un-

maxpooling layer (E1 → D5, . . . ,E4 → D2). At the end of the

encoder-decoder structure, a softmax classifier layer is utilized

to determine whether each pixel location belongs to a tubule or

background using a probability map. Note that the output of the

softmax layer is of size 512× 512× 2 because the final output

includes two probability maps corresponding to the two classes:

tubule or background. These probability maps are thresholded at

0.5 to produce binary segmentation masks.

During the training stage augmented training images

(I
C, train
zp

) are randomly selected and used to train the model M for

each iteration. The segmentation mask is compared with the cor-

responding groundtruth (I
G, train
zp

) and a loss value is obtained for

each iteration. Here, we use a 2D cross entropy loss function that

is minimized using stochastic gradient descent (SGD) with a fixed

learning rate and a momentum. During the inference stage we

use the trained model M with test images (I
C, test
zp

) to obtain bi-

nary segmentation masks (I
S, test
zp

). During the postprocessing step

we clean up objects less than γ pixels from I
S, test
zp

followed by a

hole filling operation to obtain final segmentation results (I
F, test
zp

).

Note that the hole filling operation assigns a background pixel to

a tubule pixel if the background pixel’s 4 neighborhood pixels are

all tubule pixels.

Experimental Results
The performance of our proposed method was tested on two

different datasets:1 Dataset − I and II. Dataset − I is comprised

of Z = 512 grayscale images, each of size X ×Y = 512×512 pix-

els, whereas Dataset − II consists of Z = 821 grayscale images,

each of size X ×Y = 640×640 pixels. We selected five different

images from Dataset − I and generated corresponding manually

annotated groundtruth images to train model M. Our deep learn-

ing architecture was implemented in Torch 7 [31] using a fixed

learning rate 10−5 and a momentum of 0.9. As indicated, 4000

pairs of images were generated by the elastic deformation, rota-

tions, and flips using these five pairs of images. Note that each

training data was used as a batch so that 4000 iterations were per-

formed per epoch. We used 200 epochs for training our proposed

network. In addition, γ = 100 was used for the removal of small

objects. The performance of the proposed method was evaluated

1Dataset − I and II were provided by Malgorzata Kamocka of the In-
diana Center for Biological Microscopy.
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using manually annotated groundtruth images (I
G, test
zp

) at differ-

ent depths in Dataset − I that were never used during the training

stage. For visual evaluation and comparison segmentation results

of Iz100
in Dataset − I using various techniques are presented in

Figure 3.

(a) IO
z100

(b) IC
z100

(c) IG
z100

(d) 3Dac (e) 3DacIC (f) 3Dsquassh

(g) Ellipse Fitting (h) Jelly Filling (i) Steerable Filter

(j) 2DCNN (k) 2DCNNIC

(Proposed)

Figure 3: Segmentation results obtained by the proposed method

and other methods as well as the corresponding groundtruth data

for the 100th image (Iz100
) in Dataset − I. Segmentation results

are highlighted in green and corresponding groundtruth in red.

Qualitative Evaluation

The first row in Figure 3 displays an original microscopy im-

age (IO
z100

), its inhomogeneity corrected version (IC
z100

), and manu-

ally delineated groundtruth (IG
z100

), respectively. For brevity we

have omitted the superscript test in the notation. The second

row shows segmentation results of various 3D methods such as

3D region-based active contours [10] (3Dac), 3D active contours

with inhomogeneity correction [11] (3DacIC), and 3D Squassh

presented in [12] (3Dsquassh). Similarly, the third row portrays

various segmentation methods particularly designed for tubular

structure segmentation such as ellipse fitting method presented in

[15] (Ellipse Fitting), the Jelly filling method in [20] (Jelly Fill-

ing), and tubule segmentation using steerable filter [21] (Steer-

able Filter). Finally, the last row shows segmentation results of

our proposed CNN architecture without inhomogeneity correction

[27] (2DCNN) and with inhomogeneity correction (2DCNNIC).

For visual comparison we highlighted groundtruth regions in

red, segmented tubule regions in green, and background in black.

