
Separable Models for cone-beam MBIR Reconstruction
Thilo Balke1, Soumendu Majee1, Gregery T. Buzzard2, Scott Poveromo3, Patrick Howard4, Michael A. Groeber5, John McClure5,
Charles A. Bouman1

1School of ECE, Purdue University, West Lafayette, IN 47907 USA;
2Department of Mathematics, Purdue University, West Lafayette, IN, USA
3Northrop Grumman Corporation, El Segundo, CA, USA;
4GE Aviation, Cincinnati, OH, USA;
5Air Force Research Laboratory, Wright-Patterson AFB, OH, USA

Abstract
Cone-beam computed tomography (CT) is an attractive tool

for many kinds of non-destructive evaluation (NDE). Model-
based iterative reconstruction (MBIR) has been shown to improve
reconstruction quality and reduce scan time. However, the com-
putational burden and storage of the system matrix is challenging.

In this paper we present a separable representation of the
system matrix that can be completely stored in memory and ac-
cessed cache-efficiently. This is done by quantizing the voxel po-
sition for one of the separable subproblems. A parallelized algo-
rithm, which we refer to as zipline update, is presented that speeds
up the computation of the solution by about 50 to 100 times on 20
cores by updating groups of voxels together.

The quality of the reconstruction and algorithmic scalabil-
ity are demonstrated on real cone-beam CT data from an NDE
application. We show that the reconstruction can be done from
a sparse set of projection views while reducing artifacts visible
in the conventional filtered back projection (FBP) reconstruc-
tion. We present qualitative results using a Markov Random Field
(MRF) prior and a Plug-and-Play denoiser.

Introduction
3D volumetric cone-beam CT is a promising tool for NDE of

additively manufactured parts. The measurement setup includes
an X-ray point source, an object to be scanned, and a flat panel
2D detector array. Usually the object is rotated in a range of 360◦

while several hundred or a few thousand projection images are
taken, after which the 3D volume is conventionally computed us-
ing a backprojection technique. Cone-beam CT offers high reso-
lution compared to, for example, ultra-sound imaging techniques
and significantly faster acquisition times than fan or parallel beam
CT while utilizing the X-ray source energy more efficiently.

Conventional reconstruction techniques for cone-beam CT
require a large umber of views and tend to suffer from image
quality artifacts caused by scatter, beam-hardening, and metal.
In contrast, MBIR reconstruction techniques require fewer views
[1, 2] and generally reduce modeling artifacts [3]. In MBIR, the
reconstruction requires an accurate representation of the physical
measurement system including noise properties, a prior model of
the unknown image, and a forward projection matrix, called the
system matrix. MBIR techniques come however with the burden
of being computationally expensive and memory demanding.

In the case of cone-beam CT, the computational difficulty
derives from the fact that different slices of the volume are highly
coupled in the measurement space. As a result, parallelization

of the inversion algorithm becomes challenging. Also, rebinning
techniques, which are common in helical cone-beam CT, break
down in general when the cone angle is too large [4].

In similar tomographic problems like 2D fan-beam or
parallel-beam CT the system matrix exhibits sufficient regularity
and redundancy such that a sparse, compressed representation can
be precomputed and completely stored in memory. This is useful
in MBIR as the projection operation is performed multiple times
iteratively and thus the precomputed matrix entries can be reused.
This is in general overall faster than computing them on the fly.

In this paper we present a method to compute and completely
store the system matrix of a cone-beam CT problem with large
cone-angle which involves a quantization of the voxel locations.
This matrix data structure is particularly suited for efficiently ac-
cessing columns and groups of columns, as is common in coordi-
nate descent optimization. We also present a parallelization using
shared memory multi-threading. The forward projector is based
on the distance-driven (DD) projector but can easily be modified
to more accurate separable projectors without interfering with the
ability to store the system matrix.

Statistical Model for image Reconstruction
A common assumption in MBIR is that the measurement

and the unknown image are random vectors that are jointly dis-
tributed. This way, the reconstruction aims to use measurement
noise statistics to account for uncertainty while also using as-
sumptions about the prior distribution of the image to improve
image quality and stabilize the inversion. The solution to the in-
verse problem is then the most likely image given an assumed
probability distribution.

