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Abstract
Detecting materials of interest in containers using X-ray measure-
ments is a critical problem in aviation security. Conventional X-
ray systems obtain single- or dual-energy measurements, which are
subsequently processed using computed tomography (CT) to obtain
estimates of attenuation properties of different regions. Recently,
novel detectors enable the measurement of the X-ray transmission
intensities on multiple energy bands, leading to the use of spectral
CT to construct additional properties of regions to assist in mate-
rial identification. In this paper, we discuss the problem of ma-
terial classification using spectral CT. We introduce a new basis
representation which can accurately represent energy-dependent X-
ray transmission characteristics in a few dimensions, and propose
a class of reconstruction techniques for obtaining features of dif-
ferent regions. We illustrate the advantages of our approach over
alternative approaches using different basis representations as well
as CT reconstructions in each energy band using simulated spec-
tral CT experiments. Our results illustrate that there are signifi-
cant advantages to using our basis representation in both detection
and material classification performance, particularly in the pres-
ence of complex materials or mixtures involving atoms with high
atomic number.

Introduction
Automatic material recognition in X-ray CT images has a wide
range of applications both for medical and security purposes. In the
medical domain, an automatic recognition algorithm helps the radi-
ologist in diagnosis of tumors and pathology in tissues, particularly
when the image contrast is poor. In security, automated recogni-
tion algorithms assist operators in detection of hazardous materials
and reduces the need for human inspections. For the security ap-
plication, the range of possible materials in bags makes it difficult
to separate hazardous materials from regular stream-of-commerce
materials.

In order to obtain sufficient information for identifying haz-
ardous materials, security applications often use dual-energy scan-
ners [1–5] that collect attenuation responses for two different exci-
tation spectral energy distributions. The dual energy measurements
can be translated using CT techniques to estimates of the effective
atomic number and electron density of a region, which can be used
to identify the material in the region. This works well with materials
that have low effective atomic number, but is less reliable for other
materials.

Recently, new classes of photon-counting detectors have en-
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abled the collection of X-ray attenuation responses over several
energy spectral distributions simultaneously [6–9], leading to the
novel spectral X-ray CT instruments. Such instruments have been
used recently for medical applications [8, 10–12], and have shown
potential for identifying complex images including contrast agents.
This can allow imaging of regions which use more than one contrast
agent in the same scan. As an example, a blood pool gadolinium-
based contrast agent could be used in combination with a tumor or
thrombus-specific bismuth-linked agent without the need for addi-
tional scans and radiation exposure [13].

For security applications, PCDs can enhance material recogni-
tion by collecting the attenuation responses of the region of inter-
est using multiple energy spectra. This can be used to reconstruc-
tion effective attenuation at different average excitation energies,
thus providing additional features for material recognition. Alter-
natively, one can use basis decomposition techniques [1, 4, 5] for
representing the energy-dependent linear attenuation coefficients of
materials. Typical basis functions used are photoelectric and Comp-
ton scattering bases, selected material bases, and basis functions se-
lected from principal component analysis of multiple material lin-
ear attenuation coefficients. The multispectral attenuation measure-
ments can be used to reconstruct images of the coefficients of these
basis representations, yielding a different set of features for material
recognition.

In this paper, we describe multiple approaches for extracting
meaningful information from multispectral energy measurements,
and using this information for material identification. In addition to
conventional approaches based on dual energy imaging techniques,
we define a novel basis that is well-suited for representing complex
materials with higher effective atomic numbers. We examine the
relative performance of these approaches for material identification
and for detection of explosives using simulated experiments with
multi-spectral CT detectors in tomographic imaging configurations.
Our results indicate that there are significant advantages in detection
and material recognition performance that result from using our new
basis for multispectral CT.