As observed in Figure 3, our proposed method appeared to per-

form better than the other six methods shown in the second and

third rows by distinguishing tubules and was similar performance

to 2DCNN. Note that since some methods such as Ellipse Fit-

ting, Jelly Filling, and Steerable Filter only segmented bound-

aries of tubule structures, tubule interiors were filled in order to

perform a fair comparison using connected components with a 4-

neighborhood systems. Also, based on the assumption that tubule

regions should contain lumen, if a filled region contained lumen

pixel, the region was identified as a tubule region. However, if

a filled region did not contain any lumen pixels, the region was

considered as a background region.

(a) 3Dac (b) 3DacIC (c) 3Dsquassh

(d) Ellipse Fitting (e) Jelly Filling (f) Steerable Filter

(g) 2DCNN (h) 2DCNNIC

(Proposed)

Figure 4: Qualitative evaluation/comparison of tubule segmenta-

tion results (shown in green) from the proposed method as well

as other methods overlaid onto groundtruth image (shown in red)

for Iz100
belonging to Dataset − I

The segmentation results shown in the second row gener-

ally missed many tubule regions. More specifically, 3Dac and

3Dsquassh could not capture the tubular structures but captured

some in the center regions due to the intensity inhomogeneity of

microscopy images. 3DacIC failed to segment tubular structures

but captured multiple lumens inside tubules as well as some tubule

boundaries. In contrast, the segmentation results displayed in the

third row showed falsely detected tubules. The main reason is

that these tubule segmentation methods focused only on detecting

boundaries of tubular structures. In particular, due to weak/blurry

edges of fluorescence microscopy images, many boundaries were

not continuous causing the filling operation to overflow from one

tubule to another or to the background regions. The segmenta-

tion results using the CNN generally successfully segmented and

identified each tubule region.

Figure 4 provides an alternative way to show the segmen-
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Iz100
of the Dataset − I Iz200

of the Dataset − I

Method PA Type-I Type-II F1 OD OH PA Type-I Type-II F1 OD OH

3Dac [10] 37.74% 3.31% 58.95% 0.90% 20.86% 95.72 38.98% 2.72% 58.30% 1.83% 20.74% 125.69

3DacIC [11] 42.92% 8.06% 49.02% 0.86% 36.45% 35.07 44.58% 4.84% 50.59% 0.00% 38.02% 30.41

3Dsquassh [12] 47.02% 11.80% 41.18% 1.83% 11.64% 223.34 48.37% 9.55% 42.09% 1.94% 14.34% 181.58

Ellipse Fitting [15] 76.17% 22.79% 1.04% 61.15% 47.10% 144.28 76.11% 22.98% 0.91% 48.48% 29.34% 303.34

Jelly Filling [20] 83.91% 13.36% 2.73% 81.82% 71.58% 52.93 81.76% 15.38% 2.86% 74.53% 60.73% 76.26

Steerable Filter [21] 70.98% 28.98% 0.04% 9.90% 5.32% 455.83 71.00% 28.97% 0.03% 4.12% 4.00% 521.83

2DCNN [27] 90.57% 5.25% 4.17% 91.49% 90.09% 13.28 86.92% 5.64% 7.44% 86.96% 87.10% 16.80

2DCNNIC
90.04% 6.44% 3.52% 92.63% 90.12% 11.95 88.66% 5.77% 5.57% 90.61% 89.65% 11.76

(Proposed)

Table 1: Quantitative evaluation of the proposed method and other known methods in terms of Pixel Accuracy (PA), Type-I error, Type-II

error, F1 score, Dice Index (OD), and Hausdorff Distance (OH)

tation results. In particular, yellow regions correspond to true

positives which are pixel locations that are identified as tubules

in both the groundtruth and segmentation results. Green regions

correspond to false positives which are pixel locations that are

identified as background in groundtruth but tubules in segmenta-

tion results. Similarly, red pixels correspond to false negatives,

namely pixel locations identified as tubules in the groundtruth but

background in segmentation results, and black pixel regions cor-

respond to true negative that are identified as background in both

groundtruth and segmentation results. The green regions indi-

cate Type-I error (false alarm) regions and the red regions repre-

sent Type-II error (miss) regions. As observed from Figure 4, the

segmentation results in the first row contained large red regions

which mean large regions of tubules were missed. Conversely,

the segmentation results shown in the second row contained many

green regions indicating many background regions were falsely

segmented as tubule regions. In contrast, the segmentation results

in the third row had reasonably small green regions and red re-

gions which indicate that the deep learning based segmentation

results had higher pixel accuracy with relatively low Type-I and

Type-II errors.

