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Abstract
This paper presents a new method for tomographic recon-

struction of volumes from sparse observational data. Applica-
tion scenarios can be found in astrophysics, plasma physics, or
whenever the amount of obtainable measurement is limited. In
the extreme only a single view of the phenomenon may be avail-
able. Our method uses input image data together with complex,
user-definable assumptions about 3D density distributions. The
parameter values of the user-defined model are fitted to the in-
put image. This allows for incorporating complex, data-driven
assumptions, such as helical symmetry, into the reconstruction
process. We present two different sparsity-based reconstruction
approaches. For the first method, novel virtual views are gener-
ated prior to tomography reconstruction. In the second method,
voxel groups of similar target densities are defined and used for
group sparsity reconstruction. We evaluate our method on real
data of a high-energy plasma experiment and show that the re-
construction is consistent with the available measurement and 3D
density assumptions. An additional experiment on simulated data
demonstrates possible gains when adding an additional view to
the presented reconstruction methods.

Introduction
Tomographic reconstruction [7] is a method to obtain infor-

mation about the internal structure of objects non-invasively. It is
a well established approach in the context of measuring transmis-
sive as well as emissive density distributions of an object. As such
it is able to reveal material properties in the transmissive case or
radiation distributions like the energy content of a heated plasma
in the emissive case. This property makes it a useful tool in many
application areas, including but not limited to: radiology, archeol-
ogy, geophysics, astrophysics and plasma physics. Tomographic
reconstruction in a classical sense requires data from many differ-
ent projectional measurements to compute a full reconstruction.
However, there exist application areas, which make the acquisi-
tion of the required amount of measurement data very costly or
even impossible. An example of such an application is fusion re-
search at Sandia National Laboratories (SNL).

SNL performs research in Inertial Confinement Fusion
(ICF) using an approach called Magnetized Liner Inertial Fu-
sion (MagLIF) [5]. To this end, deuterium gas inside a Beryl-
lium cylinder is heated by a laser and compressed by a magnetic
field resulting from a high current flowing through the surround-
ing metal tube. An additional axial magnetic field confines the
plasma along the cylinder axis which prevents heat loss. Figure
1 shows a false colored measurement of x-ray radiation emerging
from the heated plasma. Experiments and diagnostics are very
costly, as experiment setup and cleanup takes approximately one
day and diagnostic components are destroyed. This results in a

severe limitation of the number of shots and the amount of diag-
nostics.

Compressed sensing [3, 4] describes conditions, which al-
low for perfect signal reconstruction with only a small number of
measurements. One important condition is the sparsity of the sig-
nal in a specific space. We will show that even if this condition is
not perfectly fulfilled for the given data, the reconstruction is still
robust enough to generate convincing visualizations. The task in
this paper is the reconstruction of a plausible volumetric density
distribution explaining the x-ray emission of a MagLIF plasma
from as few as just a single image. The input to the presented
algorithm is the measured x-ray image and a user-specified para-
metric 3D density distribution model, which does not require ad-
ditional knowledge of the underlying physical phenomenon. The
desired output is a plausible volume, which aims to conform to
both measurement and model.

Related Work
Tomographic reconstruction has been an active research field

with algebraic reconstruction methods dating back almost 50
years [6]. As such there have been numerous fundamental works
on this topic. For the case of (medical) computed tomography [7]
gives an overview of current practices.

Tomographic reconstruction has also been successfully ap-
plied in the context of measuring plasma experiments. The au-
thors of [11] discuss several inversion techniques with respect to
fast computation time and application to tokamak reactors and [9]
adapts Phillips-Tikhonov regularization to tokamak plasmas and
evaluates robustness against the presence of noise.

Compressive sensing [4] methods are a family of established
signal reconstruction techniques, which have been successfully
applied to problems such as image reconstruction under missing
pixel information [10].

The works most related to ours are [14, 15]. Both focus
on volumetric reconstruction in the context of planetary nebulae,
with axial and spherical symmetries using only one image. They
provide the basic optimization framework for our investigation,
which we extend with a consistent formulation for multiple pro-
jections and our data-driven symmetry constraints.