The rest of this paper is organized as follows: first, we review
basis decomposition approaches used in dual energy imaging. We
subsequently extend these techniques to apply to multispectral CT
imaging with more general basis decomposition techniques. We in-
troduce a new basis decomposition using sparse regression that is
more suited for representing the energy-dependence of linear atten-
uation coefficients for materials or mixtures involving higher atomic
number atoms. Subsequently, we describe algorithms for using al-
ternative basis functions to reconstruct features of materials at dif-
ferent locations in the image. We then describe a material identi-
fication algorithm based on using graph-cut techniques for discrete
optimization. We conclude the paper with simulated multispectral
CT experiments that compare the performance of different feature
extraction approaches using detection and recognition experiments.
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Multispectral CT
We briefly review the basis decomposition approach to dual

energy imaging as originally outlined in [1]. Then, we extend these
approaches for multispectral CT imaging. For simplicity of exposi-
tion, we focus on systems that use photon-counting detectors as the
measurement instruments.

Dual Energy Imaging
We briefly review the basis decomposition approach to dual

energy imaging as originally outlined in [1]. For simplicity, we fo-
cus on systems that use photon-counting detectors. We assume that
we have sources i with effective source/detector spectrum denoted
by I0Wi(E), where I0 is the total photon flux and Wi(E) denotes the
energy weighting function, which can be interpreted as the fraction
of photons that have energy E. We assume that this excitation is
uniform for each detector.

Assume we are imaging through a volume with energy-
dependent and space-dependent linear attenuation coefficient
µ(r,E). Define ci

L as the received count at i-th PCD at detector
L when spectrum i is used with source-detector path `(L). We as-
sume a statistical model for the observed counts is a Poisson model
with average intensity described below, as

ci
L = Poiss

(∫
E

Wi(E)I0e−
∫
`(L)µ(r,E) drdE

)
, i = 1,2 (1)

In this model, we neglect effects of electronic measurement noise
and other small deviations, although our subsequent analysis would
be readily extended to include these effects. The observed counts
are reported in terms of normalized sinogram values as,

yi
L =− log

(
ci

L∫
E Wi(E)I0dE

)
(2)

One approach for processing dual energy spectral measure-
ments is to reconstruct an average attenuation m̂ui(r) for each spec-
trum i from the normalized observed counts yi

L for all the tomo-
graphic projections L. The two values m̂u1(r), m̂u2(r) reconstructed
at each voxel would provide the underlying features for material
classification. An alternative approach is to represent the energy-
dependent linear attenuation coefficient µ(r,E) in a basis expansion
with two basis functions, as

µ(r,E) = a(r) f1(E)+b(r) f2(E) (3)

where f1(E), f2(E) are functions that represent the energy depen-
dence of linear attenuation coefficients. Common basis functions
are the photoelectric and Compton (PEC) scatter cross-sections,
with the photoelectric basis defined as

fp(E) =
1

E3 (4)

and the Compton basis is a Klein-Nishina approximation [14] given
by

fc(E) =
1+a

a2
2(1+a)

(1+2a)− 1
a log(1+2a)

+
1
2a

log(1+2a)− 1+3a

(1+2a)2 , (5)

where a = E
C for some constant C which is usually set as C =

510.999 keV.
Given a choice of basis functions, sinogram decomposition is

used for each pair of detector measurements to linearize the relation-
ship between coefficients and measurements. Using the approxima-
tion in (3), we obtain the following expression for at each detector
L in terms of the expected measurements:

E[c1
L] =

∫
E

W1(E)I0e− f1(E)
∫
`(L) a(r)dr− f2(E)

∫
`(L) b(r)drdE (6)

=
∫

E
W1(E)I0e− f1(E)AL− f2(E)BL dE (7)

E[c2
L] =

∫
E

W2(E)I0e− f1(E)
∫
`(L) a(r)dr− f2(E)

∫
`(L) b(r)drdE (8)

=
∫

E
W2(E)I0e− f1(E)AL− f2(E)BL dE (9)

The measurements c1
L,c

2
L are noisy estimates of the left-hand side

of the above equations. The sinogram decomposition approach first
estimates AL,BL from the pair of measurements c1

L,c
2
L using nonlin-

ear regression or max-likelihood estimation techniques. Given these
estimates ÂL, B̂L, we have the following approximate relationships:

ÂL =
∫
`(L)

a(r)dr (10)

B̂L =
∫
`(L)

B(r)dr (11)

These equations correspond to linear tomographic projections of the
coefficient fields a(r),b(r). Thus, the collection of estimates ÂL
can be processed to reconstruct estimates â(r) using tomographic
reconstruction techniques. Similarly, the collection B̂L will generate
b̂(r). The values of â(r), b̂(r) form the features that characterize the
material at location r.