Quantitative Evaluation
In addition to the qualitative evaluation, quantitative met-

rics for evaluating the proposed method’s segmentation accuracy

of objects were utilized. In particular, we used pixel-based and

object-based metrics. In the pixel-based metric, the pixel accu-

racy (PA), Type-I error, and Type-II error of pixel segmentation

were obtained based on the manually annotated groundtruth im-

ages. Here, PA, Type-I, and Type-II are defined as below:

PA=
N

p
t p +N

p
tn

N
p
total

, Type− I =
N

p
f p

N
p
total

, Type− II =
N

p
f n

N
p
total

(2)

where N
p
t p, N

p
tn, N

p
f p, and N

p
f n are defined to be the number of seg-

mented pixels that were labeled as true positives, true negatives,

false positives, false negatives, respectively. N
p
total

denotes the to-

tal number of pixels in a image. These three pixel-based metrics

obtained for 8 different segmentation results are provided in Table

1. As shown in Figure 4, Type-II errors of the first three meth-

ods (3Dac, 3DacIC, 3Dsquassh) were much higher compared to

other methods. Similarly, Type-I errors of next three methods

(Ellipse Fitting, Jelly Filling, Steerable Filter) were much higher

than those of the other methods. However, 2DCNN and 2DCN-

NIC had high PA and relatively low Type-I and Type-II errors.

In addition, our segmentation methods were evaluated using

object-based criteria described in the 2015 MICCAI Grand Seg-

mentation Challenge [25, 32] namely: the F1 score metric, the

Dice Index, and the Hausdorff Distance.

The F1 score metric is a measure of the segmenta-

tion/detection accuracy of individual objects. The evaluation of

the F1 score metric is based on two metrics, precision P and re-

call R. Denoting the number of tubules correctly identified by No
t p,

the number of objects that are non-tubules but identified as tubules

by No
f p, and the number of tubules that are not correctly identified

as tubules by No
f n, respectively, then precision P and recall R are

obtained as [25]

P =
No

t p

No
t p +No

f p

and R =
No

t p

No
t p +No

f n

. (3)

Given the values of P and recall R, the F1 is found using

F1 =
2PR

P+R
. (4)

It is to be noted that a tubule segmented by the proposed method

(or any other method for that matter) that overlaps at least 50%

with its corresponding manually annotated tubule is labeled as a

true positive and added to the count of the true positives (No
t p), oth-

erwise it is considered as a false positive and added to the count of

the false positives (No
f p). Similarly, a manually annotated tubule

that has no corresponding segmented tubule or overlaps less than

50% with segmented tubular regions is considered to be a false

negative and added to the count of the false negatives (No
f n).

As mentioned above a second metric used to evaluate seg-

mentation accuracy is the Dice Index (OD). The Dice Index [33]

is a measure of similarity between two sets of samples. In our

case, the two sets of samples are the sets of voxels belonging to

a manually annotated tubule denoted by G, and the set of voxels

belonging to a segmented tubule denoted by S. The Dice Index

between G and S is defined as

D(G,S) =
2|G∩S|

|G|+ |S|
(5)

where | · | denotes set cardinality which in this case will be the

number of voxels belonging to an object. A higher value of the

Dice Index indicates better segmentation match/results relative to

the groundtruth data. A practical way of evaluating the Dice Index
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for segmented objects is described in [32] and is given by

D(G,S) =
1

2

[

nS

∑
i=1

wiD(Gi,Si)+
nG

∑
j=1

w̃ jD(G̃ j, S̃ j)

]

(6)

where

wi = |Si|/|
nS

∑
p=1

|Sp|, w̃ j = |G̃ j|/|
nG

∑
q=1

|G̃q|. (7)

In Eq (6), Si denotes the ith tubule (i ∈ {1, . . . ,nS}) obtained by a

segmentation method and Gi denotes a manually annotated tubule

that is maximally matched with Si. Similarly, G̃ j denotes the jth

tubule ( j ∈ {1, . . . ,nG}) identified in the groundtruth data and S̃ j

denotes a segmented tubule that is maximally matched with G̃ j .

Finally, nS and nG denote the total number of segmented and man-

ually annotated tubules, respectively. The first summation term

in Eq (6) represents how well each groundtruth tubule overlaps

with its segmented counterpart, whereas the second summation

term represents how well each segmented tubule overlaps with its

manually annotated counterpart. The terms wi and w̃ j which are

used to weight the summation terms represent the fraction of the

space that each tubule Si and G̃ j occupies within the entire tubule

region, respectively.