Let the image, X = [X1, ...,XN ]
>, be the vector of unknown

X-ray attenuation coefficients, where each X j represents a cuboid
voxel with index j in the image volume. Using a Bayesian frame-
work the image is assumed to have a probability density, pX (x),
which is referred to as the prior model.

Further, let the sinogram, Y = [Y1, ...,YM ]>, be the vector of
projection measurements, where each Yi corresponds to a projec-
tion measurement at a given detector pixel and a given rotation
angle. The projection measurements, Y , are computed from the
photon count vector, λ , using Beer’s Law

Yi =− log
(

λ − λ̄dark

λ̄blank− λ̄dark

)
(1)

where λ̄dark is the background offset and λ̄blank is the normaliza-
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tion scan.
Due to its counting nature, (λi|X = x) is assumed to be dis-

tributed as Poisson{λ̄}. Using a 2nd order Taylor expansion of
the resulting density for Y , the likelihood density can be approx-
imated [5] as a white Gaussian noise density pYi|X (yi|X = x) =
N (Ai,∗x,w−1

i ), where Ai,∗ is the i-th row of the system matrix, A

log pY |X (y|X = x) =−1
2
‖Y −Ax‖2

W + const(y), (2)

where W = diag([w1, ...,wM ]) is the diagonal weight matrix with
entries [6]

wi ∝
λ 2

i
λi +σ2

noise,i
. (3)

The detector noise variance, σ2
noise,i, can be estimated by finding

the sample variance of the detector background offset.
Now, the solution of the inverse problem is formulated as the

the maximizer of the maximum a posteriori density, pX |Y

x̂MAP = argmin
x≥0

{
− log pY |X (y|X = x)− log pX (x)

}
(4)

= argmin
x≥0

{
1
2
‖Y −Ax‖2

W − log pX (x)
}
.

In subsequent sections we will present an efficient implementa-
tion for the cone-beam CT system matrix, A, describe the choice
for the prior model pX (x), and describe the optimization algo-
rithm for equation (4).

Computation of the Forward Model
In this section we describe the computation of the forward

projector matrix. First, we describe the computation of an arbi-
trary matrix entry then the parametrization of the complete ma-
trix, which is made feasible due to a quantization in the voxel
locations.

Computation of the System Matrix
Conventional projection methods are optimized to forward

or back project the entire image or measurement space, respec-
tively. However, to solve the optimization problem stated in (4),
we use the iterative coordinate descent (ICD) algorithm, which
requires the forward projection of single voxels onto the mea-
surement space. This corresponds conceptually to accessing the
entries of single columns of the A-matrix. To accomplish the
repeated forward projection we use a variation of the distance-
driven projector as described in [7], while storing the matrix en-
tries in a memory and cache efficient way.

First, we focus our description on the computation of an ar-
bitrary matrix entry. Later, we describe the parametrization of the
voxel location, which enables the efficient storage of the entire
matrix.

Let j be the index of an arbitrary cuboid shaped voxel with
base dimensions of ∆xy×∆xy and height of ∆z. Further, let i be
the index of an arbitrary detector of size ∆dv×∆dw, corresponding
to a particular view angle β . Then, the exact computation of the
matrix entry, Ai, j =

∂yi
∂xi

1, would consider all possible lines pass-
ing through the source, voxel j, and detector i, with appropriate

1assuming no measurement noise

integration. In the DD method, this is simplified by (1) impos-
ing separability of the projection profile and (2) "flattening" the
voxel conceptually, thus resulting in equal-length line intersec-
tions with the voxel. With this approximation the DD projector
achieves reconstructions free of visible artifacts that are caused
by the projector [7]. Also, when the image resolution is not too
coarse—which is generally true in MBIR applications—the DD
projector is not inferior to more exact, separable projectors using
trapezoid footprints [8]. As a result of the separable footprints, the
3D problem can be separated into two different 2D subproblems,
illustrated in figures 1 and 2, yielding the attenuation factors Bi, j
and Ci, j, respectively:

Ai, j = Bi, j Ci, j. (5)

The u, v, and w-axis comprise the Cartesian scanner coordinate
system (as opposed to the image coordinate system (x,y,z)) where
the u-axis is perpendicular to the detector plane, the v-axis is per-
pendicular to the rotation axis and the w-axis is parallel to the
rotation axis.
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Figure 1. Top view problem yields the Bi, j entry. The v-axis is perpendicular

to the rotation axis.
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Figure 2. Side view problem yields the Ci, j entry. The w-axis is parallel to

the rotation axis.