Extensions to Multispectral CT
The above procedures can be extended to multispectral mea-

surements in a straightforward manner, as follows. Our measure-
ment model is the same as (1), except that the number of spectra
I is greater than 2. The direct reconstruction approach processes
the collections of measurements yi

L for each i ∈ I and obtains an
estimate for the average attenuation for that spectrum, as µ̂ i(r).

The basis expansion approaches can use a larger set of basis
functions, with the approximation that µ(r,E) decomposes as

µ(r,E) = a1(r) f1(E)+a2(r) f2(E)+ . . .+aK(r) fK(E) (12)

where fk(E)) are basis functions that represent the energy depen-
dence of linear attenuation coefficients, and aK(r) are coefficients
that represent the expansion of µ(r,E) in that basis representation.
The sinogram decomposition follows in a similar manner to the dual
energy decomposition:

E[ci
L] =

∫
E

Wi(E)I0e−∑
K
k=1 fk(E)

∫
`(L) ak(r)drdE

=
∫

E
Wi(E)I0e−∑

K
k=1 fk(E)Ak

L dE (13)

The measurements ci
L, i = 1, . . . , I are noisy estimates of the

left-hand side of the above equations. The sinogram decomposi-
tion approach estimates Ak

L,k = 1, . . . ,K from the set of measure-
ments c1

L, . . . ,c
I
L using a nonlinear regression technique, which is
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well-posed provided I ≥ K. For each k, the collection of estimates
Âk

L is processed using tomographic reconstruction techniques to ob-
tain estimate âk(r). The collection of values âk(r),k = 1, . . . ,K are
the features associated with the material in location r.

The fundamental question that remains is the choice of basis
functions. A good choice of basis functions is one where the basis
functions are linearly independent, and yield good approximation
of all of the linear attenuation coefficient functions for the materials
of interest. Different choices of basis functions can lead to changes
in performance in recognition of materials.

Choice of Basis Functions
In this paper, we evaluate several choices for basis functions

to use for multispectral CT imaging. The first choice of basis is the
standard photoelectric and Compton basis decomposition used in
dual-energy imaging (as in (4),(5)), extended to use multi-spectral
measurements. A second choice of basis can be obtained from the
principal components of the linear attenuation coefficient functions
over a range of energies of interest, as generated for a test group
of sample materials. These functions would be independent and
orthogonal over the range of energies of interest.

One of the limitations of the photoelectric/Compton (PEC) ba-
sis is that the basis functions have a smooth dependence on energy.
As such, the PEC basis represents LACs accurately for materials
with low effective atomic number. However, they do not represent
accurately the linear attenuation coefficients of materials or mix-
tures that include atoms with K-edges in the X-ray energy region
of interest. A K-edge material is a material whose linear attenua-
tion coefficient as a function of energy contains a discontinuity in
the relevant energy range, typically [30− 150] keV. In security ap-
plications, the range of materials of interest is broad, and includes
K-edge materials. As an example, Figure 1 displays the LAC of
Baratol, a combination of Barium with TNT, that has a K-edge at
38 keV [15].

Figure 1: The nominal LAC function of Baratol. The values are obtained
from NIST dataset [15].

Figure 2 illustrates the issue with PEC decompositions. The
LAC functions of two materials, TNT and Baratol, are plotted in
green, and the blue plots with show the least squares reconstruction
of LAC values using the PEC basis for the energy range [30−129]
keV. The inaccurate fit for Baratol can lead to misclassification
when the reconstructed features are the PEC coefficients.