While the Dice Index measures segmentation accuracy, a

third metric, the Hausdorff Distance (OH), is needed to evaluate

shape similarity. The Hausdorff Distance [34], H(G,S), between

a segmented tubule S and its manually annotated counterpart G,

is defined to be

H(G,S) = max{sup
x∈G

inf
y∈S

||x− y||2, sup
y∈S

inf
x∈G

||x− y||2}. (8)

Here, ||x− y||2 denotes the Euclidean distance between a pair of

pixels x and y. Based on Eq (8), the Hausdorff Distance obtains

the maximum distance among all pairs of voxels on the bound-

aries of S and G. Therefore, a smaller value of the Hausdorff

Distance indicates a higher similarity in shape between the bound-

aries of S and G. As done above (see Eq (6)), a practical way of

finding the Hausdorff Distance between a segmented tubule S and

its manually annotated counterpart G is given by [32]:

H(G,S) =
1

2

[

nS

∑
i=1

wiH(Gi,Si)+
nG

∑
j=1

w̃ jH(G̃ j, S̃ j)

]

(9)

where the parameters wi and w̃ j are defined in Eq (7).

The performance of the proposed method and other meth-

ods based on the F1 score, OD, and OH metrics were obtained

and tabulated in Table 1. As mentioned above higher values of

F1 and OD are considered to be indicators of better segmentation

results. In contrast, lower values of OH indicate better segmenta-

tion result. As can be seen in Table 1, our proposed method out-

performed all the other segmentation methods against which the

proposed method is being evaluated. In particular, 3Dac, 3DacIC,

3Dsquassh, and Steerable Filter had low F1 scores since these

segmentation methods had large Type-I or Type-II errors. Sim-

ilarly, all of the methods except for 2DCNN suffered from low

OD and high OH values. In particular, since the segmentation re-

sults of 3Dsquassh, Ellipse Fitting, and Steerable Filter failed to

(a) IO
z100

of Dataset − I (b) IO
z150

of Dataset − I (c) IO
z200

of Dataset − I

(d) IF
z100

of Dataset − I (e) IF
z150

of Dataset − I (f) IF
z200

of Dataset − I

(g) IO
z50

of Dataset − II (h) IO
z150

of Dataset−II (i) IO
z250

of Dataset − II

(j) IF
z50

of Dataset − II (k) IF
z150

of Dataset−II (l) IF
z250

of Dataset − II

Figure 5: Original and color coded segmentation results of the

proposed method on different depth of Dataset− I and Dataset−
II using same trained model M

distinguish most of the individual tubules, they exhibited low OD

and high OH values. Note that 3DacIC had relatively low OH

and low OD values since it segmented some tubule boundaries as

well as some partial regions (lumen) inside the tubules. Lastly, the

use of intensity inhomogeneity correction in the proposed method

improved its performance relative to that of 2DCNN.

For visual evaluation we provide the segmentation results of

the proposed method using two different datasets: Dataset−I and

Dataset− II, sampled at different depths within the volumes. The

first row shows original microscopy images IO
z100

, IO
z150

, and IO
z200

from Dataset − I and the second row displays the segmentation

results corresponding to the first row. To better visualize the seg-

mentation results, we highlighted individual tubules with different

colors and overlaid them onto the original microscopy images.

Similarly, the third row exhibits original microscopy images IO
z50

,

IO
z150

, and IO
z250

from Dataset − II. Their corresponding segmenta-

tion results are shown in the fourth row. Note that the model M

which was trained on Dataset−I was used for Dataset−II during

the inference stage. Although the shape, size, and orientation of

tubular structures presented in Dataset − II are all different from

Dataset − I, the proposed method can still successfully segment
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and identify individual tubules presented in Dataset − II as well

as individual tubules in Dataset − I.

Conclusions

This paper presented a tubular structure segmentation

method that uses inhomogeneity correction, data augmentation,

a convolutional neural network, and postprocessing. The qualita-

tive and quantitative results indicate that the proposed method can

successfully segment and identify individual tubules compared to

other segmentation methods. In the future, we plan to utilize 3D

information generated from realistic 3D synthetic tubular struc-

tures to improve segmentation results as well as reduce manual

annotation work.
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