Method
One key concept in tomography is the reconstruction of a

3D density function ρ : R3 ⊃Ω→R from a set of 2D projections
s : R2 ⊃ Π→ R. An example of one such projection is the inte-
gration over the z-axis of the 3D density or the summation in the
discrete case

s(x,y) =
∫

z
ρ(x,y,z)dz or s(x,y) =

1
√

nz
∑
z

ρ(x,y,z) (1)
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Figure 1. The false colored measurement of x-ray radiation emerging from the heated plasma at the point of stagnation.

Figure 2. Central crop of input. Blue marks intensity centroids and green the fit of a general helix to centroid data.

with nz being the number of voxels in direction of the z-axis. Note
that in this case the voxel grid is aligned to the image grid and
the normalization by

√
nz bears no physical significance, but im-

proves convergence of the algorithm adopted below.
The general form of this projection is to assume that the sen-

sor response can be modeled as a linear map acting on ρ , which is
true for many real-world cases. In the discrete case P becomes a
matrix, which maps a voxel grid with dimensions i× j×k to pixel
space u× v:

s = Pρ, with P ∈ Ri jk×uv (2)

This matrix is usually sparsely populated, as each row only con-
tains non-zero weights for the voxels that are hit by the ray
through the corresponding pixel in the image plane. Given a set
of such projection matrices P = {Pi : i = 1 . . .n} with correspond-
ing sensor data s= {si : i = 1 . . .n} one can formulate the problem
of reconstructing the generating density ρ as minimization of the
following energy term:

DP,s(ρ) =
1
2

n

∑
i=1
‖Piρ− si‖2

2 (3)

Minimizing DP,s(ρ) is equivalent to a linear least squares prob-
lem argmin 1

2‖Ax−b‖2
2. The system matrix A and the right hand

side b correspond to the stacked projection matrices and sensor
measurements:

A = (P1,P2, . . . ,Pn)
T , b = (s1,s2, . . . ,sn)

T (4)

In usual tomographic reconstruction applications the number of
projections are selected to obtain a nearly square matrix A. More
projections lead to an overdetermined system, which increases
computation time while not necessarily improving reconstruction
accuracy. Less projections lead to an underdetermined system,
which permits a whole subspace of possible solutions.

However, this poses a problem, when the number of obtain-
able views is limited. We present two methods to incorporate ad-
ditional knowledge of symmetry properties of the density distribu-
tion into the reconstruction and improve the reconstruction even
in the extreme case of only one available projection.

Virtual view reconstruction
The first method we propose, is based on the idea that it is

possible to generate novel virtual views of the volume by image
based transformations of given views and placement of virtual
camera positions. Given a sparse set of input measurements s̃
with accompanying projections P̃, we can generate a new set of
inputs s⊃ s̃,P⊃ P̃ to minimize equation 3.

In case of approximately helical symmetry this corresponds
to placing new virtual views around the axis of the helix, see

Figure 3. Novel view generation based on one input view (blue triangle).

Novel views (red triangles) are generated by shifting input measurements

with respect to the helix pitch.

figure 3. Assuming orthographic projections, novel virtual sen-
sor measurements are blended and shifted versions of the original
measurements. Given two original camera views s̃1, s̃2 on the cir-
cle, we compute an in-between views with position t ∈ [0,1]

st = tφ(s̃1,λ , t)+(1− t)φ(s̃2,λ ,1− t), (5)

with φ being the shift of an image in direction of the helix’ axis.
The parameter λ describes the pitch of the helix. We derive it
from image data by first computing the intensity centroids per-
pendicular to the axis of the helix in the image plane. After-
wards we fit the parameters a,b,c of a general helix (bx,asin(x)+
c,acos(x)+ c)T to these centroids using non-linear least squares
optimization. See figure 2 for the fitting result on measured data.

Finally, we add a `1 regularization term to the optimization:

R1(ρ) = ‖ρ‖1 (6)

This term promotes the sparsity of the solution [2], i.e. a solution
with few high-density voxels and the rest close to zero.