To improve the accuracy of basis representations for complex
materials including atoms with K-edges, we introduce a new basis
transform, termed SPECK which is a short form for Sparse photo-
electric, Compton, and K-edge basis. The first two basis functions
in the transform are the photoelectric and Compton basis functions
of (4),(5). To these two functions we add the LAC functions of the

Figure 2: The least squares reconstruction of LAC of two materials us-
ing PEC basis transform against their nominal values. From left to right,
TNT and Baratol reconstruction results are plotted in blue curves with ’+’
markers. The solid green plots represent the nominal LAC curves.

atoms that have K-edges in the energy range [30− 130] keV. Note
that these other basis functions are linearly independent from each
other and the first two bases, because they have discontinuities at
different energy values. However, the number of basis functions K
can be larger than the number of energy bins I, so max-likelihood
techniques are no longer adequate estimating the decomposed mea-
surements Ak

L for each detector L using the measurements ci
L in (13).

To accommodate for this, we propose the use of sparse regression,
where the goal is to represent accurately the measurements using a
small number of nonzero coefficients.

Specifically, define A = [A1, . . . ,AK ] as the vector of coeffi-
cients of the SPECK basis used to represent a set of observations,
and let fk(E) be the basis functions in the SPECK basis. Define

gi(A),
∫

E
Wi(E)I0e−∑

K
k=1 fk(E)Ak

dE

For each detector L with multispectral energy measurements
ci

L, i = 1, . . . , I, we propose to compute the coefficients A1
L, . . . ,A

K
L

by solving the following optimization problem:

[A1
L, . . . ,A

K
L ] = argmin

A≥0

I

∑
i=1

(ci
L−gi(A))2 +λ

K

∑
i=1
|Ai| (14)

for a parameter λ > 0 that controls the desired level of sparsity in
the coefficient vector. Note that the non-negativity constraints in the
optimization arise from the choice of basis functions that represent
physical processes.

To demonstrate the accuracy of SPECK representation of LAC
signals, we have plotted the noise-free reconstruction results, pro-
duced by SPECK features, in Figure 3 for a few materials, including
two K-edge materials.

Figure 3: From left to right, reconstructed LAC values using SPECK fea-
tures against nominal LACs for TNT, Baratol, and Tungsten. The nominal
plots are in green and the reconstructed values are plotted in blue.
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Given the decomposed measurements [A1
L, . . . ,A

K
L ] for all the

detectors L, we use standard tomographic reconstruction techniques
to transform these into coefficient images âk(r) for k = 1, . . . ,K. For
the results that follow, we used an iterative reconstruction technique.
Let A denote the forward projection operator, let ak denote the vec-
tor of coefficients ak(r), and let yk denote the vector of decomposed
measurements Ak

L for the different detectors L. The reconstructed
image âk is obtained from the following optimization problem:

min
ak≥0
‖yk−Aak‖2

2 +λ (‖Dxak‖2
2 +‖Dycb‖2

2) (15)

where Dx and Dy are discrete forward difference operators in spatial
coordinates x,y represented as matrices, and parameter λ controls
the trade-off between the regularization term and the data fidelity
term.

Recognition Algorithms
We formulate the recognition problem as a MAP estimation

problem, where the goal is to identify the material in each dis-
crete spatial location r from a fixed number of possible materials.
We assume that our image is composed of N2 pixels. Our goal in
classification is to assign one of a finite number of material labels
m = 1, . . . ,M to each pixel. Let a(i) denote the vector of recon-
structed features [a1(i), . . . ,am(i)] at pixel i, where these features
are coefficients in a basis expansion, or direct reconstructions of
average linear attenuation using several spectral measurements.