In figure 1, we consider the plane that is perpendicular to
the rotation axis (the u-v-plane, table plane), aiming to compute
Bi, j. The DD projector only accounts for the rays passing through
the flattened voxel, indicated by the red lines. All rays in that
sector are assumed to have equal intersection lengths with the
voxel, namely ∆xy

cosαxy
. The angle αxy is between the center ray

and the flattened voxel and the flattening direction is chosen such
that − π

4 ≤ αxy ≤ π

4 . The projection profile is rectangular and has
width Wdv. The detector response is assumed to be rectangular as
well, thus having constant sensitivity, 1

∆dv
, over a detector pixel

width of ∆dv. Thus, only the overlap length, Lv, matters for the
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computation, and Lv can be easily computed using the distance,
δv, between the projection center and the voxel center.

The resulting equation for the attenuation coefficient, Bi, j, is

Bi, j =

(
∆xy

cosαxy

)(
1

∆dv

)
(Lv) , (6)

where

αxy = [β −θ ] π

2
(7)

Lv = ∩(Wdv,∆dv;δv) , (8)

and where we are using short-hand notation

[x] π
2

:=
((

x+
π

4

)
mod

π

2

)
− π

4
(9)

∩(W1,W2;δ ) := max
{

W1 +W2

2
−max

{
|W1−W2|

2
, |δ |
}
,0
}
.

(10)

In figure 2, we consider the plane that is parallel to the ro-
tation axis (the u-w-plane), aiming to compute Ci, j. The rotation
axis is parallel to the detector in this subproblem so that the voxel
sides are parallel or perpendicular to the detector. We assume that
the cone angle, φ , does not exceed± π

4 , thus αz = φ . The resulting
equations are

Ci, j =

(
1

cosαz

)(
1

∆dw

)
(Lw) , (11)

where

Lw = ∩(Wdw,∆dw;δw) . (12)

Now that we have a way to compute the Ai, j matrix index us-
ing equations (5), (6), and (11), we present an efficient way to
parametrize and store the entire matrix.

Parametrization and storage of the System Matrix
Let j = ( jx, jy, jz) ∈ {0, ...,Nx − 1} × {0, ...,Ny − 1} ×

{0, ...,Nz− 1} be the 3D voxel index, where ( jx, jy) corresponds
to the horizontal x-y-plane and jz corresponds to the vertical z-
axis (= rotation axis). Then an arbitrary voxel center position,
(xv,yv,zv) is parametrized asxv

yv
zv

=

x0 +∆xy jx
y0 +∆xy jy
z0 +∆z jz

 (13)

for some constants x0, y0, and z0. The voxel position in scanner
coordinates, (uv,vv,wv), can be computed using a rotation matrixuv

vv
wv

=

cosβ −sinβ 0
sinβ cosβ 0

0 0 1

xv
yv
zv

+
 0

vr
0

 , (14)

where {(u,v,w) : u = 0,v = vr,w ∈ R} is the rotation axis. The
3D measurement index, i = (iβ , iv, iw) ∈ {0, ...,Nβ − 1} ×
{0, ...,Ndv − 1}× {0, ...,Ndw − 1}, parametrizes the detector lo-
cation, (ud ,vd ,wd), and the view angle, β :ud

vd
wd

=

 ud0
vd0 + iv∆dv

wd0 + iw∆dw

 , β = β (iβ ) (15)

for some constants ud0,vd0,wd0 and a view angle list β (·). Nβ is
the number of views, Ndv is the number of detector columns, and
Ndw is the number of detector rows.

Now, a possible—but highly inefficient—way would be to
compute Bi, j and Ci, j for all possible choices of i and j us-
ing equations (6) and (11) and store the results in 6D arrays
B[Nx][Ny][Nz][Nβ ][Ndv][Ndw] and C[Nx][Ny][Nz][Nβ ][Ndv][Ndw]. In
the following paragraphs we describe a more efficient way.

First note that most of the entries of the matrix are zero, so
the matrix is sparse and structured. In a typical case the voxel
sizes are ∆xy =

∆dv
Magnification and ∆z =

∆dw
Magnification and only at most

a Ñdv× Ñdw ≈ 3× 3 window for the whole Ndv×Ndw detector
pixels have a non-zero entry for a given view angle. Thus, we
only have to store the non-zero entries and use pointer-like arrays
to point to the location and side length of the non-zero area.