We use the method of [14] for optimization of the combined
energy with τ > 0 being a weight to control the influence of the
regularization term:

argmin
ρ

DP,s(ρ)+ τR1(ρ)

s.t. ρ ≥ 0

s.t. Bρ = c (7)

The optional hard constraints Bρ = c enforce stronger adherence
to views that are known to be correct, i.e. the input views. We set
B and c as follows:

B = (P̃1, . . . , P̃k)
T , P̃i ∈ P̃, c = (s̃1, . . . , s̃k)

T , s̃i ∈ s̃ (8)

Unless noted differently we use τ = 1 and ng = 50 virtual cam-
eras arranged in a half circle around the axis of the helix for our
experiments.
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Group sparsity reconstruction

Figure 4. Voxel groups are concentric rings perpendicular to the axis of

the helix with centers derived from intensity centroids (e.g. red, green, blue,

orange).

Our second method also uses the data term from equation 3,
but instead of filling missing information by image transforma-
tions we construct a stronger regularization term, which is able to
resolve the ambiguity in solution space due to missing data.

We achieve this by defining voxel groups, i.e. sets of voxels
which we assume to have the same density value. These groups
are pairwise disjoint and form a full partition of the voxel grid.

In case of approximately helical symmetry we again start by
computing intensity centroids of the image data (figure 2). If we
can locate the centroids in 3D space (e.g. using two orthogo-
nal measurements) we use these as centers for concentric rings to
form our voxel groups (figure 4).

If we can’t fully locate the centroids (e.g. if only one projec-
tion is available) we fit a generic helix trajectory to the centroids
as in the previous section. The ring centers are then shifted in the
planes, which provide centroid data to better fit our model to the
measurements.

Let G =
{

G j, j = 1, . . . ,ng
}

denote the set of voxel groups.
We define ρ{G j} =

{
ρ(x,y,z) : (x,y,z) ∈ G j

}
as the set of densi-

ties of group G j . With this we define our group sparsity regular-
izer as:

R2(ρ) = ∑
j
|G j|maxρ{G j} (9)

This regularizer is a weighted `1,∞ norm over all groups under the
constraint that ρ ≥ 0 everywhere, which is enforced in equation
10. The regularizer penalizes each group with the maximum value
of that group, which enforces concentration of intensity values to
as few groups as possible, while also requiring similar intensity
values in each group.

The scaling with the number of voxels in each group
|G j| is necessary to prevent accumulation of densities in larger
groups (in rings with larger radii). Without this term it would be
possible to deposit densities in these groups and not incur any
penalization, as only the largest value in each group would be
taken into account.

We use the method detailed in [15] to optimize the combined
energy with τ > 0 as a user-defined weight to control the influence

of the regularizer:

argmin
ρ

DP,s(ρ)+ τR2(ρ)

s.t. ρ ≥ 0 (10)

Unless noted differently we use τ = 0.1 in our experiments.

Results
We evaluate our reconstruction methods on synthetic as well

as real measurement data.
All algorithms are performed on a workstation computer

with an Intel Core i7 6700k, 4×4GHz CPU with an NVIDIA GTX
970 GPU and 32 Gb of RAM.

The real-world data consists of one measurement of x-ray
radiation of an imploding MagLIF plasma at stagnation (see fig-
ure 2) with resolution of 1999× 123 pixels and 16 bit per pixel
depth. This resulted in a volume of size 1999× 123× 123 vox-
els. The computation with the virtual view reconstruction took ap-
proximately 14 hours and the group sparsity reconstruction took
approximately 20 minutes.

Figure 5 and 6 show projections of the reconstructed
volume with both algorithms. It is observable that group sparsity
reconstruction more faithfully represents the input (0◦) view
than virtual view reconstruction, which tends to introduce blurry
streaks. The orthogonal (90◦) projections of both methods reveal
further artifacts. In this case the virtual view reconstruction is
even more blurred and group sparsity reconstruction shows a
projection, which is too symmetric to be physically plausible, but
looks convincing to human perception because of strong locality
of the emissive volume.

To better estimate the quality of the reconstruction, we con-
ducted further tests on synthetic ground truth data of a numerical
simulation (figure 7) of the underlying physical process — see [8]
for an introduction. Availability of ground truth data allows us to
test the algorithms with varying number of input views — only
one and two orthogonal views in our case. The simulated and
reconstructed volumes are of size 832× 38× 38 voxels. Com-
putation times for this small volume were around 20 minutes for
virtual view and 30 seconds for group sparsity reconstruction.