Assume that we have a dictionary of possible materials, from
which we can estimate the statistics of the nominal feature values
a1

m, . . . ,a
k
m for material m given a range of instances of the mate-

rial. We assume that the coefficient values at pixel m in the image
with material class `(m)∈{1,2, . . . , |Dr|} are sampled from a multi-
variate Gaussian distribution with mean vector γ`(m) and covariance
matrix Σ`(m), i. e.,

a(m)∼N
(

Γ`(m),Σ`(m)

)
, (16)

To model the prior distribution of material labels in our MAP
formulation, we want to represent the information that our materials
have significant extent. To do this, we assume a Potts Markov ran-
dom field model for the prior distribution of the labels. Specifically,
let Ω(i) denote the neighboring pixels of pixel i, and let 1{`i 6=` j} de-
note the indicator function that is 1 if the label `i of pixel i is the
same as the label ` j of pixel j. We formulate the joint segmenta-
tion/classification problem given the reconstructed coefficient fea-
tures as

min
`i,i∈{1,...,N2}

N2

∑
i=1

(a(i)−Γ`(i))
T

Σ
−1
`(i)(a(i)−Γ`(i))

+α

N2

∑
i=1

∑
j∈Ω(i)

1{`i 6=` j} (17)

The parameter α > 0 controls the smoothing effect in the Markov
random field over the pixels’ labels.

The optimization in (17) is a discrete optimization over label
classes. Note that the Potts model satisfies metric property, there-
fore, it induces an objective function with the submodularity prop-
erty which can be efficiently optimized using α-expansion graph
cut algorithm [16]. We solve this optimization using the multi-class

α-expansion algorithm [16] which converges to a local optimal so-
lution that is guaranteed to be within a known factor of 2 of the
global optimal solution.

Experiments
In this section, we describe the results of simulation experi-

ments using 2-D phantoms containing diverse mixtures of materials.
We conduct two classes of experiments: classification experiments
where the objective is to identify the material type accurately, and
detection experiments, where the objective is to detect whether we
group materials into two classes: explosives and non-explosives,
and the objective is to determine which class the material is in. For
each experiment, we compute the performance achieved using four
different sets of features: Photoelectric/Compton (PEC) features,
PCA features using the first five principal components learned from
the LAC of the dictionary of materials, the SPECK features dis-
cussed earlier, and features obtained by direct reconstruction of the
average linear attenuation coefficient in each spectral energy bin in
the multispectral detectors.

In all experiments, we use a 2-D imaging system imaging an
area of 350mm× 350mm, which we reconstruct in terms of 1mm2

pixels. We use an array of 1000 detectors per view, with detector
size 0.75mm. For tomography, we use 200 views, evenly spaced
between 0 and π radians. For detectors, we use photon counting
detectors with 10 ideal spectral bands, with width 10 keV, in the
energy range [30− 129] keV. The source spectrum sends a total of
I = 2×106 photons per detector, spread out according to the spec-
trum in Figure 4. The received counts and sinogram values were
simulated using equations (1) and (2), with the correction that we
lower bounded the sinogram values to be nonnegative.
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Figure 4: Spectrum of source used in experiments

Classification experiments
The classification experiments used a test set of 67 materials,

including several K-edge materials. Using these 67 materials, we
generated 80 phantoms, consisting of 3 regions each filled with a
different material, randomly selected from the available materials .
The energy-dependent linear attenuation coefficients of each mate-
rial were obtained from NIST reference data [15]. The features ex-
tracted from these 80 phantoms were used as training data to learn
the parameters of the classification algorithm, namely the means
and variances of the Gaussian values of parameters. For test data,
we created 20 phantoms with similar structures.

For each of the phantoms, we collected data and formed the
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Figure 5: A tested phantom with three regions. The colors represent the
true labels.

Algorithm Average classification accuracy

SPECK 86.7%

PEC 75%

Direct LAC reconstruction 68.3%

PCA (six bases) 61.6%
Table 1: The average classification performance using different features.
The average was computed over 20 tested with phantoms with both smooth
LAC materials and materials with K-edges.

SPECK, PEC, PCA and the direct LAC reconstruction features us-
ing the tomographic approaches described earlier. For each of the
test images, we computed the average coefficient vector per mate-
rial class and its covariance by averaging over the pixels in the strict
interior regions of the areas in the phantoms containing this material
class.