Also, these arrays would still contain many redundant en-
tries. As a result of the separability assumption we can easily see
that we have

Bi, j = B(iβ ,iv,iw),( jx, jy, jz) = B(iβ ,iv,0),( jx, jy,0) for all iw and jz
(16)

and

Ci, j =C(iβ ,iv,iw),( jx, jy, jz) =C(iβ ,0,iw),( jx, jy, jz) for all iv (17)

Thus, we can store the Bi, j entries in a much smaller array,
B[Nx][Ny][Nβ ][Ñdv], which has a feasible size. However, if we
wanted to store the Ci, j entries in an array C[Nx][Ny][Nz][Nβ ][Ñdw],
it would still take up a great deal of memory as it has one more
degree of freedom than the B array. To compress the C-matrix
further, we will discretize the voxel position, as described in the
next paragraphs.

First, note that the value of Ci, j is completely determined if
we know the values of uv, wv and wd (see figure 2). Further, using
equations (13), (14), and (15) we see that these depend on the
indices i, j as follows:

uv = xv cos(β )− yv sin(β ) ← only dep. on jx, jy, iβ (18)

wv = zv ← only dependent on jz
wd ← only dependent on iw.

The core idea behind the efficient storage is now to parametrize
uv differently. We use a fine grid of all possible voxel coordinates,
uv, as an approximation of equation (18).

ju = round
(

uv−u0

∆u

)
↔ uv ≈ u0 + ju∆u (19)

∆u =
∆xy

ρ
, (20)

where u0 is the the smallest possible value for uv, and the rel-
ative grid density, ρ , is a positive, real number. In practice we
have found that ρ ≈ 10 is more than sufficient. The new integer
index, ju = ju( jx, jy, iβ ) ∈ {0, ..., Nu−1}, can be precomputed
using equation (20) and stored in an array, ju[Nx][Ny][Nβ ]. Now,
the Ci, j values need not be computed for every ( jx, jy, iβ ) but only
for every possible ju.
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The resulting array entries for the attenuation coefficients are

B(iβ ,iv,iw),( jx, jy, jz) = B[ jx][ jy][iβ ][ĩv] (21)

C(iβ ,iv,iw),( jx, jy, jz) =C[ ju][ jz][ĩw] (22)

ju = ju[ jx][ jy][ jβ ] (23)

where, again the tilde ( ˜ ) indicates the sparse dimension of the
array.

With this parametrization, the C-array is often significantly
smaller than the B-array since for a centered image volume, Nu ≈
ρ

√
N2

x +N2
y . In the example case, when Nx = Ny = Nz = Nβ

and Ñdv = Ñdw, the C-array is smaller than the B-array as long
as ρ < Nx/

√
2. Since in practice the oversampling density, ρ ,

is much smaller than Nx/
√

2, the storage burden of the complete
system matrix, A, reduces essentially to storing the 2D fan-beam
projection matrix, B.

We point out that the computation of the resulting B, C, and
ju arrays was based upon the parametrization from this section
and on the equations for the matrix entries themselves (equations
(6) and (11)) from the previous section. However, these two steps
are completely independent of one another. That is, using the
mentioned parametrization scheme can be done while using any
other forward projector of one’s choice as long as it is separable.

Dealing with non-idealities: Implicit in our description of
the imaging system the detector columns are parallel to the rota-
tion axis. In practice this is often approximately but not exactly
given. In that case we suggest preprocessing the scans that have
been acquired with non-ideal conditions to emulate scans that do
meet the ideal conditions regarding the detector orientation. This
may be done by interpolating the projection scans with a non-
homogeneous lattice according to the perspective distortion.

Prior Model
The prior distribution of the image, pX (x), is the core of the

Bayesian framework. Often in MBIR the number of measure-
ments is far smaller than the number of unknowns. Thus, without
the prior model there would be infinity many images that would
perfectly fit the data term, i.e. maximize the log-likelihood of
equation (2). Without a suitable prior model the reconstruction
will be noisy and unstable [9].