To estimate the quality of the reconstruction, we compute the
error of several 2D projections of the reconstructed and ground
truth volume at different camera positions as well as the error of
the full 3D volume. The following table shows the peak signal-
to-noise ratio (PSNR) of these errors. The projections mentioned
in this table can be seen in figures 7 – 11. Unsurprisingly, the ad-
dition of an orthogonal view improves the reconstruction quality
by a significant amount.

Comparison 1 view 2 views
VV GS VV GS

0◦ proj. 35.44 47.60 37.14 44.11
90◦ proj. 27.93 29.53 37.25 45.97
45◦ proj. 28.90 31.42 32.24 33.67
full volume 37.48 38.11 40.01 39.75

PSNR values (in dB) for the reconstruction of simulated data
with virtual view (VV) and group sparsity (GS) with a single
projection and two orthogonal projections as input.
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Figure 5. Reconstruction of measurement using virtual view reconstruction. Input to the reconstruction is shown in figure 2. Top: Input view of reconstructed

volume, bottom: 90◦ view of reconstructed volume

Figure 6. Reconstruction of measurement using group sparsity reconstruction. Input to the reconstruction is shown in figure 2. Top: Input view of reconstructed

volume, bottom: 90◦ view of reconstructed volume

Surprisingly, virtual view reconstruction seems to outper-
form group sparsity reconstruction in the full 3D comparison,
when two orthogonal views are available, even though it is out-
performed in every single projection case. This shows the ambi-
guity that is present, when trying to explain a 3D volume by only
three 2D projections of this volume. Also note that these exper-
iments were conducted on a single synthetic example, which is
insignificant in deciding, which algorithm outperforms the other.
The examples are meant to show that both algorithms produce
visually plausible results that can be generated using moderate
computational resources. Furthermore both methods require only
little user input by setting some global parameters like the regu-
larization strength or the number of virtual views.

All reconstructed volumes mentioned here (and shown in fig-
ures 5 – 11) can be viewed as rotating projections on the project
website 1 to gain more intuitive insight into local differences of
the full 3D density distributions.

Conclusion
We have presented a novel approach for reconstruction of

approximately symmetric 3D density data from as few as only one
projection. Our results indicate that it is possible to obtain visually
pleasing results, which reproduce the measurement data faithfully.
Tests on simulated data further reveal how much information can
be gained from expanding a single line of sight measurement with
a second orthogonal line of sight measurement.

The reconstruction of a physically plausible volume is still
an open problem. It is conceivable that better reconstruction re-
sults are possible when incorporating further knowledge of the
process of the physical system into the reconstruction. Our fur-
ther work shall investigate, whether additional regularizers can be
derived from simulation or successive measurement and utilized
as a prior for reconstruction. In this context machine learning and
especially neural network approaches could prove a useful tool
for regressing a strong model, which generalizes well to unseen
data. Another interesting approach could be the incorporation of
time gated measurements, which allow utilization of the time evo-
lution of the imploding plasma into the reconstruction to resolve

1https://graphics.tu-bs.de/publications/
kassubeck2018data-driven

the issue of ambiguity in the solution space.
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Figure 7. Ground truth projections of simulation data. Top: projection with 0◦, middle: projection with 90◦, bottom: projection with 45◦ rotation around helix axis.

Figure 8. Virtual view reconstruction of simulation data with one projection (0◦ in figure 7) as input. Top: projection with 0◦, middle: projection with 90◦, bottom:

projection with 45◦ rotation around helix axis.

Figure 9. Virtual view reconstruction of simulation data with two orthogonal projections (0◦ and 90◦ see figure 7) as input. Top: projection with 0◦, middle:

projection with 90◦, bottom: projection with 45◦ rotation around helix axis.

Figure 10. Group sparsity reconstruction of simulation data with one projection (0◦ in figure 7) as input. Top: projection with 0◦, middle: projection with 90◦,

bottom: projection with 45◦ rotation around helix axis.

Figure 11. Group sparsity reconstruction of simulation data with two orthogonal projections (0◦ and 90◦ see figure 7) as input. Top: projection with 0◦, middle:

projection with 90◦, bottom: projection with 45◦ rotation around helix axis.
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