For the test phantoms, we reconstructed the features for all
pixels using the different feature sets , and subsequently used the
graph cut segmentation/classification algorithm to assign a label to
each pixel. To evaluate the region classification accuracy, we used
the ground truth segmentation to compute the number of correctly
classified pixels in each region. Then, we assumed that a region is
correctly labeled if more than 50% of its pixels are labeled with the
correct material label.

Figure 5 displays an example of tested phantoms with three
regions including Water, TNT, and Baratol regions. Note that TNT
and Baratol are explosives and Baratol has a K-edge in the operating
energy range. The background is filled with air.

Table 1 summarizes the average material classification perfor-
mance over the 20 phantoms in the test data set. Our average results
indicate that the classification performance of SPECK is superior to
the performance obtained using alternative features.

Detection experiments
In these experiments, we focus on the task of explosive detec-

tion which is a binary classification problem. We selected a col-
lection of 80 materials to be included in the experiments, with 40
explosive materials and 40 non-explosive materials. In this collec-
tion, 12 K-edge materials were included.

Figure 6: The structure of the template phantom used in the explosive de-
tection evaluation for the tomography model.

Features σ = 0 σ = 0.05 σ = 0.1

SPECK 99.4% 96.0% 96.0%

PEC 94.1% 90.05% 89.5%

Direct LAC reconstruction 94.1% 88.8% 85.0%

PCA (5 bases) 94.8% 86.0% 83.0%
Table 2: The classification performance on the test data with dif-
ferent levels of distortion to the nominal dictionary, using random
forests classifiers with 10 trees.

We generated 100 phantoms of size 350mm×350mm, each of
which included four regions with explosive materials and 4 regions
with non-explosive materials, randomly selected from the collection
of experiments. The regions were 30mm× 30mm each. Figure 6
shows the structure of the template phantom.

These 100 phantoms were used as training data to train a clas-
sifier. To create the test data, we created twenty additional phantoms
with the same structure as in the training data and randomly filled
the regions in each phantom using materials in the experiment. To
add additional variability, we perturbed the linear attenuation coef-
ficients of the materials randomly from their nominal values in the
test data.

As a classification algorithm, we used a random forest classi-
fier with 10 trees, using the MATLAB TreeBagger function to train
and implement the classifier. As before, we built different classifiers
for different feature sets (SPECK, PEC, PCA, and Direct LAC),
training on the same phantoms for training data. The classification
performance was tested on 20 phantoms with different levels of ran-
dom perturbations of the LACs, corresponding to σ = 0, σ = 0.05,
and σ = 0.1, where σ indicates the average deviation from the nom-
inal LAC value used in the test data. Table 2 summarizes the clas-
sification results on the test data for all the tested bases. The results
illustrate the advantage of using the SPECK basis over the alterna-
tive approaches for obtaining accurate detection.

Conclusion
In this paper, we considered the problems of image reconstruction
and feature extraction using multispectral imaging systems. The
availability of multiple spectral measurements per detector opens
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avenues for extracting different types of features for recognition of
materials and detection of explosives. We described an approach
for extracting features as part of multispectral CT reconstructions
using basis expansions of energy-dependent linear attenuation coef-
ficients. We introduced a new basis representation, SPECK, which
accurately represents the LAC signal in few dimensions, particu-
larly for materials and mixtures that contain high atomic number
atoms.

We evaluated different reconstruction and feature extraction
algorithms for multispectral CT for the task of material classifica-
tion, and evaluated the relative performance of these algorithms on
a simulated material classification task. Our results indicate that
the SPECK basis representation extracts features that offer signifi-
cant improvement for material classification. We conducted further
experiments on a different task, involving detection of explosives
materials. Again, our experiment results indicate significant advan-
tages for using the SPECK basis representation to extract features
when compared with the alternative feature extraction techniques.

There are several directions of interest for future investigation.
The evaluation results for classification require a priori knowledge
of the set of materials considered. We would like to extend this to
cases where the materials are unknown. In addition, we would like
to validate the results of these papers using data from spectral CT
systems with different material mixtures. Finally, we would like to
consider new classes of reconstruction algorithms that perform fea-
ture reconstruction jointly, as opposed to the independent approach
described in this paper.
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