Recently, the q-Generalized Gaussian Markov random field
(q-GGMRF) prior model [10] has shown favorable results. It
gives the user flexibility about the regularization and edge penalty
and achieves robustness through its convexity and continuous dif-
ferentiability. In this work we are using this prior model, which
has a density

log pX (x) = ∑
{s,r}∈P

bs,r ρ(xs− xr)+ constant (24)

where P is the set of all neighboring voxel pairs with relative
weights bs,r and the potential function, ρ , is given by

ρ(∆) =
|∆|p

pσ
p
x


∣∣∣ ∆

T σx

∣∣∣q−p

1+
∣∣∣ ∆

T σx

∣∣∣q−p

 , (25)

where typically the parameters are set to be 1≤ p < q≤ 2, adjust-
ing the edge penalty and T σx ≈ STD(noise), adjusting the regu-
larization strength.

Apart from demonstrating our method using the q-GGMRF
prior model, we also present reconstructions using a Plug-and-
Play prior [11] in the results section of this paper while using
BM4D [12] as a denoiser. The methods for minimizing the
slightly differing cost functions are fundamentally the same, as
the quadratic approximation of the q-GGMRF potential is re-
placed by an actual quadratic norm of the augmented Lagrangian
term. For more background we refer the reader to [11].

Computation of the solution
In this section we present the algorithmic solution of equa-

tion (4). The MAP cost function is strictly convex, resulting in a
unique minimizer. Thus, in theory the choice of the optimization
algorithm does not affect the reconstruction. ICD has shown fa-
vorable convergence speed [13] with comparable computational
requirements to iterative methods as gradient based algorithms.

In this work we present an ICD based algorithm that ef-
ficiently computes the reconstruction. Its efficiency is in part
achieved by the use of quadratic surrogate functions that substi-
tute the non-quadratic prior term for a quadratic approximation
[14, 15, 16], which enables a guaranteed cost reduction without
an expensive half interval search. Using this method, the com-
putational cost is mainly attributed to the data term. The contri-
bution of our work is an algorithm that efficiently minimizes the
approximated map cost function (4)

f (x;x′) =
1
2
‖Y −Ax‖2

W + ∑
{s,r}∈P

bs,r ρ(xs− xr;x′s− x′r)

(26)

=
1
2
‖Y −Ax‖2

W + ∑
{s,r}∈P

b̃s,r (xs− xr)
2

using an appropriate, quadratic surrogate function, ρ(∆;∆′).
As the modified cost function from equation (26) is

quadratic, for each voxel j there exist θ1 and θ2 such that the
coordinate descent objective is a simple quadratic

f (x+∆x j ε j;x′) = θ1∆x j +
θ2

2
∆

2
x j
+ const (27)

where e = Y − Ax is the error sinogram, which is a constantly
updated auxiliary array. For details of the surrogate function, we
refer the reader to [16]. We focus instead on the bottleneck of the
computation of the voxel update and how it is solved efficiently.
The resulting equations for θ1 and θ2 are

θ1 =−e>WA∗, j︸ ︷︷ ︸
θ1,Y |X

+ ∑
r∈∂ j

2 b̃s, j (xs− x j) = θ1,Y |X +θ1,X

(28)

θ2 =−A>∗, jWA∗, j︸ ︷︷ ︸
θ2,Y |X

+ ∑
r∈∂ j

2 b̃s, j = θ2,Y |X +θ2,X ,

where A∗, j is the j-th column of A. The update pseudocode for
the j-th voxel is shown in algorithm 1.

The main computational cost derives from the terms θ1,Y |X
and θ2,Y |X and updating the error sinogram (line 5 in the algo-
rithm).
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Algorithm 1: Single Voxel ICD Updates
Input: j = ( jx, jy, jz)
Data: e, W , A, x

1 b̃s,r = computeSurrograteCoeff.(x) // equation omitted
2 [θ1,θ2] = compute using equation (28)

3 ∆x j = max
{
−θ1
θ2

,−x j

}
// Positivity Constraint

4 x = x+∆x j ε j

5 e = e−∆x j A∗, j

Plainly using algorithm 1 does not exploit the structure of the
A matrix cache-efficiently. In the next paragraphs we describe a
faster algorithm that updates several voxels simultaneously. When
using the term simultaneously we mean: compute θ1’s and θ2’s
for multiple voxels for the same given data (e, W , A, x) and then
update the image and error sinogram in sequence for the resulting
∆x j ’s.

First, note that updating any two voxels simultaneously will
not necessarily reduce the cost function of equation (4). However,
consider the conditions

A>∗, jA∗, j′ = 0 and x j /∈ ∂x j′ (29)

for two voxels j and j′. It is easy to see that if these conditions
are met then updating first j, then j′ or first j′ then j or both vox-
els simultaneously will yield the same results (compare equation
(4)). This is because the first condition decouples the voxels in the
forward model and the second term decouples them in the prior
model. In this work the simultaneously updated voxels are a set of
voxels that only differ in their jz index and which are not adjacent
to each other. If the voxel grid is not too coarse, the conditions of
equation (29) are usually met. These updated voxels are referred
to as voxel line or z-line or zipline [17, 16]. For example, the set
Zipline = {0,4,8,12,16, . . . ,Nz−1} parametrizes a zipline when
given ( jx, jy). A fast algorithm to compute the terms θ1,Y |X and
θ2,Y |X for all voxels in a given zipline is given in algorithm 2.

Algorithm 2: Zipline: Computation of θ1,Y |X ’s and θ1,X ’s

Input: ( jx, jy), Zipline
Output: Arrays: θ1,Y |X ,θ2,Y |X
Data: e, W , A, x

1 for iβ = 0 : Nβ −1 do
2 ju = ju[ jx][ jy][iβ ]
3 for ĩv = 0 : iv,stride[ jx][ jy][iβ ]−1 do
4 iv = ĩv + iv,start[ jx][ jy][iβ ]
5 Bi, j = B[ jx][ jy][iβ ][ĩv]
6 for m = 0 : |Zipline|−1 do
7 jz = Zipline[m]
8 for ĩw = 0 : iw,stride[ ju][ jz]−1 do
9 iw = ĩw + iw,start[ ju][ jz]

10 Ai, j = Bi, j C[ ju][ jz][ĩw]
11 θ1,Y |X [m] += e[iβ ][iv][iw] W [iβ ][iv][iw] Ai, j

12 θ2,Y |X [m] += Ai, j W [iβ ][iv][iw] Ai, j

The update of the error sinogram is similar, but the body
of the innermost loop (line 7) is e[iβ ][iv][iw] = e[iβ ][iv][iw]−

Ai, j ∆x j [m], where again the work is done for all the voxels in
the zipline at once.

To motivate why this approach is faster than single voxel up-
dates note that the arrays are stored in row-major order, and hence
consecutive row elements can be read much more efficiently than,
for example, column elements. Under inspection of the loop
structure, one can see that the memory access is optimized with
that regard. However, the quantization of the u-coordinate posi-
tions (see equation (20)) introduces additional cache inefficiency.
In general it is not the case that ju[ jx][ jy][iβ +k] = ju[ jx][ jy][iβ ]+
k. As a result, when looping over the iβ variable continuously,
it creates discontinuous jumps in the ju variable which again re-
sults in discontinuous (cache-inefficient) jumps in the access of
the C-array elements (and corresponding index arrays iw,start and
iw,stride). By letting the iβ loop be the outer loop and considering
multiple voxels at the same time, the ju variable changes (jumps)
less often while being able to reuse the B-matrix entries as often
as possible for all the voxels in a zipline.

Parallelization: Each of the coefficients θ1,Y |X [m] and
θ2,Y |X [m] consist of partial sums corresponding to partial view
subsets. In our parallelized algorithm we use a shared-memory
implementation where every thread is responsible for only a cer-
tain view subset. Conceptually every one of the P threads is ex-
ecuting algorithm 2 on the complete zipline, but only on Nβ /P
disjoint views.

Experimental Results

Figure 3. Reconstruction of CoCr object. Reduced streaking.

↖: 2160-view FBP;↗: 270-view q-GGMRF MBIR;

↙: 270-view FBP;↘: 270-view BM4D Plug-and-Play MBIR.

To demonstrate the improved reconstruction quality, we
present reconstructions of a real data set of an additively manu-
factured CoCr part and compare the MBIR reconstruction with
a FBP reconstruction using General Electrics’s proprietary soft-
ware. Further, we show improved performance by comparing the
sequential single voxel update with the parallelized zipline update
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Figure 4. Reconstruction of CoCr object. Reduced scatter artifacts. Im-

proved detail.

↖: 2160-view FBP;↗: 270-view q-GGMRF MBIR;

↙: 270-view FBP;↘: 270-view BM4D Plug-and-Play MBIR.

Experimental Setup

Scanner
GE Inspection Technologies
v|tome|x C 450 HS with scatter|correct

Voltage, Current, Exposure 450 kV, 1.5 mA, 143 ms
Scatter Correction GE proprietary

Source-detector distance 1160 mm
Magnification 1.5

Detectors 700×800, (0.2 mm)2

Object CoCr, additively manufactured
Voxels 700×700×870, (0.13 mm)3

Table 2: Experimental specifications of the reconstruction data shown in
other figures.

scheme.
Table 1 shows a summary of some the experimental setup.

Figures 3, 4, and 5 show slices that differ in the z-coordinate and
which have been cropped. (That is, a slice corresponds to a pane
through the volume of constant z-coordinate.) The reconstruc-
tions were obtained using 270 views in all cases except one of the
FBP reconstructions, which was done with 8×270 = 2160 views.
In general the MBIR reconstructions show improved edge con-
trast, reduced streaking and scatter artifacts, and improved detail
with respect to the 270-view FBP. The Plug-and-Play reconstruc-
tion with the BM4D denoiser looks visually appealing due to its
contour smoothness.

To evaluate the improved performance of the zipline update
method, we first confirmed that the convergence rate, i.e. how
many iterations it takes to compute the solution, is essentially the
same as with the single voxel update method—about 10 to 20 iter-
ations depending on regularization strength and desired accuracy.
Thus, for the remainder of this analysis we focus entirely on the

Figure 5. Reconstruction of CoCr object. Improved detail.

↖: 2160-view FBP;↗: 270-view q-GGMRF MBIR;

↙: 270-view FBP;↘: 270-view BM4D Plug-and-Play MBIR.

Time to compute update of all voxels (minutes)

Algorithm
Single
1-core

Zipline
1-core

Zipline
4-core

Zipline
10-core

Zipline
20-core

270 Views 414.1* 64.6 18.8 10.2 7.1
2160 Views 4508.2* 624.8 154.2 71.5 42.7

*Time extrapolated from partial update

Table 1: Time per iteration in minutes.

update speed, i.e. the time it takes to update a fixed number of
voxels.

For the computation of the solution we use an implementa-
tion of this algorithm using the C language and OpenMP for the
shared-memory parallelization. The code is run on one compute
node with dual 10-core Intel Xeon processors (20 processor cores
in total).

Figure 6 shows the speedup of the zipline update with differ-
ing number of threads (= number of cores) compared to a single
core zipline update scheme. Table 2 contains the corresponding
iteration times while also including the iteration time of the sin-
gle voxel update. We note that the zipline update is significantly
faster than the single voxel update, even without multi-threading.
In the single core case the zipline update is about 7 times faster
than the single voxel update. Using 20 cores the zipline update is
58 times faster when using 270 views and 106 times faster when
using 2160 views. The zipline update algorithm scales reasonably
well in the in the range from 1 to 20 cores while reaching a paral-
lel efficiency of about 73% for the 20-core, 2160-view case while
being slightly less efficient in the 270-view case.

Conclusions
Cone-beam CT is a relatively cheap and versatile tool in

NDE imaging problems while posing considerable computational
burden in model based approaches. In this work we presented
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Figure 6. Scalability of the zipline parallelization. Speedup is computed as

the time per iteration using 1 core divided by the time using N cores.

a method that makes this burden more feasible by representing
the system matrix in a separable and compressed fashion and by
parallelizing the algorithm using a zipline update scheme. The ap-
proach to store the complete system matrix is illustrated (but not
limited to) using a distance-driven projector. That is, the method
can be applied to any (more accurate) projector as long as that one
is separable. Using our method, the problem of storing of the 3D
cone-beam system matrix is in essence reduced to storing a 2D
fan-beam projection matrix. The computational improvement is
based upon the zipline update in which decoupled voxels are up-
dated simultaneously: this feature efficiently exploits the structure
of the system matrix and how it is laid out in memory, while also
reducing the parallel overhead of multi-threaded implementation.

This model based approach enables reconstruction from
sparse views and can thus dramatically reduce scan time.
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